/*
* Copyright (C) 2016 Cavium, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License
* as published by the Free Software Foundation.
*/
#include <linux/interrupt.h>
#include <linux/module.h>
#include "cptvf.h"
#define DRV_NAME "thunder-cptvf"
#define DRV_VERSION "1.0"
struct cptvf_wqe {
struct tasklet_struct twork;
void *cptvf;
u32 qno;
};
struct cptvf_wqe_info {
struct cptvf_wqe vq_wqe[CPT_NUM_QS_PER_VF];
};
static void vq_work_handler(unsigned long data)
{
struct cptvf_wqe_info *cwqe_info = (struct cptvf_wqe_info *)data;
struct cptvf_wqe *cwqe = &cwqe_info->vq_wqe[0];
vq_post_process(cwqe->cptvf, cwqe->qno);
}
static int init_worker_threads(struct cpt_vf *cptvf)
{
struct pci_dev *pdev = cptvf->pdev;
struct cptvf_wqe_info *cwqe_info;
int i;
cwqe_info = kzalloc(sizeof(*cwqe_info), GFP_KERNEL);
if (!cwqe_info)
return -ENOMEM;
if (cptvf->nr_queues) {
dev_info(&pdev->dev, "Creating VQ worker threads (%d)\n",
cptvf->nr_queues);
}
for (i = 0; i < cptvf->nr_queues; i++) {
tasklet_init(&cwqe_info->vq_wqe[i].twork, vq_work_handler,
(u64)cwqe_info);
cwqe_info->vq_wqe[i].qno = i;
cwqe_info->vq_wqe[i].cptvf = cptvf;
}
cptvf->wqe_info = cwqe_info;
return 0;
}
static void cleanup_worker_threads(struct cpt_vf *cptvf)
{
struct cptvf_wqe_info *cwqe_info;
struct pci_dev *pdev = cptvf->pdev;
int i;
cwqe_info = (struct cptvf_wqe_info *)cptvf->wqe_info;
if (!cwqe_info)
return;
if (cptvf->nr_queues) {
dev_info(&pdev->dev, "Cleaning VQ worker threads (%u)\n",
cptvf->nr_queues);
}
for (i = 0; i < cptvf->nr_queues; i++)
tasklet_kill(&cwqe_info->vq_wqe[i].twork);
kzfree(cwqe_info);
cptvf->wqe_info = NULL;
}
static void free_pending_queues(struct pending_qinfo *pqinfo)
{
int i;
struct pending_queue *queue;
for_each_pending_queue(pqinfo, queue, i) {
if (!queue->head)
continue;
/* free single queue */
kzfree((queue->head));
queue->front = 0;
queue->rear = 0;
return;
}
pqinfo->qlen = 0;
pqinfo->nr_queues = 0;
}
static int alloc_pending_queues(struct pending_qinfo *pqinfo, u32 qlen,
u32 nr_queues)
{
u32 i;
size_t size;
int ret;
struct pending_queue *queue = NULL;
pqinfo->nr_queues = nr_queues;
pqinfo->qlen = qlen;
size = (qlen * sizeof(struct pending_entry));
for_each_pending_queue(pqinfo, queue, i) {
queue->head = kzalloc((size), GFP_KERNEL);
if (!queue->head) {
ret = -ENOMEM;
goto pending_qfail;
}
queue->front = 0;
queue->rear = 0;
atomic64_set((&queue->pending_count), (0));
/* init queue spin lock */
spin_lock_init(&queue->lock);
}
return 0;
pending_qfail:
free_pending_queues(pqinfo);
return ret;
}
static int init_pending_queues(struct cpt_vf *cptvf, u32 qlen, u32 nr_queues)
{
struct pci_dev *pdev = cptvf->pdev;
int ret;
if (!nr_queues)
return 0;
ret = alloc_pending_queues(&cptvf->pqinfo, qlen, nr_queues);
if (ret) {
dev_err(&pdev->dev, "failed to setup pending queues (%u)\n",
nr_queues);
return ret;
}
return 0;
}
static void cleanup_pending_queues(struct cpt_vf *cptvf)
{
struct pci_dev *pdev = cptvf->pdev;
if (!cptvf->nr_queues)
return;
dev_info(&pdev->dev, "Cleaning VQ pending queue (%u)\n",
cptvf->nr_queues);
free_pending_queues(&cptvf->pqinfo);
}
static void free_command_queues(struct cpt_vf *cptvf,
struct command_qinfo *cqinfo)
{
int i;
struct command_queue *queue = NULL;
struct command_chunk *chunk = NULL;
struct pci_dev *pdev = cptvf->pdev;
struct hlist_node *node;
/* clean up for each queue */
for (i = 0; i < cptvf->nr_queues; i++) {
queue = &cqinfo->queue[i];
if (hlist_empty(&cqinfo->queue[i].chead))
continue;
hlist_for_each_entry_safe(chunk, node, &cqinfo->queue[i].chead,
nextchunk) {
dma_free_coherent(&pdev->dev, chunk->size,
chunk->head,
chunk->dma_addr);
chunk->head = NULL;
chunk->dma_addr = 0;
hlist_del(&chunk->nextchunk);
kzfree(chunk);
}
queue->nchunks = 0;
queue->idx = 0;
}
/* common cleanup */
cqinfo->cmd_size = 0;
}
static int alloc_command_queues(struct cpt_vf *cptvf,
struct command_qinfo *cqinfo, size_t cmd_size,
u32 qlen)
{
int i;
size_t q_size;
struct command_queue *queue = NULL;
struct pci_dev *pdev = cptvf->pdev;
/* common init */
cqinfo->cmd_size = cmd_size;
/* Qsize in dwords, needed for SADDR config, 1-next chunk pointer */
cptvf->qsize = min(qlen, cqinfo->qchunksize) *
CPT_NEXT_CHUNK_PTR_SIZE + 1;
/* Qsize in bytes to create space for alignment */
q_size = qlen * cqinfo->cmd_size;
/* per queue initialization */
for (i = 0; i < cptvf->nr_queues; i++) {
size_t c_size = 0;
size_t rem_q_size = q_size;
struct command_chunk *curr = NULL, *first = NULL, *last = NULL;
u32 qcsize_bytes = cqinfo->qchunksize * cqinfo->cmd_size;
queue = &cqinfo->queue[i];
INIT_HLIST_HEAD(&cqinfo->queue[i].chead);
do {
curr = kzalloc(sizeof(*curr), GFP_KERNEL);
if (!curr)
goto cmd_qfail;
c_size = (rem_q_size > qcsize_bytes) ? qcsize_bytes :
rem_q_size;
curr->head = (u8 *)dma_zalloc_coherent(&pdev->dev,
c_size + CPT_NEXT_CHUNK_PTR_SIZE,
&curr->dma_addr, GFP_KERNEL);
if (!curr->head) {
dev_err(&pdev->dev, "Command Q (%d) chunk (%d) allocation failed\n",
i, queue->nchunks);
goto cmd_qfail;
}
curr->size = c_size;
if (queue->nchunks == 0) {
hlist_add_head(&curr->nextchunk,
&cqinfo->queue[i].chead);
first = curr;
} else {
hlist_add_behind(&curr->nextchunk,
&last->nextchunk);
}
queue->nchunks++;
rem_q_size -= c_size;
if (last)
*((u64 *)(&last->head[last->size])) = (u64)curr->dma_addr;
last = curr;
} while (rem_q_size);
/* Make the queue circular */
/* Tie back last chunk entry to head */
curr = first;
*((u64 *)(&last->head[last->size])) = (u64)curr->dma_addr;
queue->qhead = curr;
spin_lock_init(&queue->lock);
}
return 0;
cmd_qfail:
free_command_queues(cptvf, cqinfo);
return -ENOMEM;
}
static int init_command_queues(struct cpt_vf *cptvf, u32 qlen)
{
struct pci_dev *pdev = cptvf->pdev;
int ret;
/* setup AE command queues */
ret = alloc_command_queues(cptvf, &cptvf->cqinfo, CPT_INST_SIZE,
qlen);
if (ret) {
dev_err(&pdev->dev, "failed to allocate AE command queues (%u)\n",
cptvf->nr_queues);
return ret;
}
return ret;
}
static void cleanup_command_queues(struct cpt_vf *cptvf)
{
struct pci_dev *pdev = cptvf->pdev;
if (!cptvf->nr_queues)
return;
dev_info(&pdev->dev, "Cleaning VQ command queue (%u)\n",
cptvf->nr_queues);
free_command_queues(cptvf, &cptvf->cqinfo);
}
static void cptvf_sw_cleanup(struct cpt_vf *cptvf)
{
cleanup_worker_threads(cptvf);
cleanup_pending_queues(cptvf);
cleanup_command_queues(cptvf);
}
static int cptvf_sw_init(struct cpt_vf *cptvf, u32 qlen, u32 nr_queues)
{
struct pci_dev *pdev = cptvf->pdev;
int ret = 0;
u32 max_dev_queues = 0;
max_dev_queues = CPT_NUM_QS_PER_VF;
/* possible cpus */
nr_queues = min_t(u32, nr_queues, max_dev_queues);
cptvf->nr_queues = nr_queues;
ret = init_command_queues(cptvf, qlen);
if (ret) {
dev_err(&pdev->dev, "Failed to setup command queues (%u)\n",
nr_queues);
return ret;
}
ret = init_pending_queues(cptvf, qlen, nr_queues);
if (ret) {
dev_err(&pdev->dev, "Failed to setup pending queues (%u)\n",
nr_queues);
goto setup_pqfail;
}
/* Create worker threads for BH processing */
ret = init_worker_threads(cptvf);
if (ret) {
dev_err(&pdev->dev, "Failed to setup worker threads\n");
goto init_work_fail;
}
return 0;
init_work_fail:
cleanup_worker_threads(cptvf);
cleanup_pending_queues(cptvf);
setup_pqfail:
cleanup_command_queues(cptvf);
return ret;
}
static void cptvf_disable_msix(struct cpt_vf *cptvf)
{
if (cptvf->msix_enabled) {
pci_disable_msix(cptvf->pdev);
cptvf->msix_enabled = 0;
}
}
static int cptvf_enable_msix(struct cpt_vf *cptvf)
{
int i, ret;
for (i = 0; i < CPT_VF_MSIX_VECTORS; i++)
cptvf->msix_entries[i].entry = i;
ret = pci_enable_msix(cptvf->pdev, cptvf->msix_entries,
CPT_VF_MSIX_VECTORS);
if (ret) {
dev_err(&cptvf->pdev->dev, "Request for #%d msix vectors failed\n",
CPT_VF_MSIX_VECTORS);
return ret;
}
cptvf->msix_enabled = 1;
/* Mark MSIX enabled */
cptvf->flags |= CPT_FLAG_MSIX_ENABLED;
return 0;
}
static void cptvf_free_all_interrupts(struct cpt_vf *cptvf)
{
int irq;
for (irq = 0; irq < CPT_VF_MSIX_VECTORS; irq++) {
if (cptvf->irq_allocated[irq])
irq_set_affinity_hint(cptvf->msix_entries[irq].vector,
NULL);
free_cpumask_var(cptvf->affinity_mask[irq]);
free_irq(cptvf->msix_entries[irq].vector, cptvf);
cptvf->irq_allocated[irq] = false;
}
}
static void cptvf_write_vq_ctl(struct cpt_vf *cptvf, bool val)
{
union cptx_vqx_ctl vqx_ctl;
vqx_ctl.u = cpt_read_csr64(cptvf->reg_base, CPTX_VQX_CTL(0, 0));
vqx_ctl.s.ena = val;
cpt_write_csr64(cptvf->reg_base, CPTX_VQX_CTL(0, 0), vqx_ctl.u);
}
void cptvf_write_vq_doorbell(struct cpt_vf *cptvf, u32 val)
{
union cptx_vqx_doorbell vqx_dbell;
vqx_dbell.u = cpt_read_csr64(cptvf->reg_base,
CPTX_VQX_DOORBELL(0, 0));
vqx_dbell.s.dbell_cnt = val * 8; /* Num of Instructions * 8 words */
cpt_write_csr64(cptvf->reg_base, CPTX_VQX_DOORBELL(0, 0),
vqx_dbell.u);
}
static void cptvf_write_vq_inprog(struct cpt_vf *cptvf, u8 val)
{
union cptx_vqx_inprog vqx_inprg;
vqx_inprg.u = cpt_read_csr64(cptvf->reg_base, CPTX_VQX_INPROG(0, 0));
vqx_inprg.s.inflight = val;
cpt_write_csr64(cptvf->reg_base, CPTX_VQX_INPROG(0, 0), vqx_inprg.u);
}
static void cptvf_write_vq_done_numwait(struct cpt_vf *cptvf, u32 val)
{
union cptx_vqx_done_wait vqx_dwait;
vqx_dwait.u = cpt_read_csr64(cptvf->reg_base,
CPTX_VQX_DONE_WAIT(0, 0));
vqx_dwait.s.num_wait = val;
cpt_write_csr64(cptvf->reg_base, CPTX_VQX_DONE_WAIT(0, 0),
vqx_dwait.u);
}
static void cptvf_write_vq_done_timewait(struct cpt_vf *cptvf, u16 time)
{
union cptx_vqx_done_wait vqx_dwait;
vqx_dwait.u = cpt_read_csr64(cptvf->reg_base,
CPTX_VQX_DONE_WAIT(0, 0));
vqx_dwait.s.time_wait = time;
cpt_write_csr64(cptvf->reg_base, CPTX_VQX_DONE_WAIT(0, 0),
vqx_dwait.u);
}
static void cptvf_enable_swerr_interrupts(struct cpt_vf *cptvf)
{
union cptx_vqx_misc_ena_w1s vqx_misc_ena;
vqx_misc_ena.u = cpt_read_csr64(cptvf->reg_base,
CPTX_VQX_MISC_ENA_W1S(0, 0));
/* Set mbox(0) interupts for the requested vf */
vqx_misc_ena.s.swerr = 1;
cpt_write_csr64(cptvf->reg_base, CPTX_VQX_MISC_ENA_W1S(0, 0),
vqx_misc_ena.u);
}
static void cptvf_enable_mbox_interrupts(struct cpt_vf *cptvf)
{
union cptx_vqx_misc_ena_w1s vqx_misc_ena;
vqx_misc_ena.u = cpt_read_csr64(cptvf->reg_base,
CPTX_VQX_MISC_ENA_W1S(0, 0));
/* Set mbox(0) interupts for the requested vf */
vqx_misc_ena.s.mbox = 1;
cpt_write_csr64(cptvf->reg_base, CPTX_VQX_MISC_ENA_W1S(0, 0),
vqx_misc_ena.u);
}
static void cptvf_enable_done_interrupts(struct cpt_vf *cptvf)
{
union cptx_vqx_done_ena_w1s vqx_done_ena;
vqx_done_ena.u = cpt_read_csr64(cptvf->reg_base,
CPTX_VQX_DONE_ENA_W1S(0, 0));
/* Set DONE interrupt for the requested vf */
vqx_done_ena.s.done = 1;
cpt_write_csr64(cptvf->reg_base, CPTX_VQX_DONE_ENA_W1S(0, 0),
vqx_done_ena.u);
}
static void cptvf_clear_dovf_intr(struct cpt_vf *cptvf)
{
union cptx_vqx_misc_int vqx_misc_int;
vqx_misc_int.u = cpt_read_csr64(cptvf->reg_base,
CPTX_VQX_MISC_INT(0, 0));
/* W1C for the VF */
vqx_misc_int.s.dovf = 1;
cpt_write_csr64(cptvf->reg_base, CPTX_VQX_MISC_INT(0, 0),
vqx_misc_int.u);
}
static void cptvf_clear_irde_intr(struct cpt_vf *cptvf)
{
union cptx_vqx_misc_int vqx_misc_int;
vqx_misc_int.u = cpt_read_csr64(cptvf->reg_base,
CPTX_VQX_MISC_INT(0, 0));
/* W1C for the VF */
vqx_misc_int.s.irde = 1;
cpt_write_csr64(cptvf->reg_base, CPTX_VQX_MISC_INT(0, 0),
vqx_misc_int.u);
}
static void cptvf_clear_nwrp_intr(struct cpt_vf *cptvf)
{
union cptx_vqx_misc_int vqx_misc_int;
vqx_misc_int.u = cpt_read_csr64(cptvf->reg_base,
CPTX_VQX_MISC_INT(0, 0));
/* W1C for the VF */
vqx_misc_int.s.nwrp = 1;
cpt_write_csr64(cptvf->reg_base,
CPTX_VQX_MISC_INT(0, 0), vqx_misc_int.u);
}
static void cptvf_clear_mbox_intr(struct cpt_vf *cptvf)
{
union cptx_vqx_misc_int vqx_misc_int;
vqx_misc_int.u = cpt_read_csr64(cptvf->reg_base,
CPTX_VQX_MISC_INT(0, 0));
/* W1C for the VF */
vqx_misc_int.s.mbox = 1;
cpt_write_csr64(cptvf->reg_base, CPTX_VQX_MISC_INT(0, 0),
vqx_misc_int.u);
}
static void cptvf_clear_swerr_intr(struct cpt_vf *cptvf)
{
union cptx_vqx_misc_int vqx_misc_int;
vqx_misc_int.u = cpt_read_csr64(cptvf->reg_base,
CPTX_VQX_MISC_INT(0, 0));
/* W1C for the VF */
vqx_misc_int.s.swerr = 1;
cpt_write_csr64(cptvf->reg_base, CPTX_VQX_MISC_INT(0, 0),
vqx_misc_int.u);
}
static u64 cptvf_read_vf_misc_intr_status(struct cpt_vf *cptvf)
{
return cpt_read_csr64(cptvf->reg_base, CPTX_VQX_MISC_INT(0, 0));
}
static irqreturn_t cptvf_misc_intr_handler(int irq, void *cptvf_irq)
{
struct cpt_vf *cptvf = (struct cpt_vf *)cptvf_irq;
struct pci_dev *pdev = cptvf->pdev;
u64 intr;
intr = cptvf_read_vf_misc_intr_status(cptvf);
/*Check for MISC interrupt types*/
if (likely(intr & CPT_VF_INTR_MBOX_MASK)) {
dev_err(&pdev->dev, "Mailbox interrupt 0x%llx on CPT VF %d\n",
intr, cptvf->vfid);
cptvf_handle_mbox_intr(cptvf);
cptvf_clear_mbox_intr(cptvf);
} else if (unlikely(intr & CPT_VF_INTR_DOVF_MASK)) {
cptvf_clear_dovf_intr(cptvf);
/*Clear doorbell count*/
cptvf_write_vq_doorbell(cptvf, 0);
dev_err(&pdev->dev, "Doorbell overflow error interrupt 0x%llx on CPT VF %d\n",
intr, cptvf->vfid);
} else if (unlikely(intr & CPT_VF_INTR_IRDE_MASK)) {
cptvf_clear_irde_intr(cptvf);
dev_err(&pdev->dev, "Instruction NCB read error interrupt 0x%llx on CPT VF %d\n",
intr, cptvf->vfid);
} else if (unlikely(intr & CPT_VF_INTR_NWRP_MASK)) {
cptvf_clear_nwrp_intr(cptvf);
dev_err(&pdev->dev, "NCB response write error interrupt 0x%llx on CPT VF %d\n",
intr, cptvf->vfid);
} else if (unlikely(intr & CPT_VF_INTR_SERR_MASK)) {
cptvf_clear_swerr_intr(cptvf);
dev_err(&pdev->dev, "Software error interrupt 0x%llx on CPT VF %d\n",
intr, cptvf->vfid);
} else {
dev_err(&pdev->dev, "Unhandled interrupt in CPT VF %d\n",
cptvf->vfid);
}
return IRQ_HANDLED;
}
static inline struct cptvf_wqe *get_cptvf_vq_wqe(struct cpt_vf *cptvf,
int qno)
{
struct cptvf_wqe_info *nwqe_info;
if (unlikely(qno >= cptvf->nr_queues))
return NULL;
nwqe_info = (struct cptvf_wqe_info *)cptvf->wqe_info;
return &nwqe_info->vq_wqe[qno];
}
static inline u32 cptvf_read_vq_done_count(struct cpt_vf *cptvf)
{
union cptx_vqx_done vqx_done;
vqx_done.u = cpt_read_csr64(cptvf->reg_base, CPTX_VQX_DONE(0, 0));
return vqx_done.s.done;
}
static inline void cptvf_write_vq_done_ack(struct cpt_vf *cptvf,
u32 ackcnt)
{
union cptx_vqx_done_ack vqx_dack_cnt;
vqx_dack_cnt.u = cpt_read_csr64(cptvf->reg_base,
CPTX_VQX_DONE_ACK(0, 0));
vqx_dack_cnt.s.done_ack = ackcnt;
cpt_write_csr64(cptvf->reg_base, CPTX_VQX_DONE_ACK(0, 0),
vqx_dack_cnt.u);
}
static irqreturn_t cptvf_done_intr_handler(int irq, void *cptvf_irq)
{
struct cpt_vf *cptvf = (struct cpt_vf *)cptvf_irq;
struct pci_dev *pdev = cptvf->pdev;
/* Read the number of completions */
u32 intr = cptvf_read_vq_done_count(cptvf);
if (intr) {
struct cptvf_wqe *wqe;
/* Acknowledge the number of
* scheduled completions for processing
*/
cptvf_write_vq_done_ack(cptvf, intr);
wqe = get_cptvf_vq_wqe(cptvf, 0);
if (unlikely(!wqe)) {
dev_err(&pdev->dev, "No work to schedule for VF (%d)",
cptvf->vfid);
return IRQ_NONE;
}
tasklet_hi_schedule(&wqe->twork);
}
return IRQ_HANDLED;
}
static int cptvf_register_misc_intr(struct cpt_vf *cptvf)
{
struct pci_dev *pdev = cptvf->pdev;
int ret;
/* Register misc interrupt handlers */
ret = request_irq(cptvf->msix_entries[CPT_VF_INT_VEC_E_MISC].vector,
cptvf_misc_intr_handler, 0, "CPT VF misc intr",
cptvf);
if (ret)
goto fail;
cptvf->irq_allocated[CPT_VF_INT_VEC_E_MISC] = true;
/* Enable mailbox interrupt */
cptvf_enable_mbox_interrupts(cptvf);
cptvf_enable_swerr_interrupts(cptvf);
return 0;
fail:
dev_err(&pdev->dev, "Request misc irq failed");
cptvf_free_all_interrupts(cptvf);
return ret;
}
static int cptvf_register_done_intr(struct cpt_vf *cptvf)
{
struct pci_dev *pdev = cptvf->pdev;
int ret;
/* Register DONE interrupt handlers */
ret = request_irq(cptvf->msix_entries[CPT_VF_INT_VEC_E_DONE].vector,
cptvf_done_intr_handler, 0, "CPT VF done intr",
cptvf);
if (ret)
goto fail;
cptvf->irq_allocated[CPT_VF_INT_VEC_E_DONE] = true;
/* Enable mailbox interrupt */
cptvf_enable_done_interrupts(cptvf);
return 0;
fail:
dev_err(&pdev->dev, "Request done irq failed\n");
cptvf_free_all_interrupts(cptvf);
return ret;
}
static void cptvf_unregister_interrupts(struct cpt_vf *cptvf)
{
cptvf_free_all_interrupts(cptvf);
cptvf_disable_msix(cptvf);
}
static void cptvf_set_irq_affinity(struct cpt_vf *cptvf)
{
struct pci_dev *pdev = cptvf->pdev;
int vec, cpu;
int irqnum;
for (vec = 0; vec < CPT_VF_MSIX_VECTORS; vec++) {
if (!cptvf->irq_allocated[vec])
continue;
if (!zalloc_cpumask_var(&cptvf->affinity_mask[vec],
GFP_KERNEL)) {
dev_err(&pdev->dev, "Allocation failed for affinity_mask for VF %d",
cptvf->vfid);
return;
}
cpu = cptvf->vfid % num_online_cpus();
cpumask_set_cpu(cpumask_local_spread(cpu, cptvf->node),
cptvf->affinity_mask[vec]);
irqnum = cptvf->msix_entries[vec].vector;
irq_set_affinity_hint(irqnum, cptvf->affinity_mask[vec]);
}
}
static void cptvf_write_vq_saddr(struct cpt_vf *cptvf, u64 val)
{
union cptx_vqx_saddr vqx_saddr;
vqx_saddr.u = val;
cpt_write_csr64(cptvf->reg_base, CPTX_VQX_SADDR(0, 0), vqx_saddr.u);
}
void cptvf_device_init(struct cpt_vf *cptvf)
{
u64 base_addr = 0;
/* Disable the VQ */
cptvf_write_vq_ctl(cptvf, 0);
/* Reset the doorbell */
cptvf_write_vq_doorbell(cptvf, 0);
/* Clear inflight */
cptvf_write_vq_inprog(cptvf, 0);
/* Write VQ SADDR */
/* TODO: for now only one queue, so hard coded */
base_addr = (u64)(cptvf->cqinfo.queue[0].qhead->dma_addr);
cptvf_write_vq_saddr(cptvf, base_addr);
/* Configure timerhold / coalescence */
cptvf_write_vq_done_timewait(cptvf, CPT_TIMER_THOLD);
cptvf_write_vq_done_numwait(cptvf, 1);
/* Enable the VQ */
cptvf_write_vq_ctl(cptvf, 1);
/* Flag the VF ready */
cptvf->flags |= CPT_FLAG_DEVICE_READY;
}
static int cptvf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
{
struct device *dev = &pdev->dev;
struct cpt_vf *cptvf;
int err;
cptvf = devm_kzalloc(dev, sizeof(*cptvf), GFP_KERNEL);
if (!cptvf)
return -ENOMEM;
pci_set_drvdata(pdev, cptvf);
cptvf->pdev = pdev;
err = pci_enable_device(pdev);
if (err) {
dev_err(dev, "Failed to enable PCI device\n");
pci_set_drvdata(pdev, NULL);
return err;
}
err = pci_request_regions(pdev, DRV_NAME);
if (err) {
dev_err(dev, "PCI request regions failed 0x%x\n", err);
goto cptvf_err_disable_device;
}
/* Mark as VF driver */
cptvf->flags |= CPT_FLAG_VF_DRIVER;
err = pci_set_dma_mask(pdev, DMA_BIT_MASK(48));
if (err) {
dev_err(dev, "Unable to get usable DMA configuration\n");
goto cptvf_err_release_regions;
}
err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(48));
if (err) {
dev_err(dev, "Unable to get 48-bit DMA for consistent allocations\n");
goto cptvf_err_release_regions;
}
/* MAP PF's configuration registers */
cptvf->reg_base = pcim_iomap(pdev, 0, 0);
if (!cptvf->reg_base) {
dev_err(dev, "Cannot map config register space, aborting\n");
err = -ENOMEM;
goto cptvf_err_release_regions;
}
cptvf->node = dev_to_node(&pdev->dev);
/* Enable MSI-X */
err = cptvf_enable_msix(cptvf);
if (err) {
dev_err(dev, "cptvf_enable_msix() failed");
goto cptvf_err_release_regions;
}
/* Register mailbox interrupts */
cptvf_register_misc_intr(cptvf);
/* Check ready with PF */
/* Gets chip ID / device Id from PF if ready */
err = cptvf_check_pf_ready(cptvf);
if (err) {
dev_err(dev, "PF not responding to READY msg");
goto cptvf_err_release_regions;
}
/* CPT VF software resources initialization */
cptvf->cqinfo.qchunksize = CPT_CMD_QCHUNK_SIZE;
err = cptvf_sw_init(cptvf, CPT_CMD_QLEN, CPT_NUM_QS_PER_VF);
if (err) {
dev_err(dev, "cptvf_sw_init() failed");
goto cptvf_err_release_regions;
}
/* Convey VQ LEN to PF */
err = cptvf_send_vq_size_msg(cptvf);
if (err) {
dev_err(dev, "PF not responding to QLEN msg");
goto cptvf_err_release_regions;
}
/* CPT VF device initialization */
cptvf_device_init(cptvf);
/* Send msg to PF to assign currnet Q to required group */
cptvf->vfgrp = 1;
err = cptvf_send_vf_to_grp_msg(cptvf);
if (err) {
dev_err(dev, "PF not responding to VF_GRP msg");
goto cptvf_err_release_regions;
}
cptvf->priority = 1;
err = cptvf_send_vf_priority_msg(cptvf);
if (err) {
dev_err(dev, "PF not responding to VF_PRIO msg");
goto cptvf_err_release_regions;
}
/* Register DONE interrupts */
err = cptvf_register_done_intr(cptvf);
if (err)
goto cptvf_err_release_regions;
/* Set irq affinity masks */
cptvf_set_irq_affinity(cptvf);
/* Convey UP to PF */
err = cptvf_send_vf_up(cptvf);
if (err) {
dev_err(dev, "PF not responding to UP msg");
goto cptvf_up_fail;
}
err = cvm_crypto_init(cptvf);
if (err) {
dev_err(dev, "Algorithm register failed\n");
goto cptvf_up_fail;
}
return 0;
cptvf_up_fail:
cptvf_unregister_interrupts(cptvf);
cptvf_err_release_regions:
pci_release_regions(pdev);
cptvf_err_disable_device:
pci_disable_device(pdev);
pci_set_drvdata(pdev, NULL);
return err;
}
static void cptvf_remove(struct pci_dev *pdev)
{
struct cpt_vf *cptvf = pci_get_drvdata(pdev);
if (!cptvf)
dev_err(&pdev->dev, "Invalid CPT-VF device\n");
/* Convey DOWN to PF */
if (cptvf_send_vf_down(cptvf)) {
dev_err(&pdev->dev, "PF not responding to DOWN msg");
} else {
cptvf_unregister_interrupts(cptvf);
cptvf_sw_cleanup(cptvf);
pci_set_drvdata(pdev, NULL);
pci_release_regions(pdev);
pci_disable_device(pdev);
cvm_crypto_exit();
}
}
static void cptvf_shutdown(struct pci_dev *pdev)
{
cptvf_remove(pdev);
}
/* Supported devices */
static const struct pci_device_id cptvf_id_table[] = {
{PCI_VDEVICE(CAVIUM, CPT_81XX_PCI_VF_DEVICE_ID), 0},
{ 0, } /* end of table */
};
static struct pci_driver cptvf_pci_driver = {
.name = DRV_NAME,
.id_table = cptvf_id_table,
.probe = cptvf_probe,
.remove = cptvf_remove,
.shutdown = cptvf_shutdown,
};
module_pci_driver(cptvf_pci_driver);
MODULE_AUTHOR("George Cherian <george.cherian@cavium.com>");
MODULE_DESCRIPTION("Cavium Thunder CPT Virtual Function Driver");
MODULE_LICENSE("GPL v2");
MODULE_VERSION(DRV_VERSION);
MODULE_DEVICE_TABLE(pci, cptvf_id_table);