summaryrefslogblamecommitdiff
path: root/drivers/clk/clk-stm32h7.c
blob: db2b162c0d4c338532cc087e627f07b5e4cb814e (plain) (tree)
1
2
3
4
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
                                   
  

                                                                               
















































































































































































































































































































































































                                                                                
                                    
























                                                                    
                                      




































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































                                                                                
// SPDX-License-Identifier: GPL-2.0
/*
 * Copyright (C) STMicroelectronics 2017
 * Author: Gabriel Fernandez <gabriel.fernandez@st.com> for STMicroelectronics.
 */

#include <linux/clk.h>
#include <linux/clk-provider.h>
#include <linux/err.h>
#include <linux/io.h>
#include <linux/mfd/syscon.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/regmap.h>

#include <dt-bindings/clock/stm32h7-clks.h>

/* Reset Clock Control Registers */
#define RCC_CR		0x00
#define RCC_CFGR	0x10
#define RCC_D1CFGR	0x18
#define RCC_D2CFGR	0x1C
#define RCC_D3CFGR	0x20
#define RCC_PLLCKSELR	0x28
#define RCC_PLLCFGR	0x2C
#define RCC_PLL1DIVR	0x30
#define RCC_PLL1FRACR	0x34
#define RCC_PLL2DIVR	0x38
#define RCC_PLL2FRACR	0x3C
#define RCC_PLL3DIVR	0x40
#define RCC_PLL3FRACR	0x44
#define RCC_D1CCIPR	0x4C
#define RCC_D2CCIP1R	0x50
#define RCC_D2CCIP2R	0x54
#define RCC_D3CCIPR	0x58
#define RCC_BDCR	0x70
#define RCC_CSR		0x74
#define RCC_AHB3ENR	0xD4
#define RCC_AHB1ENR	0xD8
#define RCC_AHB2ENR	0xDC
#define RCC_AHB4ENR	0xE0
#define RCC_APB3ENR	0xE4
#define RCC_APB1LENR	0xE8
#define RCC_APB1HENR	0xEC
#define RCC_APB2ENR	0xF0
#define RCC_APB4ENR	0xF4

static DEFINE_SPINLOCK(stm32rcc_lock);

static void __iomem *base;
static struct clk_hw **hws;

/* System clock parent */
static const char * const sys_src[] = {
	"hsi_ck", "csi_ck", "hse_ck", "pll1_p" };

static const char * const tracein_src[] = {
	"hsi_ck", "csi_ck", "hse_ck", "pll1_r" };

static const char * const per_src[] = {
	"hsi_ker", "csi_ker", "hse_ck", "disabled" };

static const char * const pll_src[] = {
	"hsi_ck", "csi_ck", "hse_ck", "no clock" };

static const char * const sdmmc_src[] = { "pll1_q", "pll2_r" };

static const char * const dsi_src[] = { "ck_dsi_phy", "pll2_q" };

static const char * const qspi_src[] = {
	"hclk", "pll1_q", "pll2_r", "per_ck" };

static const char * const fmc_src[] = {
	"hclk", "pll1_q", "pll2_r", "per_ck" };

/* Kernel clock parent */
static const char * const swp_src[] = {	"pclk1", "hsi_ker" };

static const char * const fdcan_src[] = { "hse_ck", "pll1_q", "pll2_q" };

static const char * const dfsdm1_src[] = { "pclk2", "sys_ck" };

static const char * const spdifrx_src[] = {
	"pll1_q", "pll2_r", "pll3_r", "hsi_ker" };

static const char *spi_src1[5] = {
	"pll1_q", "pll2_p", "pll3_p", NULL, "per_ck" };

static const char * const spi_src2[] = {
	"pclk2", "pll2_q", "pll3_q", "hsi_ker", "csi_ker", "hse_ck" };

static const char * const spi_src3[] = {
	"pclk4", "pll2_q", "pll3_q", "hsi_ker", "csi_ker", "hse_ck" };

static const char * const lptim_src1[] = {
	"pclk1", "pll2_p", "pll3_r", "lse_ck", "lsi_ck", "per_ck" };

static const char * const lptim_src2[] = {
	"pclk4", "pll2_p", "pll3_r", "lse_ck", "lsi_ck", "per_ck" };

static const char * const cec_src[] = {"lse_ck", "lsi_ck", "csi_ker_div122" };

static const char * const usbotg_src[] = {"pll1_q", "pll3_q", "rc48_ck" };

/* i2c 1,2,3 src */
static const char * const i2c_src1[] = {
	"pclk1", "pll3_r", "hsi_ker", "csi_ker" };

static const char * const i2c_src2[] = {
	"pclk4", "pll3_r", "hsi_ker", "csi_ker" };

static const char * const rng_src[] = {
	"rc48_ck", "pll1_q", "lse_ck", "lsi_ck" };

/* usart 1,6 src */
static const char * const usart_src1[] = {
	"pclk2", "pll2_q", "pll3_q", "hsi_ker", "csi_ker", "lse_ck" };

/* usart 2,3,4,5,7,8 src */
static const char * const usart_src2[] = {
	"pclk1", "pll2_q", "pll3_q", "hsi_ker", "csi_ker", "lse_ck" };

static const char *sai_src[5] = {
	"pll1_q", "pll2_p", "pll3_p", NULL, "per_ck" };

static const char * const adc_src[] = { "pll2_p", "pll3_r", "per_ck" };

/* lptim 2,3,4,5 src */
static const char * const lpuart1_src[] = {
	"pclk3", "pll2_q", "pll3_q", "csi_ker", "lse_ck" };

static const char * const hrtim_src[] = { "tim2_ker", "d1cpre" };

/* RTC clock parent */
static const char * const rtc_src[] = { "off", "lse_ck", "lsi_ck", "hse_1M" };

/* Micro-controller output clock parent */
static const char * const mco_src1[] = {
	"hsi_ck", "lse_ck", "hse_ck", "pll1_q",	"rc48_ck" };

static const char * const mco_src2[] = {
	"sys_ck", "pll2_p", "hse_ck", "pll1_p", "csi_ck", "lsi_ck" };

/* LCD clock */
static const char * const ltdc_src[] = {"pll3_r"};

/* Gate clock with ready bit and backup domain management */
struct stm32_ready_gate {
	struct	clk_gate gate;
	u8	bit_rdy;
};

#define to_ready_gate_clk(_rgate) container_of(_rgate, struct stm32_ready_gate,\
		gate)

#define RGATE_TIMEOUT 10000

static int ready_gate_clk_enable(struct clk_hw *hw)
{
	struct clk_gate *gate = to_clk_gate(hw);
	struct stm32_ready_gate *rgate = to_ready_gate_clk(gate);
	int bit_status;
	unsigned int timeout = RGATE_TIMEOUT;

	if (clk_gate_ops.is_enabled(hw))
		return 0;

	clk_gate_ops.enable(hw);

	/* We can't use readl_poll_timeout() because we can blocked if
	 * someone enables this clock before clocksource changes.
	 * Only jiffies counter is available. Jiffies are incremented by
	 * interruptions and enable op does not allow to be interrupted.
	 */
	do {
		bit_status = !(readl(gate->reg) & BIT(rgate->bit_rdy));

		if (bit_status)
			udelay(100);

	} while (bit_status && --timeout);

	return bit_status;
}

static void ready_gate_clk_disable(struct clk_hw *hw)
{
	struct clk_gate *gate = to_clk_gate(hw);
	struct stm32_ready_gate *rgate = to_ready_gate_clk(gate);
	int bit_status;
	unsigned int timeout = RGATE_TIMEOUT;

	if (!clk_gate_ops.is_enabled(hw))
		return;

	clk_gate_ops.disable(hw);

	do {
		bit_status = !!(readl(gate->reg) & BIT(rgate->bit_rdy));

		if (bit_status)
			udelay(100);

	} while (bit_status && --timeout);
}

static const struct clk_ops ready_gate_clk_ops = {
	.enable		= ready_gate_clk_enable,
	.disable	= ready_gate_clk_disable,
	.is_enabled	= clk_gate_is_enabled,
};

static struct clk_hw *clk_register_ready_gate(struct device *dev,
		const char *name, const char *parent_name,
		void __iomem *reg, u8 bit_idx, u8 bit_rdy,
		unsigned long flags, spinlock_t *lock)
{
	struct stm32_ready_gate *rgate;
	struct clk_init_data init = { NULL };
	struct clk_hw *hw;
	int ret;

	rgate = kzalloc(sizeof(*rgate), GFP_KERNEL);
	if (!rgate)
		return ERR_PTR(-ENOMEM);

	init.name = name;
	init.ops = &ready_gate_clk_ops;
	init.flags = flags;
	init.parent_names = &parent_name;
	init.num_parents = 1;

	rgate->bit_rdy = bit_rdy;
	rgate->gate.lock = lock;
	rgate->gate.reg = reg;
	rgate->gate.bit_idx = bit_idx;
	rgate->gate.hw.init = &init;

	hw = &rgate->gate.hw;
	ret = clk_hw_register(dev, hw);
	if (ret) {
		kfree(rgate);
		hw = ERR_PTR(ret);
	}

	return hw;
}

struct gate_cfg {
	u32 offset;
	u8  bit_idx;
};

struct muxdiv_cfg {
	u32 offset;
	u8 shift;
	u8 width;
};

struct composite_clk_cfg {
	struct gate_cfg *gate;
	struct muxdiv_cfg *mux;
	struct muxdiv_cfg *div;
	const char *name;
	const char * const *parent_name;
	int num_parents;
	u32 flags;
};

struct composite_clk_gcfg_t {
	u8 flags;
	const struct clk_ops *ops;
};

/*
 * General config definition of a composite clock (only clock diviser for rate)
 */
struct composite_clk_gcfg {
	struct composite_clk_gcfg_t *mux;
	struct composite_clk_gcfg_t *div;
	struct composite_clk_gcfg_t *gate;
};

#define M_CFG_MUX(_mux_ops, _mux_flags)\
	.mux = &(struct composite_clk_gcfg_t) { _mux_flags, _mux_ops}

#define M_CFG_DIV(_rate_ops, _rate_flags)\
	.div = &(struct composite_clk_gcfg_t) {_rate_flags, _rate_ops}

#define M_CFG_GATE(_gate_ops, _gate_flags)\
	.gate = &(struct composite_clk_gcfg_t) { _gate_flags, _gate_ops}

static struct clk_mux *_get_cmux(void __iomem *reg, u8 shift, u8 width,
		u32 flags, spinlock_t *lock)
{
	struct clk_mux *mux;

	mux = kzalloc(sizeof(*mux), GFP_KERNEL);
	if (!mux)
		return ERR_PTR(-ENOMEM);

	mux->reg	= reg;
	mux->shift	= shift;
	mux->mask	= (1 << width) - 1;
	mux->flags	= flags;
	mux->lock	= lock;

	return mux;
}

static struct clk_divider *_get_cdiv(void __iomem *reg, u8 shift, u8 width,
		u32 flags, spinlock_t *lock)
{
	struct clk_divider *div;

	div = kzalloc(sizeof(*div), GFP_KERNEL);

	if (!div)
		return ERR_PTR(-ENOMEM);

	div->reg   = reg;
	div->shift = shift;
	div->width = width;
	div->flags = flags;
	div->lock  = lock;

	return div;
}

static struct clk_gate *_get_cgate(void __iomem *reg, u8 bit_idx, u32 flags,
		spinlock_t *lock)
{
	struct clk_gate *gate;

	gate = kzalloc(sizeof(*gate), GFP_KERNEL);
	if (!gate)
		return ERR_PTR(-ENOMEM);

	gate->reg	= reg;
	gate->bit_idx	= bit_idx;
	gate->flags	= flags;
	gate->lock	= lock;

	return gate;
}

struct composite_cfg {
	struct clk_hw *mux_hw;
	struct clk_hw *div_hw;
	struct clk_hw *gate_hw;

	const struct clk_ops *mux_ops;
	const struct clk_ops *div_ops;
	const struct clk_ops *gate_ops;
};

static void get_cfg_composite_div(const struct composite_clk_gcfg *gcfg,
		const struct composite_clk_cfg *cfg,
		struct composite_cfg *composite, spinlock_t *lock)
{
	struct clk_mux     *mux = NULL;
	struct clk_divider *div = NULL;
	struct clk_gate    *gate = NULL;
	const struct clk_ops *mux_ops, *div_ops, *gate_ops;
	struct clk_hw *mux_hw;
	struct clk_hw *div_hw;
	struct clk_hw *gate_hw;

	mux_ops = div_ops = gate_ops = NULL;
	mux_hw = div_hw = gate_hw = NULL;

	if (gcfg->mux && cfg->mux) {
		mux = _get_cmux(base + cfg->mux->offset,
				cfg->mux->shift,
				cfg->mux->width,
				gcfg->mux->flags, lock);

		if (!IS_ERR(mux)) {
			mux_hw = &mux->hw;
			mux_ops = gcfg->mux->ops ?
				  gcfg->mux->ops : &clk_mux_ops;
		}
	}

	if (gcfg->div && cfg->div) {
		div = _get_cdiv(base + cfg->div->offset,
				cfg->div->shift,
				cfg->div->width,
				gcfg->div->flags, lock);

		if (!IS_ERR(div)) {
			div_hw = &div->hw;
			div_ops = gcfg->div->ops ?
				  gcfg->div->ops : &clk_divider_ops;
		}
	}

	if (gcfg->gate && cfg->gate) {
		gate = _get_cgate(base + cfg->gate->offset,
				cfg->gate->bit_idx,
				gcfg->gate->flags, lock);

		if (!IS_ERR(gate)) {
			gate_hw = &gate->hw;
			gate_ops = gcfg->gate->ops ?
				   gcfg->gate->ops : &clk_gate_ops;
		}
	}

	composite->mux_hw = mux_hw;
	composite->mux_ops = mux_ops;

	composite->div_hw = div_hw;
	composite->div_ops = div_ops;

	composite->gate_hw = gate_hw;
	composite->gate_ops = gate_ops;
}

/* Kernel Timer */
struct timer_ker {
	u8 dppre_shift;
	struct clk_hw hw;
	spinlock_t *lock;
};

#define to_timer_ker(_hw) container_of(_hw, struct timer_ker, hw)

static unsigned long timer_ker_recalc_rate(struct clk_hw *hw,
		unsigned long parent_rate)
{
	struct timer_ker *clk_elem = to_timer_ker(hw);
	u32 timpre;
	u32 dppre_shift = clk_elem->dppre_shift;
	u32 prescaler;
	u32 mul;

	timpre = (readl(base + RCC_CFGR) >> 15) & 0x01;

	prescaler = (readl(base + RCC_D2CFGR) >> dppre_shift) & 0x03;

	mul = 2;

	if (prescaler < 4)
		mul = 1;

	else if (timpre && prescaler > 4)
		mul = 4;

	return parent_rate * mul;
}

static const struct clk_ops timer_ker_ops = {
	.recalc_rate = timer_ker_recalc_rate,
};

static struct clk_hw *clk_register_stm32_timer_ker(struct device *dev,
		const char *name, const char *parent_name,
		unsigned long flags,
		u8 dppre_shift,
		spinlock_t *lock)
{
	struct timer_ker *element;
	struct clk_init_data init;
	struct clk_hw *hw;
	int err;

	element = kzalloc(sizeof(*element), GFP_KERNEL);
	if (!element)
		return ERR_PTR(-ENOMEM);

	init.name = name;
	init.ops = &timer_ker_ops;
	init.flags = flags;
	init.parent_names = &parent_name;
	init.num_parents = 1;

	element->hw.init = &init;
	element->lock = lock;
	element->dppre_shift = dppre_shift;

	hw = &element->hw;
	err = clk_hw_register(dev, hw);

	if (err) {
		kfree(element);
		return ERR_PTR(err);
	}

	return hw;
}

static const struct clk_div_table d1cpre_div_table[] = {
	{ 0, 1 }, { 1, 1 }, { 2, 1 }, { 3, 1},
	{ 4, 1 }, { 5, 1 }, { 6, 1 }, { 7, 1},
	{ 8, 2 }, { 9, 4 }, { 10, 8 }, { 11, 16 },
	{ 12, 64 }, { 13, 128 }, { 14, 256 },
	{ 15, 512 },
	{ 0 },
};

static const struct clk_div_table ppre_div_table[] = {
	{ 0, 1 }, { 1, 1 }, { 2, 1 }, { 3, 1},
	{ 4, 2 }, { 5, 4 }, { 6, 8 }, { 7, 16 },
	{ 0 },
};

static void register_core_and_bus_clocks(void)
{
	/* CORE AND BUS */
	hws[SYS_D1CPRE] = clk_hw_register_divider_table(NULL, "d1cpre",
			"sys_ck", CLK_IGNORE_UNUSED, base + RCC_D1CFGR, 8, 4, 0,
			d1cpre_div_table, &stm32rcc_lock);

	hws[HCLK] = clk_hw_register_divider_table(NULL, "hclk", "d1cpre",
			CLK_IGNORE_UNUSED, base + RCC_D1CFGR, 0, 4, 0,
			d1cpre_div_table, &stm32rcc_lock);

	/* D1 DOMAIN */
	/* * CPU Systick */
	hws[CPU_SYSTICK] = clk_hw_register_fixed_factor(NULL, "systick",
			"d1cpre", 0, 1, 8);

	/* * APB3 peripheral */
	hws[PCLK3] = clk_hw_register_divider_table(NULL, "pclk3", "hclk", 0,
			base + RCC_D1CFGR, 4, 3, 0,
			ppre_div_table, &stm32rcc_lock);

	/* D2 DOMAIN */
	/* * APB1 peripheral */
	hws[PCLK1] = clk_hw_register_divider_table(NULL, "pclk1", "hclk", 0,
			base + RCC_D2CFGR, 4, 3, 0,
			ppre_div_table, &stm32rcc_lock);

	/* Timers prescaler clocks */
	clk_register_stm32_timer_ker(NULL, "tim1_ker", "pclk1", 0,
			4, &stm32rcc_lock);

	/* * APB2 peripheral */
	hws[PCLK2] = clk_hw_register_divider_table(NULL, "pclk2", "hclk", 0,
			base + RCC_D2CFGR, 8, 3, 0, ppre_div_table,
			&stm32rcc_lock);

	clk_register_stm32_timer_ker(NULL, "tim2_ker", "pclk2", 0, 8,
			&stm32rcc_lock);

	/* D3 DOMAIN */
	/* * APB4 peripheral */
	hws[PCLK4] = clk_hw_register_divider_table(NULL, "pclk4", "hclk", 0,
			base + RCC_D3CFGR, 4, 3, 0,
			ppre_div_table, &stm32rcc_lock);
}

/* MUX clock configuration */
struct stm32_mux_clk {
	const char *name;
	const char * const *parents;
	u8 num_parents;
	u32 offset;
	u8 shift;
	u8 width;
	u32 flags;
};

#define M_MCLOCF(_name, _parents, _mux_offset, _mux_shift, _mux_width, _flags)\
{\
	.name		= _name,\
	.parents	= _parents,\
	.num_parents	= ARRAY_SIZE(_parents),\
	.offset		= _mux_offset,\
	.shift		= _mux_shift,\
	.width		= _mux_width,\
	.flags		= _flags,\
}

#define M_MCLOC(_name, _parents, _mux_offset, _mux_shift, _mux_width)\
	M_MCLOCF(_name, _parents, _mux_offset, _mux_shift, _mux_width, 0)\

static const struct stm32_mux_clk stm32_mclk[] __initconst = {
	M_MCLOC("per_ck",	per_src,	RCC_D1CCIPR,	28, 3),
	M_MCLOC("pllsrc",	pll_src,	RCC_PLLCKSELR,	 0, 3),
	M_MCLOC("sys_ck",	sys_src,	RCC_CFGR,	 0, 3),
	M_MCLOC("tracein_ck",	tracein_src,	RCC_CFGR,	 0, 3),
};

/* Oscillary clock configuration */
struct stm32_osc_clk {
	const char *name;
	const char *parent;
	u32 gate_offset;
	u8 bit_idx;
	u8 bit_rdy;
	u32 flags;
};

#define OSC_CLKF(_name, _parent, _gate_offset, _bit_idx, _bit_rdy, _flags)\
{\
	.name		= _name,\
	.parent		= _parent,\
	.gate_offset	= _gate_offset,\
	.bit_idx	= _bit_idx,\
	.bit_rdy	= _bit_rdy,\
	.flags		= _flags,\
}

#define OSC_CLK(_name, _parent, _gate_offset, _bit_idx, _bit_rdy)\
	OSC_CLKF(_name, _parent, _gate_offset, _bit_idx, _bit_rdy, 0)

static const struct stm32_osc_clk stm32_oclk[] __initconst = {
	OSC_CLKF("hsi_ck",  "hsidiv",   RCC_CR,   0,  2, CLK_IGNORE_UNUSED),
	OSC_CLKF("hsi_ker", "hsidiv",   RCC_CR,   1,  2, CLK_IGNORE_UNUSED),
	OSC_CLKF("csi_ck",  "clk-csi",  RCC_CR,   7,  8, CLK_IGNORE_UNUSED),
	OSC_CLKF("csi_ker", "clk-csi",  RCC_CR,   9,  8, CLK_IGNORE_UNUSED),
	OSC_CLKF("rc48_ck", "clk-rc48", RCC_CR,  12, 13, CLK_IGNORE_UNUSED),
	OSC_CLKF("lsi_ck",  "clk-lsi",  RCC_CSR,  0,  1, CLK_IGNORE_UNUSED),
};

/* PLL configuration */
struct st32h7_pll_cfg {
	u8 bit_idx;
	u32 offset_divr;
	u8 bit_frac_en;
	u32 offset_frac;
	u8 divm;
};

struct stm32_pll_data {
	const char *name;
	const char *parent_name;
	unsigned long flags;
	const struct st32h7_pll_cfg *cfg;
};

static const struct st32h7_pll_cfg stm32h7_pll1 = {
	.bit_idx = 24,
	.offset_divr = RCC_PLL1DIVR,
	.bit_frac_en = 0,
	.offset_frac = RCC_PLL1FRACR,
	.divm = 4,
};

static const struct st32h7_pll_cfg stm32h7_pll2 = {
	.bit_idx = 26,
	.offset_divr = RCC_PLL2DIVR,
	.bit_frac_en = 4,
	.offset_frac = RCC_PLL2FRACR,
	.divm = 12,
};

static const struct st32h7_pll_cfg stm32h7_pll3 = {
	.bit_idx = 28,
	.offset_divr = RCC_PLL3DIVR,
	.bit_frac_en = 8,
	.offset_frac = RCC_PLL3FRACR,
	.divm = 20,
};

static const struct stm32_pll_data stm32_pll[] = {
	{ "vco1", "pllsrc", CLK_IGNORE_UNUSED, &stm32h7_pll1 },
	{ "vco2", "pllsrc", 0, &stm32h7_pll2 },
	{ "vco3", "pllsrc", 0, &stm32h7_pll3 },
};

struct stm32_fractional_divider {
	void __iomem	*mreg;
	u8		mshift;
	u8		mwidth;
	u32		mmask;

	void __iomem	*nreg;
	u8		nshift;
	u8		nwidth;

	void __iomem	*freg_status;
	u8		freg_bit;
	void __iomem	*freg_value;
	u8		fshift;
	u8		fwidth;

	u8		flags;
	struct clk_hw	hw;
	spinlock_t	*lock;
};

struct stm32_pll_obj {
	spinlock_t *lock;
	struct stm32_fractional_divider div;
	struct stm32_ready_gate rgate;
	struct clk_hw hw;
};

#define to_pll(_hw) container_of(_hw, struct stm32_pll_obj, hw)

static int pll_is_enabled(struct clk_hw *hw)
{
	struct stm32_pll_obj *clk_elem = to_pll(hw);
	struct clk_hw *_hw = &clk_elem->rgate.gate.hw;

	__clk_hw_set_clk(_hw, hw);

	return ready_gate_clk_ops.is_enabled(_hw);
}

static int pll_enable(struct clk_hw *hw)
{
	struct stm32_pll_obj *clk_elem = to_pll(hw);
	struct clk_hw *_hw = &clk_elem->rgate.gate.hw;

	__clk_hw_set_clk(_hw, hw);

	return ready_gate_clk_ops.enable(_hw);
}

static void pll_disable(struct clk_hw *hw)
{
	struct stm32_pll_obj *clk_elem = to_pll(hw);
	struct clk_hw *_hw = &clk_elem->rgate.gate.hw;

	__clk_hw_set_clk(_hw, hw);

	ready_gate_clk_ops.disable(_hw);
}

static int pll_frac_is_enabled(struct clk_hw *hw)
{
	struct stm32_pll_obj *clk_elem = to_pll(hw);
	struct stm32_fractional_divider *fd = &clk_elem->div;

	return (readl(fd->freg_status) >> fd->freg_bit) & 0x01;
}

static unsigned long pll_read_frac(struct clk_hw *hw)
{
	struct stm32_pll_obj *clk_elem = to_pll(hw);
	struct stm32_fractional_divider *fd = &clk_elem->div;

	return (readl(fd->freg_value) >> fd->fshift) &
		GENMASK(fd->fwidth - 1, 0);
}

static unsigned long pll_fd_recalc_rate(struct clk_hw *hw,
		unsigned long parent_rate)
{
	struct stm32_pll_obj *clk_elem = to_pll(hw);
	struct stm32_fractional_divider *fd = &clk_elem->div;
	unsigned long m, n;
	u32 val, mask;
	u64 rate, rate1 = 0;

	val = readl(fd->mreg);
	mask = GENMASK(fd->mwidth - 1, 0) << fd->mshift;
	m = (val & mask) >> fd->mshift;

	val = readl(fd->nreg);
	mask = GENMASK(fd->nwidth - 1, 0) << fd->nshift;
	n = ((val & mask) >> fd->nshift) + 1;

	if (!n || !m)
		return parent_rate;

	rate = (u64)parent_rate * n;
	do_div(rate, m);

	if (pll_frac_is_enabled(hw)) {
		val = pll_read_frac(hw);
		rate1 = (u64)parent_rate * (u64)val;
		do_div(rate1, (m * 8191));
	}

	return rate + rate1;
}

static const struct clk_ops pll_ops = {
	.enable		= pll_enable,
	.disable	= pll_disable,
	.is_enabled	= pll_is_enabled,
	.recalc_rate	= pll_fd_recalc_rate,
};

static struct clk_hw *clk_register_stm32_pll(struct device *dev,
		const char *name,
		const char *parent,
		unsigned long flags,
		const struct st32h7_pll_cfg *cfg,
		spinlock_t *lock)
{
	struct stm32_pll_obj *pll;
	struct clk_init_data init = { NULL };
	struct clk_hw *hw;
	int ret;
	struct stm32_fractional_divider *div = NULL;
	struct stm32_ready_gate *rgate;

	pll = kzalloc(sizeof(*pll), GFP_KERNEL);
	if (!pll)
		return ERR_PTR(-ENOMEM);

	init.name = name;
	init.ops = &pll_ops;
	init.flags = flags;
	init.parent_names = &parent;
	init.num_parents = 1;
	pll->hw.init = &init;

	hw = &pll->hw;
	rgate = &pll->rgate;

	rgate->bit_rdy = cfg->bit_idx + 1;
	rgate->gate.lock = lock;
	rgate->gate.reg = base + RCC_CR;
	rgate->gate.bit_idx = cfg->bit_idx;

	div = &pll->div;
	div->flags = 0;
	div->mreg = base + RCC_PLLCKSELR;
	div->mshift = cfg->divm;
	div->mwidth = 6;
	div->nreg = base +  cfg->offset_divr;
	div->nshift = 0;
	div->nwidth = 9;

	div->freg_status = base + RCC_PLLCFGR;
	div->freg_bit = cfg->bit_frac_en;
	div->freg_value = base +  cfg->offset_frac;
	div->fshift = 3;
	div->fwidth = 13;

	div->lock = lock;

	ret = clk_hw_register(dev, hw);
	if (ret) {
		kfree(pll);
		hw = ERR_PTR(ret);
	}

	return hw;
}

/* ODF CLOCKS */
static unsigned long odf_divider_recalc_rate(struct clk_hw *hw,
		unsigned long parent_rate)
{
	return clk_divider_ops.recalc_rate(hw, parent_rate);
}

static long odf_divider_round_rate(struct clk_hw *hw, unsigned long rate,
		unsigned long *prate)
{
	return clk_divider_ops.round_rate(hw, rate, prate);
}

static int odf_divider_set_rate(struct clk_hw *hw, unsigned long rate,
		unsigned long parent_rate)
{
	struct clk_hw *hwp;
	int pll_status;
	int ret;

	hwp = clk_hw_get_parent(hw);

	pll_status = pll_is_enabled(hwp);

	if (pll_status)
		pll_disable(hwp);

	ret = clk_divider_ops.set_rate(hw, rate, parent_rate);

	if (pll_status)
		pll_enable(hwp);

	return ret;
}

static const struct clk_ops odf_divider_ops = {
	.recalc_rate	= odf_divider_recalc_rate,
	.round_rate	= odf_divider_round_rate,
	.set_rate	= odf_divider_set_rate,
};

static int odf_gate_enable(struct clk_hw *hw)
{
	struct clk_hw *hwp;
	int pll_status;
	int ret;

	if (clk_gate_ops.is_enabled(hw))
		return 0;

	hwp = clk_hw_get_parent(hw);

	pll_status = pll_is_enabled(hwp);

	if (pll_status)
		pll_disable(hwp);

	ret = clk_gate_ops.enable(hw);

	if (pll_status)
		pll_enable(hwp);

	return ret;
}

static void odf_gate_disable(struct clk_hw *hw)
{
	struct clk_hw *hwp;
	int pll_status;

	if (!clk_gate_ops.is_enabled(hw))
		return;

	hwp = clk_hw_get_parent(hw);

	pll_status = pll_is_enabled(hwp);

	if (pll_status)
		pll_disable(hwp);

	clk_gate_ops.disable(hw);

	if (pll_status)
		pll_enable(hwp);
}

static const struct clk_ops odf_gate_ops = {
	.enable		= odf_gate_enable,
	.disable	= odf_gate_disable,
	.is_enabled	= clk_gate_is_enabled,
};

static struct composite_clk_gcfg odf_clk_gcfg = {
	M_CFG_DIV(&odf_divider_ops, 0),
	M_CFG_GATE(&odf_gate_ops, 0),
};

#define M_ODF_F(_name, _parent, _gate_offset,  _bit_idx, _rate_offset,\
		_rate_shift, _rate_width, _flags)\
{\
	.mux = NULL,\
	.div = &(struct muxdiv_cfg) {_rate_offset, _rate_shift, _rate_width},\
	.gate = &(struct gate_cfg) {_gate_offset, _bit_idx },\
	.name = _name,\
	.parent_name = &(const char *) {_parent},\
	.num_parents = 1,\
	.flags = _flags,\
}

#define M_ODF(_name, _parent, _gate_offset,  _bit_idx, _rate_offset,\
		_rate_shift, _rate_width)\
M_ODF_F(_name, _parent, _gate_offset,  _bit_idx, _rate_offset,\
		_rate_shift, _rate_width, 0)\

static const struct composite_clk_cfg stm32_odf[3][3] = {
	{
		M_ODF_F("pll1_p", "vco1", RCC_PLLCFGR, 16, RCC_PLL1DIVR,  9, 7,
				CLK_IGNORE_UNUSED),
		M_ODF_F("pll1_q", "vco1", RCC_PLLCFGR, 17, RCC_PLL1DIVR, 16, 7,
				CLK_IGNORE_UNUSED),
		M_ODF_F("pll1_r", "vco1", RCC_PLLCFGR, 18, RCC_PLL1DIVR, 24, 7,
				CLK_IGNORE_UNUSED),
	},

	{
		M_ODF("pll2_p", "vco2", RCC_PLLCFGR, 19, RCC_PLL2DIVR,  9, 7),
		M_ODF("pll2_q", "vco2", RCC_PLLCFGR, 20, RCC_PLL2DIVR, 16, 7),
		M_ODF("pll2_r", "vco2", RCC_PLLCFGR, 21, RCC_PLL2DIVR, 24, 7),
	},
	{
		M_ODF("pll3_p", "vco3", RCC_PLLCFGR, 22, RCC_PLL3DIVR,  9, 7),
		M_ODF("pll3_q", "vco3", RCC_PLLCFGR, 23, RCC_PLL3DIVR, 16, 7),
		M_ODF("pll3_r", "vco3", RCC_PLLCFGR, 24, RCC_PLL3DIVR, 24, 7),
	}
};

/* PERIF CLOCKS */
struct pclk_t {
	u32 gate_offset;
	u8 bit_idx;
	const char *name;
	const char *parent;
	u32 flags;
};

#define PER_CLKF(_gate_offset, _bit_idx, _name, _parent, _flags)\
{\
	.gate_offset	= _gate_offset,\
	.bit_idx	= _bit_idx,\
	.name		= _name,\
	.parent		= _parent,\
	.flags		= _flags,\
}

#define PER_CLK(_gate_offset, _bit_idx, _name, _parent)\
	PER_CLKF(_gate_offset, _bit_idx, _name, _parent, 0)

static const struct pclk_t pclk[] = {
	PER_CLK(RCC_AHB3ENR, 31, "d1sram1", "hclk"),
	PER_CLK(RCC_AHB3ENR, 30, "itcm", "hclk"),
	PER_CLK(RCC_AHB3ENR, 29, "dtcm2", "hclk"),
	PER_CLK(RCC_AHB3ENR, 28, "dtcm1", "hclk"),
	PER_CLK(RCC_AHB3ENR, 8, "flitf", "hclk"),
	PER_CLK(RCC_AHB3ENR, 5, "jpgdec", "hclk"),
	PER_CLK(RCC_AHB3ENR, 4, "dma2d", "hclk"),
	PER_CLK(RCC_AHB3ENR, 0, "mdma", "hclk"),
	PER_CLK(RCC_AHB1ENR, 28, "usb2ulpi", "hclk"),
	PER_CLK(RCC_AHB1ENR, 26, "usb1ulpi", "hclk"),
	PER_CLK(RCC_AHB1ENR, 17, "eth1rx", "hclk"),
	PER_CLK(RCC_AHB1ENR, 16, "eth1tx", "hclk"),
	PER_CLK(RCC_AHB1ENR, 15, "eth1mac", "hclk"),
	PER_CLK(RCC_AHB1ENR, 14, "art", "hclk"),
	PER_CLK(RCC_AHB1ENR, 1, "dma2", "hclk"),
	PER_CLK(RCC_AHB1ENR, 0, "dma1", "hclk"),
	PER_CLK(RCC_AHB2ENR, 31, "d2sram3", "hclk"),
	PER_CLK(RCC_AHB2ENR, 30, "d2sram2", "hclk"),
	PER_CLK(RCC_AHB2ENR, 29, "d2sram1", "hclk"),
	PER_CLK(RCC_AHB2ENR, 5, "hash", "hclk"),
	PER_CLK(RCC_AHB2ENR, 4, "crypt", "hclk"),
	PER_CLK(RCC_AHB2ENR, 0, "camitf", "hclk"),
	PER_CLK(RCC_AHB4ENR, 28, "bkpram", "hclk"),
	PER_CLK(RCC_AHB4ENR, 25, "hsem", "hclk"),
	PER_CLK(RCC_AHB4ENR, 21, "bdma", "hclk"),
	PER_CLK(RCC_AHB4ENR, 19, "crc", "hclk"),
	PER_CLK(RCC_AHB4ENR, 10, "gpiok", "hclk"),
	PER_CLK(RCC_AHB4ENR, 9, "gpioj", "hclk"),
	PER_CLK(RCC_AHB4ENR, 8, "gpioi", "hclk"),
	PER_CLK(RCC_AHB4ENR, 7, "gpioh", "hclk"),
	PER_CLK(RCC_AHB4ENR, 6, "gpiog", "hclk"),
	PER_CLK(RCC_AHB4ENR, 5, "gpiof", "hclk"),
	PER_CLK(RCC_AHB4ENR, 4, "gpioe", "hclk"),
	PER_CLK(RCC_AHB4ENR, 3, "gpiod", "hclk"),
	PER_CLK(RCC_AHB4ENR, 2, "gpioc", "hclk"),
	PER_CLK(RCC_AHB4ENR, 1, "gpiob", "hclk"),
	PER_CLK(RCC_AHB4ENR, 0, "gpioa", "hclk"),
	PER_CLK(RCC_APB3ENR, 6, "wwdg1", "pclk3"),
	PER_CLK(RCC_APB1LENR, 29, "dac12", "pclk1"),
	PER_CLK(RCC_APB1LENR, 11, "wwdg2", "pclk1"),
	PER_CLK(RCC_APB1LENR, 8, "tim14", "tim1_ker"),
	PER_CLK(RCC_APB1LENR, 7, "tim13", "tim1_ker"),
	PER_CLK(RCC_APB1LENR, 6, "tim12", "tim1_ker"),
	PER_CLK(RCC_APB1LENR, 5, "tim7", "tim1_ker"),
	PER_CLK(RCC_APB1LENR, 4, "tim6", "tim1_ker"),
	PER_CLK(RCC_APB1LENR, 3, "tim5", "tim1_ker"),
	PER_CLK(RCC_APB1LENR, 2, "tim4", "tim1_ker"),
	PER_CLK(RCC_APB1LENR, 1, "tim3", "tim1_ker"),
	PER_CLK(RCC_APB1LENR, 0, "tim2", "tim1_ker"),
	PER_CLK(RCC_APB1HENR, 5, "mdios", "pclk1"),
	PER_CLK(RCC_APB1HENR, 4, "opamp", "pclk1"),
	PER_CLK(RCC_APB1HENR, 1, "crs", "pclk1"),
	PER_CLK(RCC_APB2ENR, 18, "tim17", "tim2_ker"),
	PER_CLK(RCC_APB2ENR, 17, "tim16", "tim2_ker"),
	PER_CLK(RCC_APB2ENR, 16, "tim15", "tim2_ker"),
	PER_CLK(RCC_APB2ENR, 1, "tim8", "tim2_ker"),
	PER_CLK(RCC_APB2ENR, 0, "tim1", "tim2_ker"),
	PER_CLK(RCC_APB4ENR, 26, "tmpsens", "pclk4"),
	PER_CLK(RCC_APB4ENR, 16, "rtcapb", "pclk4"),
	PER_CLK(RCC_APB4ENR, 15, "vref", "pclk4"),
	PER_CLK(RCC_APB4ENR, 14, "comp12", "pclk4"),
	PER_CLK(RCC_APB4ENR, 1, "syscfg", "pclk4"),
};

/* KERNEL CLOCKS */
#define KER_CLKF(_gate_offset, _bit_idx,\
		_mux_offset, _mux_shift, _mux_width,\
		_name, _parent_name,\
		_flags) \
{ \
	.gate = &(struct gate_cfg) {_gate_offset, _bit_idx},\
	.mux = &(struct muxdiv_cfg) {_mux_offset, _mux_shift, _mux_width },\
	.name = _name, \
	.parent_name = _parent_name, \
	.num_parents = ARRAY_SIZE(_parent_name),\
	.flags = _flags,\
}

#define KER_CLK(_gate_offset, _bit_idx, _mux_offset, _mux_shift, _mux_width,\
		_name, _parent_name) \
KER_CLKF(_gate_offset, _bit_idx, _mux_offset, _mux_shift, _mux_width,\
		_name, _parent_name, 0)\

#define KER_CLKF_NOMUX(_gate_offset, _bit_idx,\
		_name, _parent_name,\
		_flags) \
{ \
	.gate = &(struct gate_cfg) {_gate_offset, _bit_idx},\
	.mux = NULL,\
	.name = _name, \
	.parent_name = _parent_name, \
	.num_parents = 1,\
	.flags = _flags,\
}

static const struct composite_clk_cfg kclk[] = {
	KER_CLK(RCC_AHB3ENR,  16, RCC_D1CCIPR,	16, 1, "sdmmc1", sdmmc_src),
	KER_CLKF(RCC_AHB3ENR, 14, RCC_D1CCIPR,	 4, 2, "quadspi", qspi_src,
			CLK_IGNORE_UNUSED),
	KER_CLKF(RCC_AHB3ENR, 12, RCC_D1CCIPR,	 0, 2, "fmc", fmc_src,
			CLK_IGNORE_UNUSED),
	KER_CLK(RCC_AHB1ENR,  27, RCC_D2CCIP2R,	20, 2, "usb2otg", usbotg_src),
	KER_CLK(RCC_AHB1ENR,  25, RCC_D2CCIP2R, 20, 2, "usb1otg", usbotg_src),
	KER_CLK(RCC_AHB1ENR,   5, RCC_D3CCIPR,	16, 2, "adc12", adc_src),
	KER_CLK(RCC_AHB2ENR,   9, RCC_D1CCIPR,	16, 1, "sdmmc2", sdmmc_src),
	KER_CLK(RCC_AHB2ENR,   6, RCC_D2CCIP2R,	 8, 2, "rng", rng_src),
	KER_CLK(RCC_AHB4ENR,  24, RCC_D3CCIPR,  16, 2, "adc3", adc_src),
	KER_CLKF(RCC_APB3ENR,   4, RCC_D1CCIPR,	 8, 1, "dsi", dsi_src,
			CLK_SET_RATE_PARENT),
	KER_CLKF_NOMUX(RCC_APB3ENR, 3, "ltdc", ltdc_src, CLK_SET_RATE_PARENT),
	KER_CLK(RCC_APB1LENR, 31, RCC_D2CCIP2R,  0, 3, "usart8", usart_src2),
	KER_CLK(RCC_APB1LENR, 30, RCC_D2CCIP2R,  0, 3, "usart7", usart_src2),
	KER_CLK(RCC_APB1LENR, 27, RCC_D2CCIP2R, 22, 2, "hdmicec", cec_src),
	KER_CLK(RCC_APB1LENR, 23, RCC_D2CCIP2R, 12, 2, "i2c3", i2c_src1),
	KER_CLK(RCC_APB1LENR, 22, RCC_D2CCIP2R, 12, 2, "i2c2", i2c_src1),
	KER_CLK(RCC_APB1LENR, 21, RCC_D2CCIP2R, 12, 2, "i2c1", i2c_src1),
	KER_CLK(RCC_APB1LENR, 20, RCC_D2CCIP2R,	 0, 3, "uart5", usart_src2),
	KER_CLK(RCC_APB1LENR, 19, RCC_D2CCIP2R,  0, 3, "uart4", usart_src2),
	KER_CLK(RCC_APB1LENR, 18, RCC_D2CCIP2R,  0, 3, "usart3", usart_src2),
	KER_CLK(RCC_APB1LENR, 17, RCC_D2CCIP2R,  0, 3, "usart2", usart_src2),
	KER_CLK(RCC_APB1LENR, 16, RCC_D2CCIP1R, 20, 2, "spdifrx", spdifrx_src),
	KER_CLK(RCC_APB1LENR, 15, RCC_D2CCIP1R, 16, 3, "spi3", spi_src1),
	KER_CLK(RCC_APB1LENR, 14, RCC_D2CCIP1R, 16, 3, "spi2", spi_src1),
	KER_CLK(RCC_APB1LENR,  9, RCC_D2CCIP2R, 28, 3, "lptim1", lptim_src1),
	KER_CLK(RCC_APB1HENR,  8, RCC_D2CCIP1R, 28, 2, "fdcan", fdcan_src),
	KER_CLK(RCC_APB1HENR,  2, RCC_D2CCIP1R, 31, 1, "swp", swp_src),
	KER_CLK(RCC_APB2ENR,  29, RCC_CFGR,	14, 1, "hrtim", hrtim_src),
	KER_CLK(RCC_APB2ENR,  28, RCC_D2CCIP1R, 24, 1, "dfsdm1", dfsdm1_src),
	KER_CLKF(RCC_APB2ENR,  24, RCC_D2CCIP1R,  6, 3, "sai3", sai_src,
		 CLK_SET_RATE_PARENT | CLK_SET_RATE_NO_REPARENT),
	KER_CLKF(RCC_APB2ENR,  23, RCC_D2CCIP1R,  6, 3, "sai2", sai_src,
		 CLK_SET_RATE_PARENT | CLK_SET_RATE_NO_REPARENT),
	KER_CLKF(RCC_APB2ENR,  22, RCC_D2CCIP1R,  0, 3, "sai1", sai_src,
		 CLK_SET_RATE_PARENT | CLK_SET_RATE_NO_REPARENT),
	KER_CLK(RCC_APB2ENR,  20, RCC_D2CCIP1R, 16, 3, "spi5", spi_src2),
	KER_CLK(RCC_APB2ENR,  13, RCC_D2CCIP1R, 16, 3, "spi4", spi_src2),
	KER_CLK(RCC_APB2ENR,  12, RCC_D2CCIP1R, 16, 3, "spi1", spi_src1),
	KER_CLK(RCC_APB2ENR,   5, RCC_D2CCIP2R,  3, 3, "usart6", usart_src1),
	KER_CLK(RCC_APB2ENR,   4, RCC_D2CCIP2R,  3, 3, "usart1", usart_src1),
	KER_CLK(RCC_APB4ENR,  21, RCC_D3CCIPR,	24, 3, "sai4b", sai_src),
	KER_CLK(RCC_APB4ENR,  21, RCC_D3CCIPR,	21, 3, "sai4a", sai_src),
	KER_CLK(RCC_APB4ENR,  12, RCC_D3CCIPR,	13, 3, "lptim5", lptim_src2),
	KER_CLK(RCC_APB4ENR,  11, RCC_D3CCIPR,	13, 3, "lptim4", lptim_src2),
	KER_CLK(RCC_APB4ENR,  10, RCC_D3CCIPR,	13, 3, "lptim3", lptim_src2),
	KER_CLK(RCC_APB4ENR,   9, RCC_D3CCIPR,	10, 3, "lptim2", lptim_src2),
	KER_CLK(RCC_APB4ENR,   7, RCC_D3CCIPR,	 8, 2, "i2c4", i2c_src2),
	KER_CLK(RCC_APB4ENR,   5, RCC_D3CCIPR,	28, 3, "spi6", spi_src3),
	KER_CLK(RCC_APB4ENR,   3, RCC_D3CCIPR,	 0, 3, "lpuart1", lpuart1_src),
};

static struct composite_clk_gcfg kernel_clk_cfg = {
	M_CFG_MUX(NULL, 0),
	M_CFG_GATE(NULL, 0),
};

/* RTC clock */
/*
 * RTC & LSE registers are protected against parasitic write access.
 * PWR_CR_DBP bit must be set to enable write access to RTC registers.
 */
/* STM32_PWR_CR */
#define PWR_CR				0x00
/* STM32_PWR_CR bit field */
#define PWR_CR_DBP			BIT(8)

static struct composite_clk_gcfg rtc_clk_cfg = {
	M_CFG_MUX(NULL, 0),
	M_CFG_GATE(NULL, 0),
};

static const struct composite_clk_cfg rtc_clk =
	KER_CLK(RCC_BDCR, 15, RCC_BDCR, 8, 2, "rtc_ck", rtc_src);

/* Micro-controller output clock */
static struct composite_clk_gcfg mco_clk_cfg = {
	M_CFG_MUX(NULL, 0),
	M_CFG_DIV(NULL,	CLK_DIVIDER_ONE_BASED | CLK_DIVIDER_ALLOW_ZERO),
};

#define M_MCO_F(_name, _parents, _mux_offset,  _mux_shift, _mux_width,\
		_rate_offset, _rate_shift, _rate_width,\
		_flags)\
{\
	.mux = &(struct muxdiv_cfg) {_mux_offset, _mux_shift, _mux_width },\
	.div = &(struct muxdiv_cfg) {_rate_offset, _rate_shift, _rate_width},\
	.gate = NULL,\
	.name = _name,\
	.parent_name = _parents,\
	.num_parents = ARRAY_SIZE(_parents),\
	.flags = _flags,\
}

static const struct composite_clk_cfg mco_clk[] = {
	M_MCO_F("mco1", mco_src1, RCC_CFGR, 22, 4, RCC_CFGR, 18, 4, 0),
	M_MCO_F("mco2", mco_src2, RCC_CFGR, 29, 3, RCC_CFGR, 25, 4, 0),
};

static void __init stm32h7_rcc_init(struct device_node *np)
{
	struct clk_hw_onecell_data *clk_data;
	struct composite_cfg c_cfg;
	int n;
	const char *hse_clk, *lse_clk, *i2s_clk;
	struct regmap *pdrm;

	clk_data = kzalloc(sizeof(*clk_data) +
			sizeof(*clk_data->hws) * STM32H7_MAX_CLKS,
			GFP_KERNEL);
	if (!clk_data)
		return;

	clk_data->num = STM32H7_MAX_CLKS;

	hws = clk_data->hws;

	for (n = 0; n < STM32H7_MAX_CLKS; n++)
		hws[n] = ERR_PTR(-ENOENT);

	/* get RCC base @ from DT */
	base = of_iomap(np, 0);
	if (!base) {
		pr_err("%s: unable to map resource", np->name);
		goto err_free_clks;
	}

	pdrm = syscon_regmap_lookup_by_phandle(np, "st,syscfg");
	if (IS_ERR(pdrm))
		pr_warn("%s: Unable to get syscfg\n", __func__);
	else
		/* In any case disable backup domain write protection
		 * and will never be enabled.
		 * Needed by LSE & RTC clocks.
		 */
		regmap_update_bits(pdrm, PWR_CR, PWR_CR_DBP, PWR_CR_DBP);

	/* Put parent names from DT */
	hse_clk = of_clk_get_parent_name(np, 0);
	lse_clk = of_clk_get_parent_name(np, 1);
	i2s_clk = of_clk_get_parent_name(np, 2);

	sai_src[3] = i2s_clk;
	spi_src1[3] = i2s_clk;

	/* Register Internal oscillators */
	clk_hw_register_fixed_rate(NULL, "clk-hsi", NULL, 0, 64000000);
	clk_hw_register_fixed_rate(NULL, "clk-csi", NULL, 0, 4000000);
	clk_hw_register_fixed_rate(NULL, "clk-lsi", NULL, 0, 32000);
	clk_hw_register_fixed_rate(NULL, "clk-rc48", NULL, 0, 48000);

	/* This clock is coming from outside. Frequencies unknown */
	hws[CK_DSI_PHY] = clk_hw_register_fixed_rate(NULL, "ck_dsi_phy", NULL,
			0, 0);

	hws[HSI_DIV] = clk_hw_register_divider(NULL, "hsidiv", "clk-hsi", 0,
			base + RCC_CR, 3, 2, CLK_DIVIDER_POWER_OF_TWO,
			&stm32rcc_lock);

	hws[HSE_1M] = clk_hw_register_divider(NULL, "hse_1M", "hse_ck",	0,
			base + RCC_CFGR, 8, 6, CLK_DIVIDER_ONE_BASED |
			CLK_DIVIDER_ALLOW_ZERO,
			&stm32rcc_lock);

	/* Mux system clocks */
	for (n = 0; n < ARRAY_SIZE(stm32_mclk); n++)
		hws[MCLK_BANK + n] = clk_hw_register_mux(NULL,
				stm32_mclk[n].name,
				stm32_mclk[n].parents,
				stm32_mclk[n].num_parents,
				stm32_mclk[n].flags,
				stm32_mclk[n].offset + base,
				stm32_mclk[n].shift,
				stm32_mclk[n].width,
				0,
				&stm32rcc_lock);

	register_core_and_bus_clocks();

	/* Oscillary clocks */
	for (n = 0; n < ARRAY_SIZE(stm32_oclk); n++)
		hws[OSC_BANK + n] = clk_register_ready_gate(NULL,
				stm32_oclk[n].name,
				stm32_oclk[n].parent,
				stm32_oclk[n].gate_offset + base,
				stm32_oclk[n].bit_idx,
				stm32_oclk[n].bit_rdy,
				stm32_oclk[n].flags,
				&stm32rcc_lock);

	hws[HSE_CK] = clk_register_ready_gate(NULL,
				"hse_ck",
				hse_clk,
				RCC_CR + base,
				16, 17,
				0,
				&stm32rcc_lock);

	hws[LSE_CK] = clk_register_ready_gate(NULL,
				"lse_ck",
				lse_clk,
				RCC_BDCR + base,
				0, 1,
				0,
				&stm32rcc_lock);

	hws[CSI_KER_DIV122 + n] = clk_hw_register_fixed_factor(NULL,
			"csi_ker_div122", "csi_ker", 0, 1, 122);

	/* PLLs */
	for (n = 0; n < ARRAY_SIZE(stm32_pll); n++) {
		int odf;

		/* Register the VCO */
		clk_register_stm32_pll(NULL, stm32_pll[n].name,
				stm32_pll[n].parent_name, stm32_pll[n].flags,
				stm32_pll[n].cfg,
				&stm32rcc_lock);

		/* Register the 3 output dividers */
		for (odf = 0; odf < 3; odf++) {
			int idx = n * 3 + odf;

			get_cfg_composite_div(&odf_clk_gcfg, &stm32_odf[n][odf],
					&c_cfg,	&stm32rcc_lock);

			hws[ODF_BANK + idx] = clk_hw_register_composite(NULL,
					stm32_odf[n][odf].name,
					stm32_odf[n][odf].parent_name,
					stm32_odf[n][odf].num_parents,
					c_cfg.mux_hw, c_cfg.mux_ops,
					c_cfg.div_hw, c_cfg.div_ops,
					c_cfg.gate_hw, c_cfg.gate_ops,
					stm32_odf[n][odf].flags);
		}
	}

	/* Peripheral clocks */
	for (n = 0; n < ARRAY_SIZE(pclk); n++)
		hws[PERIF_BANK + n] = clk_hw_register_gate(NULL, pclk[n].name,
				pclk[n].parent,
				pclk[n].flags, base + pclk[n].gate_offset,
				pclk[n].bit_idx, pclk[n].flags, &stm32rcc_lock);

	/* Kernel clocks */
	for (n = 0; n < ARRAY_SIZE(kclk); n++) {
		get_cfg_composite_div(&kernel_clk_cfg, &kclk[n], &c_cfg,
				&stm32rcc_lock);

		hws[KERN_BANK + n] = clk_hw_register_composite(NULL,
				kclk[n].name,
				kclk[n].parent_name,
				kclk[n].num_parents,
				c_cfg.mux_hw, c_cfg.mux_ops,
				c_cfg.div_hw, c_cfg.div_ops,
				c_cfg.gate_hw, c_cfg.gate_ops,
				kclk[n].flags);
	}

	/* RTC clock (default state is off) */
	clk_hw_register_fixed_rate(NULL, "off", NULL, 0, 0);

	get_cfg_composite_div(&rtc_clk_cfg, &rtc_clk, &c_cfg, &stm32rcc_lock);

	hws[RTC_CK] = clk_hw_register_composite(NULL,
			rtc_clk.name,
			rtc_clk.parent_name,
			rtc_clk.num_parents,
			c_cfg.mux_hw, c_cfg.mux_ops,
			c_cfg.div_hw, c_cfg.div_ops,
			c_cfg.gate_hw, c_cfg.gate_ops,
			rtc_clk.flags);

	/* Micro-controller clocks */
	for (n = 0; n < ARRAY_SIZE(mco_clk); n++) {
		get_cfg_composite_div(&mco_clk_cfg, &mco_clk[n], &c_cfg,
				&stm32rcc_lock);

		hws[MCO_BANK + n] = clk_hw_register_composite(NULL,
				mco_clk[n].name,
				mco_clk[n].parent_name,
				mco_clk[n].num_parents,
				c_cfg.mux_hw, c_cfg.mux_ops,
				c_cfg.div_hw, c_cfg.div_ops,
				c_cfg.gate_hw, c_cfg.gate_ops,
				mco_clk[n].flags);
	}

	of_clk_add_hw_provider(np, of_clk_hw_onecell_get, clk_data);

	return;

err_free_clks:
	kfree(clk_data);
}

/* The RCC node is a clock and reset controller, and these
 * functionalities are supported by different drivers that
 * matches the same compatible strings.
 */
CLK_OF_DECLARE_DRIVER(stm32h7_rcc, "st,stm32h743-rcc", stm32h7_rcc_init);