# SPDX-License-Identifier: GPL-2.0-only
#
# TPM device configuration
#
menuconfig TCG_TPM
tristate "TPM Hardware Support"
depends on HAS_IOMEM
imply SECURITYFS
select CRYPTO
select CRYPTO_HASH_INFO
help
If you have a TPM security chip in your system, which
implements the Trusted Computing Group's specification,
say Yes and it will be accessible from within Linux. For
more information see <http://www.trustedcomputinggroup.org>.
An implementation of the Trusted Software Stack (TSS), the
userspace enablement piece of the specification, can be
obtained at: <http://sourceforge.net/projects/trousers>. To
compile this driver as a module, choose M here; the module
will be called tpm. If unsure, say N.
Notes:
1) For more TPM drivers enable CONFIG_PNP, CONFIG_ACPI
and CONFIG_PNPACPI.
2) Without ACPI enabled, the BIOS event log won't be accessible,
which is required to validate the PCR 0-7 values.
if TCG_TPM
config TCG_TPM2_HMAC
bool "Use HMAC and encrypted transactions on the TPM bus"
default X86_64
select CRYPTO_ECDH
select CRYPTO_LIB_AESCFB
select CRYPTO_LIB_SHA256
help
Setting this causes us to deploy a scheme which uses request
and response HMACs in addition to encryption for
communicating with the TPM to prevent or detect bus snooping
and interposer attacks (see tpm-security.rst). Saying Y
here adds some encryption overhead to all kernel to TPM
transactions.
config HW_RANDOM_TPM
bool "TPM HW Random Number Generator support"
depends on TCG_TPM && HW_RANDOM && !(TCG_TPM=y && HW_RANDOM=m)
default y
help
This setting exposes the TPM's Random Number Generator as a hwrng
device. This allows the kernel to collect randomness from the TPM at
boot, and provides the TPM randomines in /dev/hwrng.
If unsure, say Y.
config TCG_TIS_CORE
tristate
help
TCG TIS TPM core driver. It implements the TPM TCG TIS logic and hooks
into the TPM kernel APIs. Physical layers will register against it.
config TCG_TIS
tristate "TPM Interface Specification 1.2 Interface / TPM 2.0 FIFO Interface"
depends on X86 || OF
select TCG_TIS_CORE
help
If you have a TPM security chip that is compliant with the
TCG TIS 1.2 TPM specification (TPM1.2) or the TCG PTP FIFO
specification (TPM2.0) say Yes and it will be accessible from
within Linux. To compile this driver as a module, choose M here;
the module will be called tpm_tis.
config TCG_TIS_SPI
tristate "TPM Interface Specification 1.3 Interface / TPM 2.0 FIFO Interface - (SPI)"
depends on SPI
select TCG_TIS_CORE
help
If you have a TPM security chip which is connected to a regular,
non-tcg SPI master (i.e. most embedded platforms) that is compliant with the
TCG TIS 1.3 TPM specification (TPM1.2) or the TCG PTP FIFO
specification (TPM2.0) say Yes and it will be accessible from
within Linux. To compile this driver as a module, choose M here;
the module will be called tpm_tis_spi.
config TCG_TIS_SPI_CR50
bool "Cr50 SPI Interface"
depends on TCG_TIS_SPI
help
If you have a H1 secure module running Cr50 firmware on SPI bus,
say Yes and it will be accessible from within Linux.
config TCG_TIS_I2C
tristate "TPM Interface Specification 1.3 Interface / TPM 2.0 FIFO Interface - (I2C - generic)"
depends on I2C
select CRC_CCITT
select TCG_TIS_CORE
help
If you have a TPM security chip, compliant with the TCG TPM PTP
(I2C interface) specification and connected to an I2C bus master,
say Yes and it will be accessible from within Linux.
To compile this driver as a module, choose M here;
the module will be called tpm_tis_i2c.
config TCG_TIS_SYNQUACER
tristate "TPM Interface Specification 1.2 Interface / TPM 2.0 FIFO Interface (MMIO - SynQuacer)"
depends on ARCH_SYNQUACER || COMPILE_TEST
select TCG_TIS_CORE
help
If you have a TPM security chip that is compliant with the
TCG TIS 1.2 TPM specification (TPM1.2) or the TCG PTP FIFO
specification (TPM2.0) say Yes and it will be accessible from
within Linux on Socionext SynQuacer platform.
To compile this driver as a module, choose M here;
the module will be called tpm_tis_synquacer.
config TCG_TIS_I2C_CR50
tristate "TPM Interface Specification 2.0 Interface (I2C - CR50)"
depends on I2C
help
This is a driver for the Google cr50 I2C TPM interface which is a
custom microcontroller and requires a custom i2c protocol interface
to handle the limitations of the hardware. To compile this driver
as a module, choose M here; the module will be called tcg_tis_i2c_cr50.
config TCG_TIS_I2C_ATMEL
tristate "TPM Interface Specification 1.2 Interface (I2C - Atmel)"
depends on I2C
help
If you have an Atmel I2C TPM security chip say Yes and it will be
accessible from within Linux.
To compile this driver as a module, choose M here; the module will
be called tpm_tis_i2c_atmel.
config TCG_TIS_I2C_INFINEON
tristate "TPM Interface Specification 1.2 Interface (I2C - Infineon)"
depends on I2C
help
If you have a TPM security chip that is compliant with the
TCG TIS 1.2 TPM specification and Infineon's I2C Protocol Stack
Specification 0.20 say Yes and it will be accessible from within
Linux.
To compile this driver as a module, choose M here; the module
will be called tpm_i2c_infineon.
config TCG_TIS_I2C_NUVOTON
tristate "TPM Interface Specification 1.2 Interface (I2C - Nuvoton)"
depends on I2C
help
If you have a TPM security chip with an I2C interface from
Nuvoton Technology Corp. say Yes and it will be accessible
from within Linux.
To compile this driver as a module, choose M here; the module
will be called tpm_i2c_nuvoton.
config TCG_NSC
tristate "National Semiconductor TPM Interface"
depends on X86
help
If you have a TPM security chip from National Semiconductor
say Yes and it will be accessible from within Linux. To
compile this driver as a module, choose M here; the module
will be called tpm_nsc.
config TCG_ATMEL
tristate "Atmel TPM Interface"
depends on HAS_IOPORT_MAP
depends on HAS_IOPORT
help
If you have a TPM security chip from Atmel say Yes and it
will be accessible from within Linux. To compile this driver
as a module, choose M here; the module will be called tpm_atmel.
config TCG_INFINEON
tristate "Infineon Technologies TPM Interface"
depends on PNP || COMPILE_TEST
help
If you have a TPM security chip from Infineon Technologies
(either SLD 9630 TT 1.1 or SLB 9635 TT 1.2) say Yes and it
will be accessible from within Linux.
To compile this driver as a module, choose M here; the module
will be called tpm_infineon.
Further information on this driver and the supported hardware
can be found at http://www.trust.rub.de/projects/linux-device-driver-infineon-tpm/
config TCG_IBMVTPM
tristate "IBM VTPM Interface"
depends on PPC_PSERIES
help
If you have IBM virtual TPM (VTPM) support say Yes and it
will be accessible from within Linux. To compile this driver
as a module, choose M here; the module will be called tpm_ibmvtpm.
config TCG_XEN
tristate "XEN TPM Interface"
depends on TCG_TPM && XEN
select XEN_XENBUS_FRONTEND
help
If you want to make TPM support available to a Xen user domain,
say Yes and it will be accessible from within Linux. See
the manpages for xl, xl.conf, and docs/misc/vtpm.txt in
the Xen source repository for more details.
To compile this driver as a module, choose M here; the module
will be called xen-tpmfront.
config TCG_CRB
tristate "TPM 2.0 CRB Interface"
depends on ACPI
help
If you have a TPM security chip that is compliant with the
TCG CRB 2.0 TPM specification say Yes and it will be accessible
from within Linux. To compile this driver as a module, choose
M here; the module will be called tpm_crb.
config TCG_VTPM_PROXY
tristate "VTPM Proxy Interface"
depends on TCG_TPM
help
This driver proxies for an emulated TPM (vTPM) running in userspace.
A device /dev/vtpmx is provided that creates a device pair
/dev/vtpmX and a server-side file descriptor on which the vTPM
can receive commands.
config TCG_FTPM_TEE
tristate "TEE based fTPM Interface"
depends on TEE && OPTEE
help
This driver proxies for firmware TPM running in TEE.
source "drivers/char/tpm/st33zp24/Kconfig"
endif # TCG_TPM