// SPDX-License-Identifier: GPL-2.0-only
/*
* Bluetooth Software UART Qualcomm protocol
*
* HCI_IBS (HCI In-Band Sleep) is Qualcomm's power management
* protocol extension to H4.
*
* Copyright (C) 2007 Texas Instruments, Inc.
* Copyright (c) 2010, 2012, 2018 The Linux Foundation. All rights reserved.
*
* Acknowledgements:
* This file is based on hci_ll.c, which was...
* Written by Ohad Ben-Cohen <ohad@bencohen.org>
* which was in turn based on hci_h4.c, which was written
* by Maxim Krasnyansky and Marcel Holtmann.
*/
#include <linux/kernel.h>
#include <linux/clk.h>
#include <linux/completion.h>
#include <linux/debugfs.h>
#include <linux/delay.h>
#include <linux/devcoredump.h>
#include <linux/device.h>
#include <linux/gpio/consumer.h>
#include <linux/mod_devicetable.h>
#include <linux/module.h>
#include <linux/of_device.h>
#include <linux/acpi.h>
#include <linux/platform_device.h>
#include <linux/regulator/consumer.h>
#include <linux/serdev.h>
#include <linux/mutex.h>
#include <asm/unaligned.h>
#include <net/bluetooth/bluetooth.h>
#include <net/bluetooth/hci_core.h>
#include "hci_uart.h"
#include "btqca.h"
/* HCI_IBS protocol messages */
#define HCI_IBS_SLEEP_IND 0xFE
#define HCI_IBS_WAKE_IND 0xFD
#define HCI_IBS_WAKE_ACK 0xFC
#define HCI_MAX_IBS_SIZE 10
#define IBS_WAKE_RETRANS_TIMEOUT_MS 100
#define IBS_BTSOC_TX_IDLE_TIMEOUT_MS 200
#define IBS_HOST_TX_IDLE_TIMEOUT_MS 2000
#define CMD_TRANS_TIMEOUT_MS 100
#define MEMDUMP_TIMEOUT_MS 8000
#define IBS_DISABLE_SSR_TIMEOUT_MS \
(MEMDUMP_TIMEOUT_MS + FW_DOWNLOAD_TIMEOUT_MS)
#define FW_DOWNLOAD_TIMEOUT_MS 3000
/* susclk rate */
#define SUSCLK_RATE_32KHZ 32768
/* Controller debug log header */
#define QCA_DEBUG_HANDLE 0x2EDC
/* max retry count when init fails */
#define MAX_INIT_RETRIES 3
/* Controller dump header */
#define QCA_SSR_DUMP_HANDLE 0x0108
#define QCA_DUMP_PACKET_SIZE 255
#define QCA_LAST_SEQUENCE_NUM 0xFFFF
#define QCA_CRASHBYTE_PACKET_LEN 1096
#define QCA_MEMDUMP_BYTE 0xFB
enum qca_flags {
QCA_IBS_DISABLED,
QCA_DROP_VENDOR_EVENT,
QCA_SUSPENDING,
QCA_MEMDUMP_COLLECTION,
QCA_HW_ERROR_EVENT,
QCA_SSR_TRIGGERED,
QCA_BT_OFF,
QCA_ROM_FW
};
enum qca_capabilities {
QCA_CAP_WIDEBAND_SPEECH = BIT(0),
QCA_CAP_VALID_LE_STATES = BIT(1),
};
/* HCI_IBS transmit side sleep protocol states */
enum tx_ibs_states {
HCI_IBS_TX_ASLEEP,
HCI_IBS_TX_WAKING,
HCI_IBS_TX_AWAKE,
};
/* HCI_IBS receive side sleep protocol states */
enum rx_states {
HCI_IBS_RX_ASLEEP,
HCI_IBS_RX_AWAKE,
};
/* HCI_IBS transmit and receive side clock state vote */
enum hci_ibs_clock_state_vote {
HCI_IBS_VOTE_STATS_UPDATE,
HCI_IBS_TX_VOTE_CLOCK_ON,
HCI_IBS_TX_VOTE_CLOCK_OFF,
HCI_IBS_RX_VOTE_CLOCK_ON,
HCI_IBS_RX_VOTE_CLOCK_OFF,
};
/* Controller memory dump states */
enum qca_memdump_states {
QCA_MEMDUMP_IDLE,
QCA_MEMDUMP_COLLECTING,
QCA_MEMDUMP_COLLECTED,
QCA_MEMDUMP_TIMEOUT,
};
struct qca_memdump_data {
char *memdump_buf_head;
char *memdump_buf_tail;
u32 current_seq_no;
u32 received_dump;
u32 ram_dump_size;
};
struct qca_memdump_event_hdr {
__u8 evt;
__u8 plen;
__u16 opcode;
__u16 seq_no;
__u8 reserved;
} __packed;
struct qca_dump_size {
u32 dump_size;
} __packed;
struct qca_data {
struct hci_uart *hu;
struct sk_buff *rx_skb;
struct sk_buff_head txq;
struct sk_buff_head tx_wait_q; /* HCI_IBS wait queue */
struct sk_buff_head rx_memdump_q; /* Memdump wait queue */
spinlock_t hci_ibs_lock; /* HCI_IBS state lock */
u8 tx_ibs_state; /* HCI_IBS transmit side power state*/
u8 rx_ibs_state; /* HCI_IBS receive side power state */
bool tx_vote; /* Clock must be on for TX */
bool rx_vote; /* Clock must be on for RX */
struct timer_list tx_idle_timer;
u32 tx_idle_delay;
struct timer_list wake_retrans_timer;
u32 wake_retrans;
struct workqueue_struct *workqueue;
struct work_struct ws_awake_rx;
struct work_struct ws_awake_device;
struct work_struct ws_rx_vote_off;
struct work_struct ws_tx_vote_off;
struct work_struct ctrl_memdump_evt;
struct delayed_work ctrl_memdump_timeout;
struct qca_memdump_data *qca_memdump;
unsigned long flags;
struct completion drop_ev_comp;
wait_queue_head_t suspend_wait_q;
enum qca_memdump_states memdump_state;
struct mutex hci_memdump_lock;
/* For debugging purpose */
u64 ibs_sent_wacks;
u64 ibs_sent_slps;
u64 ibs_sent_wakes;
u64 ibs_recv_wacks;
u64 ibs_recv_slps;
u64 ibs_recv_wakes;
u64 vote_last_jif;
u32 vote_on_ms;
u32 vote_off_ms;
u64 tx_votes_on;
u64 rx_votes_on;
u64 tx_votes_off;
u64 rx_votes_off;
u64 votes_on;
u64 votes_off;
};
enum qca_speed_type {
QCA_INIT_SPEED = 1,
QCA_OPER_SPEED
};
/*
* Voltage regulator information required for configuring the
* QCA Bluetooth chipset
*/
struct qca_vreg {
const char *name;
unsigned int load_uA;
};
struct qca_device_data {
enum qca_btsoc_type soc_type;
struct qca_vreg *vregs;
size_t num_vregs;
uint32_t capabilities;
};
/*
* Platform data for the QCA Bluetooth power driver.
*/
struct qca_power {
struct device *dev;
struct regulator_bulk_data *vreg_bulk;
int num_vregs;
bool vregs_on;
};
struct qca_serdev {
struct hci_uart serdev_hu;
struct gpio_desc *bt_en;
struct clk *susclk;
enum qca_btsoc_type btsoc_type;
struct qca_power *bt_power;
u32 init_speed;
u32 oper_speed;
const char *firmware_name;
};
static int qca_regulator_enable(struct qca_serdev *qcadev);
static void qca_regulator_disable(struct qca_serdev *qcadev);
static void qca_power_shutdown(struct hci_uart *hu);
static int qca_power_off(struct hci_dev *hdev);
static void qca_controller_memdump(struct work_struct *work);
static enum qca_btsoc_type qca_soc_type(struct hci_uart *hu)
{
enum qca_btsoc_type soc_type;
if (hu->serdev) {
struct qca_serdev *qsd = serdev_device_get_drvdata(hu->serdev);
soc_type = qsd->btsoc_type;
} else {
soc_type = QCA_ROME;
}
return soc_type;
}
static const char *qca_get_firmware_name(struct hci_uart *hu)
{
if (hu->serdev) {
struct qca_serdev *qsd = serdev_device_get_drvdata(hu->serdev);
return qsd->firmware_name;
} else {
return NULL;
}
}
static void __serial_clock_on(struct tty_struct *tty)
{
/* TODO: Some chipset requires to enable UART clock on client
* side to save power consumption or manual work is required.
* Please put your code to control UART clock here if needed
*/
}
static void __serial_clock_off(struct tty_struct *tty)
{
/* TODO: Some chipset requires to disable UART clock on client
* side to save power consumption or manual work is required.
* Please put your code to control UART clock off here if needed
*/
}
/* serial_clock_vote needs to be called with the ibs lock held */
static void serial_clock_vote(unsigned long vote, struct hci_uart *hu)
{
struct qca_data *qca = hu->priv;
unsigned int diff;
bool old_vote = (qca->tx_vote | qca->rx_vote);
bool new_vote;
switch (vote) {
case HCI_IBS_VOTE_STATS_UPDATE:
diff = jiffies_to_msecs(jiffies - qca->vote_last_jif);
if (old_vote)
qca->vote_off_ms += diff;
else
qca->vote_on_ms += diff;
return;
case HCI_IBS_TX_VOTE_CLOCK_ON:
qca->tx_vote = true;
qca->tx_votes_on++;
break;
case HCI_IBS_RX_VOTE_CLOCK_ON:
qca->rx_vote = true;
qca->rx_votes_on++;
break;
case HCI_IBS_TX_VOTE_CLOCK_OFF:
qca->tx_vote = false;
qca->tx_votes_off++;
break;
case HCI_IBS_RX_VOTE_CLOCK_OFF:
qca->rx_vote = false;
qca->rx_votes_off++;
break;
default:
BT_ERR("Voting irregularity");
return;
}
new_vote = qca->rx_vote | qca->tx_vote;
if (new_vote != old_vote) {
if (new_vote)
__serial_clock_on(hu->tty);
else
__serial_clock_off(hu->tty);
BT_DBG("Vote serial clock %s(%s)", new_vote ? "true" : "false",
vote ? "true" : "false");
diff = jiffies_to_msecs(jiffies - qca->vote_last_jif);
if (new_vote) {
qca->votes_on++;
qca->vote_off_ms += diff;
} else {
qca->votes_off++;
qca->vote_on_ms += diff;
}
qca->vote_last_jif = jiffies;
}
}
/* Builds and sends an HCI_IBS command packet.
* These are very simple packets with only 1 cmd byte.
*/
static int send_hci_ibs_cmd(u8 cmd, struct hci_uart *hu)
{
int err = 0;
struct sk_buff *skb = NULL;
struct qca_data *qca = hu->priv;
BT_DBG("hu %p send hci ibs cmd 0x%x", hu, cmd);
skb = bt_skb_alloc(1, GFP_ATOMIC);
if (!skb) {
BT_ERR("Failed to allocate memory for HCI_IBS packet");
return -ENOMEM;
}
/* Assign HCI_IBS type */
skb_put_u8(skb, cmd);
skb_queue_tail(&qca->txq, skb);
return err;
}
static void qca_wq_awake_device(struct work_struct *work)
{
struct qca_data *qca = container_of(work, struct qca_data,
ws_awake_device);
struct hci_uart *hu = qca->hu;
unsigned long retrans_delay;
unsigned long flags;
BT_DBG("hu %p wq awake device", hu);
/* Vote for serial clock */
serial_clock_vote(HCI_IBS_TX_VOTE_CLOCK_ON, hu);
spin_lock_irqsave(&qca->hci_ibs_lock, flags);
/* Send wake indication to device */
if (send_hci_ibs_cmd(HCI_IBS_WAKE_IND, hu) < 0)
BT_ERR("Failed to send WAKE to device");
qca->ibs_sent_wakes++;
/* Start retransmit timer */
retrans_delay = msecs_to_jiffies(qca->wake_retrans);
mod_timer(&qca->wake_retrans_timer, jiffies + retrans_delay);
spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
/* Actually send the packets */
hci_uart_tx_wakeup(hu);
}
static void qca_wq_awake_rx(struct work_struct *work)
{
struct qca_data *qca = container_of(work, struct qca_data,
ws_awake_rx);
struct hci_uart *hu = qca->hu;
unsigned long flags;
BT_DBG("hu %p wq awake rx", hu);
serial_clock_vote(HCI_IBS_RX_VOTE_CLOCK_ON, hu);
spin_lock_irqsave(&qca->hci_ibs_lock, flags);
qca->rx_ibs_state = HCI_IBS_RX_AWAKE;
/* Always acknowledge device wake up,
* sending IBS message doesn't count as TX ON.
*/
if (send_hci_ibs_cmd(HCI_IBS_WAKE_ACK, hu) < 0)
BT_ERR("Failed to acknowledge device wake up");
qca->ibs_sent_wacks++;
spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
/* Actually send the packets */
hci_uart_tx_wakeup(hu);
}
static void qca_wq_serial_rx_clock_vote_off(struct work_struct *work)
{
struct qca_data *qca = container_of(work, struct qca_data,
ws_rx_vote_off);
struct hci_uart *hu = qca->hu;
BT_DBG("hu %p rx clock vote off", hu);
serial_clock_vote(HCI_IBS_RX_VOTE_CLOCK_OFF, hu);
}
static void qca_wq_serial_tx_clock_vote_off(struct work_struct *work)
{
struct qca_data *qca = container_of(work, struct qca_data,
ws_tx_vote_off);
struct hci_uart *hu = qca->hu;
BT_DBG("hu %p tx clock vote off", hu);
/* Run HCI tx handling unlocked */
hci_uart_tx_wakeup(hu);
/* Now that message queued to tty driver, vote for tty clocks off.
* It is up to the tty driver to pend the clocks off until tx done.
*/
serial_clock_vote(HCI_IBS_TX_VOTE_CLOCK_OFF, hu);
}
static void hci_ibs_tx_idle_timeout(struct timer_list *t)
{
struct qca_data *qca = from_timer(qca, t, tx_idle_timer);
struct hci_uart *hu = qca->hu;
unsigned long flags;
BT_DBG("hu %p idle timeout in %d state", hu, qca->tx_ibs_state);
spin_lock_irqsave_nested(&qca->hci_ibs_lock,
flags, SINGLE_DEPTH_NESTING);
switch (qca->tx_ibs_state) {
case HCI_IBS_TX_AWAKE:
/* TX_IDLE, go to SLEEP */
if (send_hci_ibs_cmd(HCI_IBS_SLEEP_IND, hu) < 0) {
BT_ERR("Failed to send SLEEP to device");
break;
}
qca->tx_ibs_state = HCI_IBS_TX_ASLEEP;
qca->ibs_sent_slps++;
queue_work(qca->workqueue, &qca->ws_tx_vote_off);
break;
case HCI_IBS_TX_ASLEEP:
case HCI_IBS_TX_WAKING:
default:
BT_ERR("Spurious timeout tx state %d", qca->tx_ibs_state);
break;
}
spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
}
static void hci_ibs_wake_retrans_timeout(struct timer_list *t)
{
struct qca_data *qca = from_timer(qca, t, wake_retrans_timer);
struct hci_uart *hu = qca->hu;
unsigned long flags, retrans_delay;
bool retransmit = false;
BT_DBG("hu %p wake retransmit timeout in %d state",
hu, qca->tx_ibs_state);
spin_lock_irqsave_nested(&qca->hci_ibs_lock,
flags, SINGLE_DEPTH_NESTING);
/* Don't retransmit the HCI_IBS_WAKE_IND when suspending. */
if (test_bit(QCA_SUSPENDING, &qca->flags)) {
spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
return;
}
switch (qca->tx_ibs_state) {
case HCI_IBS_TX_WAKING:
/* No WAKE_ACK, retransmit WAKE */
retransmit = true;
if (send_hci_ibs_cmd(HCI_IBS_WAKE_IND, hu) < 0) {
BT_ERR("Failed to acknowledge device wake up");
break;
}
qca->ibs_sent_wakes++;
retrans_delay = msecs_to_jiffies(qca->wake_retrans);
mod_timer(&qca->wake_retrans_timer, jiffies + retrans_delay);
break;
case HCI_IBS_TX_ASLEEP:
case HCI_IBS_TX_AWAKE:
default:
BT_ERR("Spurious timeout tx state %d", qca->tx_ibs_state);
break;
}
spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
if (retransmit)
hci_uart_tx_wakeup(hu);
}
static void qca_controller_memdump_timeout(struct work_struct *work)
{
struct qca_data *qca = container_of(work, struct qca_data,
ctrl_memdump_timeout.work);
struct hci_uart *hu = qca->hu;
mutex_lock(&qca->hci_memdump_lock);
if (test_bit(QCA_MEMDUMP_COLLECTION, &qca->flags)) {
qca->memdump_state = QCA_MEMDUMP_TIMEOUT;
if (!test_bit(QCA_HW_ERROR_EVENT, &qca->flags)) {
/* Inject hw error event to reset the device
* and driver.
*/
hci_reset_dev(hu->hdev);
}
}
mutex_unlock(&qca->hci_memdump_lock);
}
/* Initialize protocol */
static int qca_open(struct hci_uart *hu)
{
struct qca_serdev *qcadev;
struct qca_data *qca;
BT_DBG("hu %p qca_open", hu);
if (!hci_uart_has_flow_control(hu))
return -EOPNOTSUPP;
qca = kzalloc(sizeof(struct qca_data), GFP_KERNEL);
if (!qca)
return -ENOMEM;
skb_queue_head_init(&qca->txq);
skb_queue_head_init(&qca->tx_wait_q);
skb_queue_head_init(&qca->rx_memdump_q);
spin_lock_init(&qca->hci_ibs_lock);
mutex_init(&qca->hci_memdump_lock);
qca->workqueue = alloc_ordered_workqueue("qca_wq", 0);
if (!qca->workqueue) {
BT_ERR("QCA Workqueue not initialized properly");
kfree(qca);
return -ENOMEM;
}
INIT_WORK(&qca->ws_awake_rx, qca_wq_awake_rx);
INIT_WORK(&qca->ws_awake_device, qca_wq_awake_device);
INIT_WORK(&qca->ws_rx_vote_off, qca_wq_serial_rx_clock_vote_off);
INIT_WORK(&qca->ws_tx_vote_off, qca_wq_serial_tx_clock_vote_off);
INIT_WORK(&qca->ctrl_memdump_evt, qca_controller_memdump);
INIT_DELAYED_WORK(&qca->ctrl_memdump_timeout,
qca_controller_memdump_timeout);
init_waitqueue_head(&qca->suspend_wait_q);
qca->hu = hu;
init_completion(&qca->drop_ev_comp);
/* Assume we start with both sides asleep -- extra wakes OK */
qca->tx_ibs_state = HCI_IBS_TX_ASLEEP;
qca->rx_ibs_state = HCI_IBS_RX_ASLEEP;
qca->vote_last_jif = jiffies;
hu->priv = qca;
if (hu->serdev) {
qcadev = serdev_device_get_drvdata(hu->serdev);
if (qca_is_wcn399x(qcadev->btsoc_type))
hu->init_speed = qcadev->init_speed;
if (qcadev->oper_speed)
hu->oper_speed = qcadev->oper_speed;
}
timer_setup(&qca->wake_retrans_timer, hci_ibs_wake_retrans_timeout, 0);
qca->wake_retrans = IBS_WAKE_RETRANS_TIMEOUT_MS;
timer_setup(&qca->tx_idle_timer, hci_ibs_tx_idle_timeout, 0);
qca->tx_idle_delay = IBS_HOST_TX_IDLE_TIMEOUT_MS;
BT_DBG("HCI_UART_QCA open, tx_idle_delay=%u, wake_retrans=%u",
qca->tx_idle_delay, qca->wake_retrans);
return 0;
}
static void qca_debugfs_init(struct hci_dev *hdev)
{
struct hci_uart *hu = hci_get_drvdata(hdev);
struct qca_data *qca = hu->priv;
struct dentry *ibs_dir;
umode_t mode;
if (!hdev->debugfs)
return;
ibs_dir = debugfs_create_dir("ibs", hdev->debugfs);
/* read only */
mode = 0444;
debugfs_create_u8("tx_ibs_state", mode, ibs_dir, &qca->tx_ibs_state);
debugfs_create_u8("rx_ibs_state", mode, ibs_dir, &qca->rx_ibs_state);
debugfs_create_u64("ibs_sent_sleeps", mode, ibs_dir,
&qca->ibs_sent_slps);
debugfs_create_u64("ibs_sent_wakes", mode, ibs_dir,
&qca->ibs_sent_wakes);
debugfs_create_u64("ibs_sent_wake_acks", mode, ibs_dir,
&qca->ibs_sent_wacks);
debugfs_create_u64("ibs_recv_sleeps", mode, ibs_dir,
&qca->ibs_recv_slps);
debugfs_create_u64("ibs_recv_wakes", mode, ibs_dir,
&qca->ibs_recv_wakes);
debugfs_create_u64("ibs_recv_wake_acks", mode, ibs_dir,
&qca->ibs_recv_wacks);
debugfs_create_bool("tx_vote", mode, ibs_dir, &qca->tx_vote);
debugfs_create_u64("tx_votes_on", mode, ibs_dir, &qca->tx_votes_on);
debugfs_create_u64("tx_votes_off", mode, ibs_dir, &qca->tx_votes_off);
debugfs_create_bool("rx_vote", mode, ibs_dir, &qca->rx_vote);
debugfs_create_u64("rx_votes_on", mode, ibs_dir, &qca->rx_votes_on);
debugfs_create_u64("rx_votes_off", mode, ibs_dir, &qca->rx_votes_off);
debugfs_create_u64("votes_on", mode, ibs_dir, &qca->votes_on);
debugfs_create_u64("votes_off", mode, ibs_dir, &qca->votes_off);
debugfs_create_u32("vote_on_ms", mode, ibs_dir, &qca->vote_on_ms);
debugfs_create_u32("vote_off_ms", mode, ibs_dir, &qca->vote_off_ms);
/* read/write */
mode = 0644;
debugfs_create_u32("wake_retrans", mode, ibs_dir, &qca->wake_retrans);
debugfs_create_u32("tx_idle_delay", mode, ibs_dir,
&qca->tx_idle_delay);
}
/* Flush protocol data */
static int qca_flush(struct hci_uart *hu)
{
struct qca_data *qca = hu->priv;
BT_DBG("hu %p qca flush", hu);
skb_queue_purge(&qca->tx_wait_q);
skb_queue_purge(&qca->txq);
return 0;
}
/* Close protocol */
static int qca_close(struct hci_uart *hu)
{
struct qca_data *qca = hu->priv;
BT_DBG("hu %p qca close", hu);
serial_clock_vote(HCI_IBS_VOTE_STATS_UPDATE, hu);
skb_queue_purge(&qca->tx_wait_q);
skb_queue_purge(&qca->txq);
skb_queue_purge(&qca->rx_memdump_q);
del_timer(&qca->tx_idle_timer);
del_timer(&qca->wake_retrans_timer);
destroy_workqueue(qca->workqueue);
qca->hu = NULL;
kfree_skb(qca->rx_skb);
hu->priv = NULL;
kfree(qca);
return 0;
}
/* Called upon a wake-up-indication from the device.
*/
static void device_want_to_wakeup(struct hci_uart *hu)
{
unsigned long flags;
struct qca_data *qca = hu->priv;
BT_DBG("hu %p want to wake up", hu);
spin_lock_irqsave(&qca->hci_ibs_lock, flags);
qca->ibs_recv_wakes++;
/* Don't wake the rx up when suspending. */
if (test_bit(QCA_SUSPENDING, &qca->flags)) {
spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
return;
}
switch (qca->rx_ibs_state) {
case HCI_IBS_RX_ASLEEP:
/* Make sure clock is on - we may have turned clock off since
* receiving the wake up indicator awake rx clock.
*/
queue_work(qca->workqueue, &qca->ws_awake_rx);
spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
return;
case HCI_IBS_RX_AWAKE:
/* Always acknowledge device wake up,
* sending IBS message doesn't count as TX ON.
*/
if (send_hci_ibs_cmd(HCI_IBS_WAKE_ACK, hu) < 0) {
BT_ERR("Failed to acknowledge device wake up");
break;
}
qca->ibs_sent_wacks++;
break;
default:
/* Any other state is illegal */
BT_ERR("Received HCI_IBS_WAKE_IND in rx state %d",
qca->rx_ibs_state);
break;
}
spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
/* Actually send the packets */
hci_uart_tx_wakeup(hu);
}
/* Called upon a sleep-indication from the device.
*/
static void device_want_to_sleep(struct hci_uart *hu)
{
unsigned long flags;
struct qca_data *qca = hu->priv;
BT_DBG("hu %p want to sleep in %d state", hu, qca->rx_ibs_state);
spin_lock_irqsave(&qca->hci_ibs_lock, flags);
qca->ibs_recv_slps++;
switch (qca->rx_ibs_state) {
case HCI_IBS_RX_AWAKE:
/* Update state */
qca->rx_ibs_state = HCI_IBS_RX_ASLEEP;
/* Vote off rx clock under workqueue */
queue_work(qca->workqueue, &qca->ws_rx_vote_off);
break;
case HCI_IBS_RX_ASLEEP:
break;
default:
/* Any other state is illegal */
BT_ERR("Received HCI_IBS_SLEEP_IND in rx state %d",
qca->rx_ibs_state);
break;
}
wake_up_interruptible(&qca->suspend_wait_q);
spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
}
/* Called upon wake-up-acknowledgement from the device
*/
static void device_woke_up(struct hci_uart *hu)
{
unsigned long flags, idle_delay;
struct qca_data *qca = hu->priv;
struct sk_buff *skb = NULL;
BT_DBG("hu %p woke up", hu);
spin_lock_irqsave(&qca->hci_ibs_lock, flags);
qca->ibs_recv_wacks++;
/* Don't react to the wake-up-acknowledgment when suspending. */
if (test_bit(QCA_SUSPENDING, &qca->flags)) {
spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
return;
}
switch (qca->tx_ibs_state) {
case HCI_IBS_TX_AWAKE:
/* Expect one if we send 2 WAKEs */
BT_DBG("Received HCI_IBS_WAKE_ACK in tx state %d",
qca->tx_ibs_state);
break;
case HCI_IBS_TX_WAKING:
/* Send pending packets */
while ((skb = skb_dequeue(&qca->tx_wait_q)))
skb_queue_tail(&qca->txq, skb);
/* Switch timers and change state to HCI_IBS_TX_AWAKE */
del_timer(&qca->wake_retrans_timer);
idle_delay = msecs_to_jiffies(qca->tx_idle_delay);
mod_timer(&qca->tx_idle_timer, jiffies + idle_delay);
qca->tx_ibs_state = HCI_IBS_TX_AWAKE;
break;
case HCI_IBS_TX_ASLEEP:
default:
BT_ERR("Received HCI_IBS_WAKE_ACK in tx state %d",
qca->tx_ibs_state);
break;
}
spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
/* Actually send the packets */
hci_uart_tx_wakeup(hu);
}
/* Enqueue frame for transmittion (padding, crc, etc) may be called from
* two simultaneous tasklets.
*/
static int qca_enqueue(struct hci_uart *hu, struct sk_buff *skb)
{
unsigned long flags = 0, idle_delay;
struct qca_data *qca = hu->priv;
BT_DBG("hu %p qca enq skb %p tx_ibs_state %d", hu, skb,
qca->tx_ibs_state);
if (test_bit(QCA_SSR_TRIGGERED, &qca->flags)) {
/* As SSR is in progress, ignore the packets */
bt_dev_dbg(hu->hdev, "SSR is in progress");
kfree_skb(skb);
return 0;
}
/* Prepend skb with frame type */
memcpy(skb_push(skb, 1), &hci_skb_pkt_type(skb), 1);
spin_lock_irqsave(&qca->hci_ibs_lock, flags);
/* Don't go to sleep in middle of patch download or
* Out-Of-Band(GPIOs control) sleep is selected.
* Don't wake the device up when suspending.
*/
if (test_bit(QCA_IBS_DISABLED, &qca->flags) ||
test_bit(QCA_SUSPENDING, &qca->flags)) {
skb_queue_tail(&qca->txq, skb);
spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
return 0;
}
/* Act according to current state */
switch (qca->tx_ibs_state) {
case HCI_IBS_TX_AWAKE:
BT_DBG("Device awake, sending normally");
skb_queue_tail(&qca->txq, skb);
idle_delay = msecs_to_jiffies(qca->tx_idle_delay);
mod_timer(&qca->tx_idle_timer, jiffies + idle_delay);
break;
case HCI_IBS_TX_ASLEEP:
BT_DBG("Device asleep, waking up and queueing packet");
/* Save packet for later */
skb_queue_tail(&qca->tx_wait_q, skb);
qca->tx_ibs_state = HCI_IBS_TX_WAKING;
/* Schedule a work queue to wake up device */
queue_work(qca->workqueue, &qca->ws_awake_device);
break;
case HCI_IBS_TX_WAKING:
BT_DBG("Device waking up, queueing packet");
/* Transient state; just keep packet for later */
skb_queue_tail(&qca->tx_wait_q, skb);
break;
default:
BT_ERR("Illegal tx state: %d (losing packet)",
qca->tx_ibs_state);
kfree_skb(skb);
break;
}
spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
return 0;
}
static int qca_ibs_sleep_ind(struct hci_dev *hdev, struct sk_buff *skb)
{
struct hci_uart *hu = hci_get_drvdata(hdev);
BT_DBG("hu %p recv hci ibs cmd 0x%x", hu, HCI_IBS_SLEEP_IND);
device_want_to_sleep(hu);
kfree_skb(skb);
return 0;
}
static int qca_ibs_wake_ind(struct hci_dev *hdev, struct sk_buff *skb)
{
struct hci_uart *hu = hci_get_drvdata(hdev);
BT_DBG("hu %p recv hci ibs cmd 0x%x", hu, HCI_IBS_WAKE_IND);
device_want_to_wakeup(hu);
kfree_skb(skb);
return 0;
}
static int qca_ibs_wake_ack(struct hci_dev *hdev, struct sk_buff *skb)
{
struct hci_uart *hu = hci_get_drvdata(hdev);
BT_DBG("hu %p recv hci ibs cmd 0x%x", hu, HCI_IBS_WAKE_ACK);
device_woke_up(hu);
kfree_skb(skb);
return 0;
}
static int qca_recv_acl_data(struct hci_dev *hdev, struct sk_buff *skb)
{
/* We receive debug logs from chip as an ACL packets.
* Instead of sending the data to ACL to decode the
* received data, we are pushing them to the above layers
* as a diagnostic packet.
*/
if (get_unaligned_le16(skb->data) == QCA_DEBUG_HANDLE)
return hci_recv_diag(hdev, skb);
return hci_recv_frame(hdev, skb);
}
static void qca_controller_memdump(struct work_struct *work)
{
struct qca_data *qca = container_of(work, struct qca_data,
ctrl_memdump_evt);
struct hci_uart *hu = qca->hu;
struct sk_buff *skb;
struct qca_memdump_event_hdr *cmd_hdr;
struct qca_memdump_data *qca_memdump = qca->qca_memdump;
struct qca_dump_size *dump;
char *memdump_buf;
char nullBuff[QCA_DUMP_PACKET_SIZE] = { 0 };
u16 seq_no;
u32 dump_size;
u32 rx_size;
enum qca_btsoc_type soc_type = qca_soc_type(hu);
while ((skb = skb_dequeue(&qca->rx_memdump_q))) {
mutex_lock(&qca->hci_memdump_lock);
/* Skip processing the received packets if timeout detected
* or memdump collection completed.
*/
if (qca->memdump_state == QCA_MEMDUMP_TIMEOUT ||
qca->memdump_state == QCA_MEMDUMP_COLLECTED) {
mutex_unlock(&qca->hci_memdump_lock);
return;
}
if (!qca_memdump) {
qca_memdump = kzalloc(sizeof(struct qca_memdump_data),
GFP_ATOMIC);
if (!qca_memdump) {
mutex_unlock(&qca->hci_memdump_lock);
return;
}
qca->qca_memdump = qca_memdump;
}
qca->memdump_state = QCA_MEMDUMP_COLLECTING;
cmd_hdr = (void *) skb->data;
seq_no = __le16_to_cpu(cmd_hdr->seq_no);
skb_pull(skb, sizeof(struct qca_memdump_event_hdr));
if (!seq_no) {
/* This is the first frame of memdump packet from
* the controller, Disable IBS to recevie dump
* with out any interruption, ideally time required for
* the controller to send the dump is 8 seconds. let us
* start timer to handle this asynchronous activity.
*/
set_bit(QCA_IBS_DISABLED, &qca->flags);
set_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
dump = (void *) skb->data;
dump_size = __le32_to_cpu(dump->dump_size);
if (!(dump_size)) {
bt_dev_err(hu->hdev, "Rx invalid memdump size");
kfree(qca_memdump);
kfree_skb(skb);
qca->qca_memdump = NULL;
mutex_unlock(&qca->hci_memdump_lock);
return;
}
bt_dev_info(hu->hdev, "QCA collecting dump of size:%u",
dump_size);
queue_delayed_work(qca->workqueue,
&qca->ctrl_memdump_timeout,
msecs_to_jiffies(MEMDUMP_TIMEOUT_MS)
);
skb_pull(skb, sizeof(dump_size));
memdump_buf = vmalloc(dump_size);
qca_memdump->ram_dump_size = dump_size;
qca_memdump->memdump_buf_head = memdump_buf;
qca_memdump->memdump_buf_tail = memdump_buf;
}
memdump_buf = qca_memdump->memdump_buf_tail;
/* If sequence no 0 is missed then there is no point in
* accepting the other sequences.
*/
if (!memdump_buf) {
bt_dev_err(hu->hdev, "QCA: Discarding other packets");
kfree(qca_memdump);
kfree_skb(skb);
qca->qca_memdump = NULL;
mutex_unlock(&qca->hci_memdump_lock);
return;
}
/* There could be chance of missing some packets from
* the controller. In such cases let us store the dummy
* packets in the buffer.
*/
/* For QCA6390, controller does not lost packets but
* sequence number field of packat sometimes has error
* bits, so skip this checking for missing packet.
*/
while ((seq_no > qca_memdump->current_seq_no + 1) &&
(soc_type != QCA_QCA6390) &&
seq_no != QCA_LAST_SEQUENCE_NUM) {
bt_dev_err(hu->hdev, "QCA controller missed packet:%d",
qca_memdump->current_seq_no);
rx_size = qca_memdump->received_dump;
rx_size += QCA_DUMP_PACKET_SIZE;
if (rx_size > qca_memdump->ram_dump_size) {
bt_dev_err(hu->hdev,
"QCA memdump received %d, no space for missed packet",
qca_memdump->received_dump);
break;
}
memcpy(memdump_buf, nullBuff, QCA_DUMP_PACKET_SIZE);
memdump_buf = memdump_buf + QCA_DUMP_PACKET_SIZE;
qca_memdump->received_dump += QCA_DUMP_PACKET_SIZE;
qca_memdump->current_seq_no++;
}
rx_size = qca_memdump->received_dump + skb->len;
if (rx_size <= qca_memdump->ram_dump_size) {
if ((seq_no != QCA_LAST_SEQUENCE_NUM) &&
(seq_no != qca_memdump->current_seq_no))
bt_dev_err(hu->hdev,
"QCA memdump unexpected packet %d",
seq_no);
bt_dev_dbg(hu->hdev,
"QCA memdump packet %d with length %d",
seq_no, skb->len);
memcpy(memdump_buf, (unsigned char *)skb->data,
skb->len);
memdump_buf = memdump_buf + skb->len;
qca_memdump->memdump_buf_tail = memdump_buf;
qca_memdump->current_seq_no = seq_no + 1;
qca_memdump->received_dump += skb->len;
} else {
bt_dev_err(hu->hdev,
"QCA memdump received %d, no space for packet %d",
qca_memdump->received_dump, seq_no);
}
qca->qca_memdump = qca_memdump;
kfree_skb(skb);
if (seq_no == QCA_LAST_SEQUENCE_NUM) {
bt_dev_info(hu->hdev,
"QCA memdump Done, received %d, total %d",
qca_memdump->received_dump,
qca_memdump->ram_dump_size);
memdump_buf = qca_memdump->memdump_buf_head;
dev_coredumpv(&hu->serdev->dev, memdump_buf,
qca_memdump->received_dump, GFP_KERNEL);
cancel_delayed_work(&qca->ctrl_memdump_timeout);
kfree(qca->qca_memdump);
qca->qca_memdump = NULL;
qca->memdump_state = QCA_MEMDUMP_COLLECTED;
clear_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
}
mutex_unlock(&qca->hci_memdump_lock);
}
}
static int qca_controller_memdump_event(struct hci_dev *hdev,
struct sk_buff *skb)
{
struct hci_uart *hu = hci_get_drvdata(hdev);
struct qca_data *qca = hu->priv;
set_bit(QCA_SSR_TRIGGERED, &qca->flags);
skb_queue_tail(&qca->rx_memdump_q, skb);
queue_work(qca->workqueue, &qca->ctrl_memdump_evt);
return 0;
}
static int qca_recv_event(struct hci_dev *hdev, struct sk_buff *skb)
{
struct hci_uart *hu = hci_get_drvdata(hdev);
struct qca_data *qca = hu->priv;
if (test_bit(QCA_DROP_VENDOR_EVENT, &qca->flags)) {
struct hci_event_hdr *hdr = (void *)skb->data;
/* For the WCN3990 the vendor command for a baudrate change
* isn't sent as synchronous HCI command, because the
* controller sends the corresponding vendor event with the
* new baudrate. The event is received and properly decoded
* after changing the baudrate of the host port. It needs to
* be dropped, otherwise it can be misinterpreted as
* response to a later firmware download command (also a
* vendor command).
*/
if (hdr->evt == HCI_EV_VENDOR)
complete(&qca->drop_ev_comp);
kfree_skb(skb);
return 0;
}
/* We receive chip memory dump as an event packet, With a dedicated
* handler followed by a hardware error event. When this event is
* received we store dump into a file before closing hci. This
* dump will help in triaging the issues.
*/
if ((skb->data[0] == HCI_VENDOR_PKT) &&
(get_unaligned_be16(skb->data + 2) == QCA_SSR_DUMP_HANDLE))
return qca_controller_memdump_event(hdev, skb);
return hci_recv_frame(hdev, skb);
}
#define QCA_IBS_SLEEP_IND_EVENT \
.type = HCI_IBS_SLEEP_IND, \
.hlen = 0, \
.loff = 0, \
.lsize = 0, \
.maxlen = HCI_MAX_IBS_SIZE
#define QCA_IBS_WAKE_IND_EVENT \
.type = HCI_IBS_WAKE_IND, \
.hlen = 0, \
.loff = 0, \
.lsize = 0, \
.maxlen = HCI_MAX_IBS_SIZE
#define QCA_IBS_WAKE_ACK_EVENT \
.type = HCI_IBS_WAKE_ACK, \
.hlen = 0, \
.loff = 0, \
.lsize = 0, \
.maxlen = HCI_MAX_IBS_SIZE
static const struct h4_recv_pkt qca_recv_pkts[] = {
{ H4_RECV_ACL, .recv = qca_recv_acl_data },
{ H4_RECV_SCO, .recv = hci_recv_frame },
{ H4_RECV_EVENT, .recv = qca_recv_event },
{ QCA_IBS_WAKE_IND_EVENT, .recv = qca_ibs_wake_ind },
{ QCA_IBS_WAKE_ACK_EVENT, .recv = qca_ibs_wake_ack },
{ QCA_IBS_SLEEP_IND_EVENT, .recv = qca_ibs_sleep_ind },
};
static int qca_recv(struct hci_uart *hu, const void *data, int count)
{
struct qca_data *qca = hu->priv;
if (!test_bit(HCI_UART_REGISTERED, &hu->flags))
return -EUNATCH;
qca->rx_skb = h4_recv_buf(hu->hdev, qca->rx_skb, data, count,
qca_recv_pkts, ARRAY_SIZE(qca_recv_pkts));
if (IS_ERR(qca->rx_skb)) {
int err = PTR_ERR(qca->rx_skb);
bt_dev_err(hu->hdev, "Frame reassembly failed (%d)", err);
qca->rx_skb = NULL;
return err;
}
return count;
}
static struct sk_buff *qca_dequeue(struct hci_uart *hu)
{
struct qca_data *qca = hu->priv;
return skb_dequeue(&qca->txq);
}
static uint8_t qca_get_baudrate_value(int speed)
{
switch (speed) {
case 9600:
return QCA_BAUDRATE_9600;
case 19200:
return QCA_BAUDRATE_19200;
case 38400:
return QCA_BAUDRATE_38400;
case 57600:
return QCA_BAUDRATE_57600;
case 115200:
return QCA_BAUDRATE_115200;
case 230400:
return QCA_BAUDRATE_230400;
case 460800:
return QCA_BAUDRATE_460800;
case 500000:
return QCA_BAUDRATE_500000;
case 921600:
return QCA_BAUDRATE_921600;
case 1000000:
return QCA_BAUDRATE_1000000;
case 2000000:
return QCA_BAUDRATE_2000000;
case 3000000:
return QCA_BAUDRATE_3000000;
case 3200000:
return QCA_BAUDRATE_3200000;
case 3500000:
return QCA_BAUDRATE_3500000;
default:
return QCA_BAUDRATE_115200;
}
}
static int qca_set_baudrate(struct hci_dev *hdev, uint8_t baudrate)
{
struct hci_uart *hu = hci_get_drvdata(hdev);
struct qca_data *qca = hu->priv;
struct sk_buff *skb;
u8 cmd[] = { 0x01, 0x48, 0xFC, 0x01, 0x00 };
if (baudrate > QCA_BAUDRATE_3200000)
return -EINVAL;
cmd[4] = baudrate;
skb = bt_skb_alloc(sizeof(cmd), GFP_KERNEL);
if (!skb) {
bt_dev_err(hdev, "Failed to allocate baudrate packet");
return -ENOMEM;
}
/* Assign commands to change baudrate and packet type. */
skb_put_data(skb, cmd, sizeof(cmd));
hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
skb_queue_tail(&qca->txq, skb);
hci_uart_tx_wakeup(hu);
/* Wait for the baudrate change request to be sent */
while (!skb_queue_empty(&qca->txq))
usleep_range(100, 200);
if (hu->serdev)
serdev_device_wait_until_sent(hu->serdev,
msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS));
/* Give the controller time to process the request */
if (qca_is_wcn399x(qca_soc_type(hu)))
usleep_range(1000, 10000);
else
msleep(300);
return 0;
}
static inline void host_set_baudrate(struct hci_uart *hu, unsigned int speed)
{
if (hu->serdev)
serdev_device_set_baudrate(hu->serdev, speed);
else
hci_uart_set_baudrate(hu, speed);
}
static int qca_send_power_pulse(struct hci_uart *hu, bool on)
{
int ret;
int timeout = msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS);
u8 cmd = on ? QCA_WCN3990_POWERON_PULSE : QCA_WCN3990_POWEROFF_PULSE;
/* These power pulses are single byte command which are sent
* at required baudrate to wcn3990. On wcn3990, we have an external
* circuit at Tx pin which decodes the pulse sent at specific baudrate.
* For example, wcn3990 supports RF COEX antenna for both Wi-Fi/BT
* and also we use the same power inputs to turn on and off for
* Wi-Fi/BT. Powering up the power sources will not enable BT, until
* we send a power on pulse at 115200 bps. This algorithm will help to
* save power. Disabling hardware flow control is mandatory while
* sending power pulses to SoC.
*/
bt_dev_dbg(hu->hdev, "sending power pulse %02x to controller", cmd);
serdev_device_write_flush(hu->serdev);
hci_uart_set_flow_control(hu, true);
ret = serdev_device_write_buf(hu->serdev, &cmd, sizeof(cmd));
if (ret < 0) {
bt_dev_err(hu->hdev, "failed to send power pulse %02x", cmd);
return ret;
}
serdev_device_wait_until_sent(hu->serdev, timeout);
hci_uart_set_flow_control(hu, false);
/* Give to controller time to boot/shutdown */
if (on)
msleep(100);
else
usleep_range(1000, 10000);
return 0;
}
static unsigned int qca_get_speed(struct hci_uart *hu,
enum qca_speed_type speed_type)
{
unsigned int speed = 0;
if (speed_type == QCA_INIT_SPEED) {
if (hu->init_speed)
speed = hu->init_speed;
else if (hu->proto->init_speed)
speed = hu->proto->init_speed;
} else {
if (hu->oper_speed)
speed = hu->oper_speed;
else if (hu->proto->oper_speed)
speed = hu->proto->oper_speed;
}
return speed;
}
static int qca_check_speeds(struct hci_uart *hu)
{
if (qca_is_wcn399x(qca_soc_type(hu))) {
if (!qca_get_speed(hu, QCA_INIT_SPEED) &&
!qca_get_speed(hu, QCA_OPER_SPEED))
return -EINVAL;
} else {
if (!qca_get_speed(hu, QCA_INIT_SPEED) ||
!qca_get_speed(hu, QCA_OPER_SPEED))
return -EINVAL;
}
return 0;
}
static int qca_set_speed(struct hci_uart *hu, enum qca_speed_type speed_type)
{
unsigned int speed, qca_baudrate;
struct qca_data *qca = hu->priv;
int ret = 0;
if (speed_type == QCA_INIT_SPEED) {
speed = qca_get_speed(hu, QCA_INIT_SPEED);
if (speed)
host_set_baudrate(hu, speed);
} else {
enum qca_btsoc_type soc_type = qca_soc_type(hu);
speed = qca_get_speed(hu, QCA_OPER_SPEED);
if (!speed)
return 0;
/* Disable flow control for wcn3990 to deassert RTS while
* changing the baudrate of chip and host.
*/
if (qca_is_wcn399x(soc_type))
hci_uart_set_flow_control(hu, true);
if (soc_type == QCA_WCN3990) {
reinit_completion(&qca->drop_ev_comp);
set_bit(QCA_DROP_VENDOR_EVENT, &qca->flags);
}
qca_baudrate = qca_get_baudrate_value(speed);
bt_dev_dbg(hu->hdev, "Set UART speed to %d", speed);
ret = qca_set_baudrate(hu->hdev, qca_baudrate);
if (ret)
goto error;
host_set_baudrate(hu, speed);
error:
if (qca_is_wcn399x(soc_type))
hci_uart_set_flow_control(hu, false);
if (soc_type == QCA_WCN3990) {
/* Wait for the controller to send the vendor event
* for the baudrate change command.
*/
if (!wait_for_completion_timeout(&qca->drop_ev_comp,
msecs_to_jiffies(100))) {
bt_dev_err(hu->hdev,
"Failed to change controller baudrate\n");
ret = -ETIMEDOUT;
}
clear_bit(QCA_DROP_VENDOR_EVENT, &qca->flags);
}
}
return ret;
}
static int qca_send_crashbuffer(struct hci_uart *hu)
{
struct qca_data *qca = hu->priv;
struct sk_buff *skb;
skb = bt_skb_alloc(QCA_CRASHBYTE_PACKET_LEN, GFP_KERNEL);
if (!skb) {
bt_dev_err(hu->hdev, "Failed to allocate memory for skb packet");
return -ENOMEM;
}
/* We forcefully crash the controller, by sending 0xfb byte for
* 1024 times. We also might have chance of losing data, To be
* on safer side we send 1096 bytes to the SoC.
*/
memset(skb_put(skb, QCA_CRASHBYTE_PACKET_LEN), QCA_MEMDUMP_BYTE,
QCA_CRASHBYTE_PACKET_LEN);
hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
bt_dev_info(hu->hdev, "crash the soc to collect controller dump");
skb_queue_tail(&qca->txq, skb);
hci_uart_tx_wakeup(hu);
return 0;
}
static void qca_wait_for_dump_collection(struct hci_dev *hdev)
{
struct hci_uart *hu = hci_get_drvdata(hdev);
struct qca_data *qca = hu->priv;
wait_on_bit_timeout(&qca->flags, QCA_MEMDUMP_COLLECTION,
TASK_UNINTERRUPTIBLE, MEMDUMP_TIMEOUT_MS);
clear_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
}
static void qca_hw_error(struct hci_dev *hdev, u8 code)
{
struct hci_uart *hu = hci_get_drvdata(hdev);
struct qca_data *qca = hu->priv;
set_bit(QCA_SSR_TRIGGERED, &qca->flags);
set_bit(QCA_HW_ERROR_EVENT, &qca->flags);
bt_dev_info(hdev, "mem_dump_status: %d", qca->memdump_state);
if (qca->memdump_state == QCA_MEMDUMP_IDLE) {
/* If hardware error event received for other than QCA
* soc memory dump event, then we need to crash the SOC
* and wait here for 8 seconds to get the dump packets.
* This will block main thread to be on hold until we
* collect dump.
*/
set_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
qca_send_crashbuffer(hu);
qca_wait_for_dump_collection(hdev);
} else if (qca->memdump_state == QCA_MEMDUMP_COLLECTING) {
/* Let us wait here until memory dump collected or
* memory dump timer expired.
*/
bt_dev_info(hdev, "waiting for dump to complete");
qca_wait_for_dump_collection(hdev);
}
mutex_lock(&qca->hci_memdump_lock);
if (qca->memdump_state != QCA_MEMDUMP_COLLECTED) {
bt_dev_err(hu->hdev, "clearing allocated memory due to memdump timeout");
if (qca->qca_memdump) {
vfree(qca->qca_memdump->memdump_buf_head);
kfree(qca->qca_memdump);
qca->qca_memdump = NULL;
}
qca->memdump_state = QCA_MEMDUMP_TIMEOUT;
cancel_delayed_work(&qca->ctrl_memdump_timeout);
}
mutex_unlock(&qca->hci_memdump_lock);
if (qca->memdump_state == QCA_MEMDUMP_TIMEOUT ||
qca->memdump_state == QCA_MEMDUMP_COLLECTED) {
cancel_work_sync(&qca->ctrl_memdump_evt);
skb_queue_purge(&qca->rx_memdump_q);
}
clear_bit(QCA_HW_ERROR_EVENT, &qca->flags);
}
static void qca_cmd_timeout(struct hci_dev *hdev)
{
struct hci_uart *hu = hci_get_drvdata(hdev);
struct qca_data *qca = hu->priv;
set_bit(QCA_SSR_TRIGGERED, &qca->flags);
if (qca->memdump_state == QCA_MEMDUMP_IDLE) {
set_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
qca_send_crashbuffer(hu);
qca_wait_for_dump_collection(hdev);
} else if (qca->memdump_state == QCA_MEMDUMP_COLLECTING) {
/* Let us wait here until memory dump collected or
* memory dump timer expired.
*/
bt_dev_info(hdev, "waiting for dump to complete");
qca_wait_for_dump_collection(hdev);
}
mutex_lock(&qca->hci_memdump_lock);
if (qca->memdump_state != QCA_MEMDUMP_COLLECTED) {
qca->memdump_state = QCA_MEMDUMP_TIMEOUT;
if (!test_bit(QCA_HW_ERROR_EVENT, &qca->flags)) {
/* Inject hw error event to reset the device
* and driver.
*/
hci_reset_dev(hu->hdev);
}
}
mutex_unlock(&qca->hci_memdump_lock);
}
static int qca_wcn3990_init(struct hci_uart *hu)
{
struct qca_serdev *qcadev;
int ret;
/* Check for vregs status, may be hci down has turned
* off the voltage regulator.
*/
qcadev = serdev_device_get_drvdata(hu->serdev);
if (!qcadev->bt_power->vregs_on) {
serdev_device_close(hu->serdev);
ret = qca_regulator_enable(qcadev);
if (ret)
return ret;
ret = serdev_device_open(hu->serdev);
if (ret) {
bt_dev_err(hu->hdev, "failed to open port");
return ret;
}
}
/* Forcefully enable wcn3990 to enter in to boot mode. */
host_set_baudrate(hu, 2400);
ret = qca_send_power_pulse(hu, false);
if (ret)
return ret;
qca_set_speed(hu, QCA_INIT_SPEED);
ret = qca_send_power_pulse(hu, true);
if (ret)
return ret;
/* Now the device is in ready state to communicate with host.
* To sync host with device we need to reopen port.
* Without this, we will have RTS and CTS synchronization
* issues.
*/
serdev_device_close(hu->serdev);
ret = serdev_device_open(hu->serdev);
if (ret) {
bt_dev_err(hu->hdev, "failed to open port");
return ret;
}
hci_uart_set_flow_control(hu, false);
return 0;
}
static int qca_power_on(struct hci_dev *hdev)
{
struct hci_uart *hu = hci_get_drvdata(hdev);
enum qca_btsoc_type soc_type = qca_soc_type(hu);
struct qca_serdev *qcadev;
struct qca_data *qca = hu->priv;
int ret = 0;
/* Non-serdev device usually is powered by external power
* and don't need additional action in driver for power on
*/
if (!hu->serdev)
return 0;
if (qca_is_wcn399x(soc_type)) {
ret = qca_wcn3990_init(hu);
} else {
qcadev = serdev_device_get_drvdata(hu->serdev);
if (qcadev->bt_en) {
gpiod_set_value_cansleep(qcadev->bt_en, 1);
/* Controller needs time to bootup. */
msleep(150);
}
}
clear_bit(QCA_BT_OFF, &qca->flags);
return ret;
}
static int qca_setup(struct hci_uart *hu)
{
struct hci_dev *hdev = hu->hdev;
struct qca_data *qca = hu->priv;
unsigned int speed, qca_baudrate = QCA_BAUDRATE_115200;
unsigned int retries = 0;
enum qca_btsoc_type soc_type = qca_soc_type(hu);
const char *firmware_name = qca_get_firmware_name(hu);
int ret;
struct qca_btsoc_version ver;
ret = qca_check_speeds(hu);
if (ret)
return ret;
clear_bit(QCA_ROM_FW, &qca->flags);
/* Patch downloading has to be done without IBS mode */
set_bit(QCA_IBS_DISABLED, &qca->flags);
/* Enable controller to do both LE scan and BR/EDR inquiry
* simultaneously.
*/
set_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks);
bt_dev_info(hdev, "setting up %s",
qca_is_wcn399x(soc_type) ? "wcn399x" : "ROME/QCA6390");
qca->memdump_state = QCA_MEMDUMP_IDLE;
retry:
ret = qca_power_on(hdev);
if (ret)
goto out;
clear_bit(QCA_SSR_TRIGGERED, &qca->flags);
if (qca_is_wcn399x(soc_type)) {
set_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks);
ret = qca_read_soc_version(hdev, &ver, soc_type);
if (ret)
goto out;
} else {
qca_set_speed(hu, QCA_INIT_SPEED);
}
/* Setup user speed if needed */
speed = qca_get_speed(hu, QCA_OPER_SPEED);
if (speed) {
ret = qca_set_speed(hu, QCA_OPER_SPEED);
if (ret)
goto out;
qca_baudrate = qca_get_baudrate_value(speed);
}
if (!qca_is_wcn399x(soc_type)) {
/* Get QCA version information */
ret = qca_read_soc_version(hdev, &ver, soc_type);
if (ret)
goto out;
}
/* Setup patch / NVM configurations */
ret = qca_uart_setup(hdev, qca_baudrate, soc_type, ver,
firmware_name);
if (!ret) {
clear_bit(QCA_IBS_DISABLED, &qca->flags);
qca_debugfs_init(hdev);
hu->hdev->hw_error = qca_hw_error;
hu->hdev->cmd_timeout = qca_cmd_timeout;
} else if (ret == -ENOENT) {
/* No patch/nvm-config found, run with original fw/config */
set_bit(QCA_ROM_FW, &qca->flags);
ret = 0;
} else if (ret == -EAGAIN) {
/*
* Userspace firmware loader will return -EAGAIN in case no
* patch/nvm-config is found, so run with original fw/config.
*/
set_bit(QCA_ROM_FW, &qca->flags);
ret = 0;
}
out:
if (ret && retries < MAX_INIT_RETRIES) {
bt_dev_warn(hdev, "Retry BT power ON:%d", retries);
qca_power_shutdown(hu);
if (hu->serdev) {
serdev_device_close(hu->serdev);
ret = serdev_device_open(hu->serdev);
if (ret) {
bt_dev_err(hdev, "failed to open port");
return ret;
}
}
retries++;
goto retry;
}
/* Setup bdaddr */
if (soc_type == QCA_ROME)
hu->hdev->set_bdaddr = qca_set_bdaddr_rome;
else
hu->hdev->set_bdaddr = qca_set_bdaddr;
return ret;
}
static const struct hci_uart_proto qca_proto = {
.id = HCI_UART_QCA,
.name = "QCA",
.manufacturer = 29,
.init_speed = 115200,
.oper_speed = 3000000,
.open = qca_open,
.close = qca_close,
.flush = qca_flush,
.setup = qca_setup,
.recv = qca_recv,
.enqueue = qca_enqueue,
.dequeue = qca_dequeue,
};
static const struct qca_device_data qca_soc_data_wcn3990 = {
.soc_type = QCA_WCN3990,
.vregs = (struct qca_vreg []) {
{ "vddio", 15000 },
{ "vddxo", 80000 },
{ "vddrf", 300000 },
{ "vddch0", 450000 },
},
.num_vregs = 4,
};
static const struct qca_device_data qca_soc_data_wcn3991 = {
.soc_type = QCA_WCN3991,
.vregs = (struct qca_vreg []) {
{ "vddio", 15000 },
{ "vddxo", 80000 },
{ "vddrf", 300000 },
{ "vddch0", 450000 },
},
.num_vregs = 4,
.capabilities = QCA_CAP_WIDEBAND_SPEECH | QCA_CAP_VALID_LE_STATES,
};
static const struct qca_device_data qca_soc_data_wcn3998 = {
.soc_type = QCA_WCN3998,
.vregs = (struct qca_vreg []) {
{ "vddio", 10000 },
{ "vddxo", 80000 },
{ "vddrf", 300000 },
{ "vddch0", 450000 },
},
.num_vregs = 4,
};
static const struct qca_device_data qca_soc_data_qca6390 = {
.soc_type = QCA_QCA6390,
.num_vregs = 0,
};
static void qca_power_shutdown(struct hci_uart *hu)
{
struct qca_serdev *qcadev;
struct qca_data *qca = hu->priv;
unsigned long flags;
enum qca_btsoc_type soc_type = qca_soc_type(hu);
qcadev = serdev_device_get_drvdata(hu->serdev);
/* From this point we go into power off state. But serial port is
* still open, stop queueing the IBS data and flush all the buffered
* data in skb's.
*/
spin_lock_irqsave(&qca->hci_ibs_lock, flags);
set_bit(QCA_IBS_DISABLED, &qca->flags);
qca_flush(hu);
spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
/* Non-serdev device usually is powered by external power
* and don't need additional action in driver for power down
*/
if (!hu->serdev)
return;
if (qca_is_wcn399x(soc_type)) {
host_set_baudrate(hu, 2400);
qca_send_power_pulse(hu, false);
qca_regulator_disable(qcadev);
} else if (qcadev->bt_en) {
gpiod_set_value_cansleep(qcadev->bt_en, 0);
}
set_bit(QCA_BT_OFF, &qca->flags);
}
static int qca_power_off(struct hci_dev *hdev)
{
struct hci_uart *hu = hci_get_drvdata(hdev);
struct qca_data *qca = hu->priv;
enum qca_btsoc_type soc_type = qca_soc_type(hu);
hu->hdev->hw_error = NULL;
hu->hdev->cmd_timeout = NULL;
/* Stop sending shutdown command if soc crashes. */
if (soc_type != QCA_ROME
&& qca->memdump_state == QCA_MEMDUMP_IDLE) {
qca_send_pre_shutdown_cmd(hdev);
usleep_range(8000, 10000);
}
qca_power_shutdown(hu);
return 0;
}
static int qca_regulator_enable(struct qca_serdev *qcadev)
{
struct qca_power *power = qcadev->bt_power;
int ret;
/* Already enabled */
if (power->vregs_on)
return 0;
BT_DBG("enabling %d regulators)", power->num_vregs);
ret = regulator_bulk_enable(power->num_vregs, power->vreg_bulk);
if (ret)
return ret;
power->vregs_on = true;
ret = clk_prepare_enable(qcadev->susclk);
if (ret)
qca_regulator_disable(qcadev);
return ret;
}
static void qca_regulator_disable(struct qca_serdev *qcadev)
{
struct qca_power *power;
if (!qcadev)
return;
power = qcadev->bt_power;
/* Already disabled? */
if (!power->vregs_on)
return;
regulator_bulk_disable(power->num_vregs, power->vreg_bulk);
power->vregs_on = false;
clk_disable_unprepare(qcadev->susclk);
}
static int qca_init_regulators(struct qca_power *qca,
const struct qca_vreg *vregs, size_t num_vregs)
{
struct regulator_bulk_data *bulk;
int ret;
int i;
bulk = devm_kcalloc(qca->dev, num_vregs, sizeof(*bulk), GFP_KERNEL);
if (!bulk)
return -ENOMEM;
for (i = 0; i < num_vregs; i++)
bulk[i].supply = vregs[i].name;
ret = devm_regulator_bulk_get(qca->dev, num_vregs, bulk);
if (ret < 0)
return ret;
for (i = 0; i < num_vregs; i++) {
ret = regulator_set_load(bulk[i].consumer, vregs[i].load_uA);
if (ret)
return ret;
}
qca->vreg_bulk = bulk;
qca->num_vregs = num_vregs;
return 0;
}
static int qca_serdev_probe(struct serdev_device *serdev)
{
struct qca_serdev *qcadev;
struct hci_dev *hdev;
const struct qca_device_data *data;
int err;
bool power_ctrl_enabled = true;
qcadev = devm_kzalloc(&serdev->dev, sizeof(*qcadev), GFP_KERNEL);
if (!qcadev)
return -ENOMEM;
qcadev->serdev_hu.serdev = serdev;
data = device_get_match_data(&serdev->dev);
serdev_device_set_drvdata(serdev, qcadev);
device_property_read_string(&serdev->dev, "firmware-name",
&qcadev->firmware_name);
device_property_read_u32(&serdev->dev, "max-speed",
&qcadev->oper_speed);
if (!qcadev->oper_speed)
BT_DBG("UART will pick default operating speed");
if (data && qca_is_wcn399x(data->soc_type)) {
qcadev->btsoc_type = data->soc_type;
qcadev->bt_power = devm_kzalloc(&serdev->dev,
sizeof(struct qca_power),
GFP_KERNEL);
if (!qcadev->bt_power)
return -ENOMEM;
qcadev->bt_power->dev = &serdev->dev;
err = qca_init_regulators(qcadev->bt_power, data->vregs,
data->num_vregs);
if (err) {
BT_ERR("Failed to init regulators:%d", err);
return err;
}
qcadev->bt_power->vregs_on = false;
qcadev->susclk = devm_clk_get_optional(&serdev->dev, NULL);
if (IS_ERR(qcadev->susclk)) {
dev_err(&serdev->dev, "failed to acquire clk\n");
return PTR_ERR(qcadev->susclk);
}
err = hci_uart_register_device(&qcadev->serdev_hu, &qca_proto);
if (err) {
BT_ERR("wcn3990 serdev registration failed");
return err;
}
} else {
if (data)
qcadev->btsoc_type = data->soc_type;
else
qcadev->btsoc_type = QCA_ROME;
qcadev->bt_en = devm_gpiod_get_optional(&serdev->dev, "enable",
GPIOD_OUT_LOW);
if (!qcadev->bt_en) {
dev_warn(&serdev->dev, "failed to acquire enable gpio\n");
power_ctrl_enabled = false;
}
qcadev->susclk = devm_clk_get_optional(&serdev->dev, NULL);
if (IS_ERR(qcadev->susclk)) {
dev_warn(&serdev->dev, "failed to acquire clk\n");
return PTR_ERR(qcadev->susclk);
}
err = clk_set_rate(qcadev->susclk, SUSCLK_RATE_32KHZ);
if (err)
return err;
err = clk_prepare_enable(qcadev->susclk);
if (err)
return err;
err = hci_uart_register_device(&qcadev->serdev_hu, &qca_proto);
if (err) {
BT_ERR("Rome serdev registration failed");
clk_disable_unprepare(qcadev->susclk);
return err;
}
}
hdev = qcadev->serdev_hu.hdev;
if (power_ctrl_enabled) {
set_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks);
hdev->shutdown = qca_power_off;
}
if (data) {
/* Wideband speech support must be set per driver since it can't
* be queried via hci. Same with the valid le states quirk.
*/
if (data->capabilities & QCA_CAP_WIDEBAND_SPEECH)
set_bit(HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED,
&hdev->quirks);
if (data->capabilities & QCA_CAP_VALID_LE_STATES)
set_bit(HCI_QUIRK_VALID_LE_STATES, &hdev->quirks);
}
return 0;
}
static void qca_serdev_remove(struct serdev_device *serdev)
{
struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev);
struct qca_power *power = qcadev->bt_power;
if (qca_is_wcn399x(qcadev->btsoc_type) && power->vregs_on)
qca_power_shutdown(&qcadev->serdev_hu);
else if (qcadev->susclk)
clk_disable_unprepare(qcadev->susclk);
hci_uart_unregister_device(&qcadev->serdev_hu);
}
static void qca_serdev_shutdown(struct device *dev)
{
int ret;
int timeout = msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS);
struct serdev_device *serdev = to_serdev_device(dev);
struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev);
const u8 ibs_wake_cmd[] = { 0xFD };
const u8 edl_reset_soc_cmd[] = { 0x01, 0x00, 0xFC, 0x01, 0x05 };
if (qcadev->btsoc_type == QCA_QCA6390) {
serdev_device_write_flush(serdev);
ret = serdev_device_write_buf(serdev, ibs_wake_cmd,
sizeof(ibs_wake_cmd));
if (ret < 0) {
BT_ERR("QCA send IBS_WAKE_IND error: %d", ret);
return;
}
serdev_device_wait_until_sent(serdev, timeout);
usleep_range(8000, 10000);
serdev_device_write_flush(serdev);
ret = serdev_device_write_buf(serdev, edl_reset_soc_cmd,
sizeof(edl_reset_soc_cmd));
if (ret < 0) {
BT_ERR("QCA send EDL_RESET_REQ error: %d", ret);
return;
}
serdev_device_wait_until_sent(serdev, timeout);
usleep_range(8000, 10000);
}
}
static int __maybe_unused qca_suspend(struct device *dev)
{
struct serdev_device *serdev = to_serdev_device(dev);
struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev);
struct hci_uart *hu = &qcadev->serdev_hu;
struct qca_data *qca = hu->priv;
unsigned long flags;
bool tx_pending = false;
int ret = 0;
u8 cmd;
u32 wait_timeout = 0;
set_bit(QCA_SUSPENDING, &qca->flags);
/* if BT SoC is running with default firmware then it does not
* support in-band sleep
*/
if (test_bit(QCA_ROM_FW, &qca->flags))
return 0;
/* During SSR after memory dump collection, controller will be
* powered off and then powered on.If controller is powered off
* during SSR then we should wait until SSR is completed.
*/
if (test_bit(QCA_BT_OFF, &qca->flags) &&
!test_bit(QCA_SSR_TRIGGERED, &qca->flags))
return 0;
if (test_bit(QCA_IBS_DISABLED, &qca->flags) ||
test_bit(QCA_SSR_TRIGGERED, &qca->flags)) {
wait_timeout = test_bit(QCA_SSR_TRIGGERED, &qca->flags) ?
IBS_DISABLE_SSR_TIMEOUT_MS :
FW_DOWNLOAD_TIMEOUT_MS;
/* QCA_IBS_DISABLED flag is set to true, During FW download
* and during memory dump collection. It is reset to false,
* After FW download complete.
*/
wait_on_bit_timeout(&qca->flags, QCA_IBS_DISABLED,
TASK_UNINTERRUPTIBLE, msecs_to_jiffies(wait_timeout));
if (test_bit(QCA_IBS_DISABLED, &qca->flags)) {
bt_dev_err(hu->hdev, "SSR or FW download time out");
ret = -ETIMEDOUT;
goto error;
}
}
cancel_work_sync(&qca->ws_awake_device);
cancel_work_sync(&qca->ws_awake_rx);
spin_lock_irqsave_nested(&qca->hci_ibs_lock,
flags, SINGLE_DEPTH_NESTING);
switch (qca->tx_ibs_state) {
case HCI_IBS_TX_WAKING:
del_timer(&qca->wake_retrans_timer);
fallthrough;
case HCI_IBS_TX_AWAKE:
del_timer(&qca->tx_idle_timer);
serdev_device_write_flush(hu->serdev);
cmd = HCI_IBS_SLEEP_IND;
ret = serdev_device_write_buf(hu->serdev, &cmd, sizeof(cmd));
if (ret < 0) {
BT_ERR("Failed to send SLEEP to device");
break;
}
qca->tx_ibs_state = HCI_IBS_TX_ASLEEP;
qca->ibs_sent_slps++;
tx_pending = true;
break;
case HCI_IBS_TX_ASLEEP:
break;
default:
BT_ERR("Spurious tx state %d", qca->tx_ibs_state);
ret = -EINVAL;
break;
}
spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
if (ret < 0)
goto error;
if (tx_pending) {
serdev_device_wait_until_sent(hu->serdev,
msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS));
serial_clock_vote(HCI_IBS_TX_VOTE_CLOCK_OFF, hu);
}
/* Wait for HCI_IBS_SLEEP_IND sent by device to indicate its Tx is going
* to sleep, so that the packet does not wake the system later.
*/
ret = wait_event_interruptible_timeout(qca->suspend_wait_q,
qca->rx_ibs_state == HCI_IBS_RX_ASLEEP,
msecs_to_jiffies(IBS_BTSOC_TX_IDLE_TIMEOUT_MS));
if (ret == 0) {
ret = -ETIMEDOUT;
goto error;
}
return 0;
error:
clear_bit(QCA_SUSPENDING, &qca->flags);
return ret;
}
static int __maybe_unused qca_resume(struct device *dev)
{
struct serdev_device *serdev = to_serdev_device(dev);
struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev);
struct hci_uart *hu = &qcadev->serdev_hu;
struct qca_data *qca = hu->priv;
clear_bit(QCA_SUSPENDING, &qca->flags);
return 0;
}
static SIMPLE_DEV_PM_OPS(qca_pm_ops, qca_suspend, qca_resume);
#ifdef CONFIG_OF
static const struct of_device_id qca_bluetooth_of_match[] = {
{ .compatible = "qcom,qca6174-bt" },
{ .compatible = "qcom,qca6390-bt", .data = &qca_soc_data_qca6390},
{ .compatible = "qcom,qca9377-bt" },
{ .compatible = "qcom,wcn3990-bt", .data = &qca_soc_data_wcn3990},
{ .compatible = "qcom,wcn3991-bt", .data = &qca_soc_data_wcn3991},
{ .compatible = "qcom,wcn3998-bt", .data = &qca_soc_data_wcn3998},
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, qca_bluetooth_of_match);
#endif
#ifdef CONFIG_ACPI
static const struct acpi_device_id qca_bluetooth_acpi_match[] = {
{ "QCOM6390", (kernel_ulong_t)&qca_soc_data_qca6390 },
{ "DLA16390", (kernel_ulong_t)&qca_soc_data_qca6390 },
{ "DLB16390", (kernel_ulong_t)&qca_soc_data_qca6390 },
{ "DLB26390", (kernel_ulong_t)&qca_soc_data_qca6390 },
{ },
};
MODULE_DEVICE_TABLE(acpi, qca_bluetooth_acpi_match);
#endif
static struct serdev_device_driver qca_serdev_driver = {
.probe = qca_serdev_probe,
.remove = qca_serdev_remove,
.driver = {
.name = "hci_uart_qca",
.of_match_table = of_match_ptr(qca_bluetooth_of_match),
.acpi_match_table = ACPI_PTR(qca_bluetooth_acpi_match),
.shutdown = qca_serdev_shutdown,
.pm = &qca_pm_ops,
},
};
int __init qca_init(void)
{
serdev_device_driver_register(&qca_serdev_driver);
return hci_uart_register_proto(&qca_proto);
}
int __exit qca_deinit(void)
{
serdev_device_driver_unregister(&qca_serdev_driver);
return hci_uart_unregister_proto(&qca_proto);
}