/*
* Bluetooth Software UART Qualcomm protocol
*
* HCI_IBS (HCI In-Band Sleep) is Qualcomm's power management
* protocol extension to H4.
*
* Copyright (C) 2007 Texas Instruments, Inc.
* Copyright (c) 2010, 2012, 2018 The Linux Foundation. All rights reserved.
*
* Acknowledgements:
* This file is based on hci_ll.c, which was...
* Written by Ohad Ben-Cohen <ohad@bencohen.org>
* which was in turn based on hci_h4.c, which was written
* by Maxim Krasnyansky and Marcel Holtmann.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2
* as published by the Free Software Foundation
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
#include <linux/kernel.h>
#include <linux/clk.h>
#include <linux/debugfs.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/gpio/consumer.h>
#include <linux/mod_devicetable.h>
#include <linux/module.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/regulator/consumer.h>
#include <linux/serdev.h>
#include <asm/unaligned.h>
#include <net/bluetooth/bluetooth.h>
#include <net/bluetooth/hci_core.h>
#include "hci_uart.h"
#include "btqca.h"
/* HCI_IBS protocol messages */
#define HCI_IBS_SLEEP_IND 0xFE
#define HCI_IBS_WAKE_IND 0xFD
#define HCI_IBS_WAKE_ACK 0xFC
#define HCI_MAX_IBS_SIZE 10
/* Controller states */
#define STATE_IN_BAND_SLEEP_ENABLED 1
#define IBS_WAKE_RETRANS_TIMEOUT_MS 100
#define IBS_TX_IDLE_TIMEOUT_MS 2000
#define BAUDRATE_SETTLE_TIMEOUT_MS 300
/* susclk rate */
#define SUSCLK_RATE_32KHZ 32768
/* Controller debug log header */
#define QCA_DEBUG_HANDLE 0x2EDC
/* HCI_IBS transmit side sleep protocol states */
enum tx_ibs_states {
HCI_IBS_TX_ASLEEP,
HCI_IBS_TX_WAKING,
HCI_IBS_TX_AWAKE,
};
/* HCI_IBS receive side sleep protocol states */
enum rx_states {
HCI_IBS_RX_ASLEEP,
HCI_IBS_RX_AWAKE,
};
/* HCI_IBS transmit and receive side clock state vote */
enum hci_ibs_clock_state_vote {
HCI_IBS_VOTE_STATS_UPDATE,
HCI_IBS_TX_VOTE_CLOCK_ON,
HCI_IBS_TX_VOTE_CLOCK_OFF,
HCI_IBS_RX_VOTE_CLOCK_ON,
HCI_IBS_RX_VOTE_CLOCK_OFF,
};
struct qca_data {
struct hci_uart *hu;
struct sk_buff *rx_skb;
struct sk_buff_head txq;
struct sk_buff_head tx_wait_q; /* HCI_IBS wait queue */
spinlock_t hci_ibs_lock; /* HCI_IBS state lock */
u8 tx_ibs_state; /* HCI_IBS transmit side power state*/
u8 rx_ibs_state; /* HCI_IBS receive side power state */
bool tx_vote; /* Clock must be on for TX */
bool rx_vote; /* Clock must be on for RX */
struct timer_list tx_idle_timer;
u32 tx_idle_delay;
struct timer_list wake_retrans_timer;
u32 wake_retrans;
struct workqueue_struct *workqueue;
struct work_struct ws_awake_rx;
struct work_struct ws_awake_device;
struct work_struct ws_rx_vote_off;
struct work_struct ws_tx_vote_off;
unsigned long flags;
/* For debugging purpose */
u64 ibs_sent_wacks;
u64 ibs_sent_slps;
u64 ibs_sent_wakes;
u64 ibs_recv_wacks;
u64 ibs_recv_slps;
u64 ibs_recv_wakes;
u64 vote_last_jif;
u32 vote_on_ms;
u32 vote_off_ms;
u64 tx_votes_on;
u64 rx_votes_on;
u64 tx_votes_off;
u64 rx_votes_off;
u64 votes_on;
u64 votes_off;
};
enum qca_speed_type {
QCA_INIT_SPEED = 1,
QCA_OPER_SPEED
};
/*
* Voltage regulator information required for configuring the
* QCA Bluetooth chipset
*/
struct qca_vreg {
const char *name;
unsigned int min_uV;
unsigned int max_uV;
unsigned int load_uA;
};
struct qca_vreg_data {
enum qca_btsoc_type soc_type;
struct qca_vreg *vregs;
size_t num_vregs;
};
/*
* Platform data for the QCA Bluetooth power driver.
*/
struct qca_power {
struct device *dev;
const struct qca_vreg_data *vreg_data;
struct regulator_bulk_data *vreg_bulk;
bool vregs_on;
};
struct qca_serdev {
struct hci_uart serdev_hu;
struct gpio_desc *bt_en;
struct clk *susclk;
enum qca_btsoc_type btsoc_type;
struct qca_power *bt_power;
u32 init_speed;
u32 oper_speed;
};
static int qca_power_setup(struct hci_uart *hu, bool on);
static void qca_power_shutdown(struct hci_uart *hu);
static int qca_power_off(struct hci_dev *hdev);
static void __serial_clock_on(struct tty_struct *tty)
{
/* TODO: Some chipset requires to enable UART clock on client
* side to save power consumption or manual work is required.
* Please put your code to control UART clock here if needed
*/
}
static void __serial_clock_off(struct tty_struct *tty)
{
/* TODO: Some chipset requires to disable UART clock on client
* side to save power consumption or manual work is required.
* Please put your code to control UART clock off here if needed
*/
}
/* serial_clock_vote needs to be called with the ibs lock held */
static void serial_clock_vote(unsigned long vote, struct hci_uart *hu)
{
struct qca_data *qca = hu->priv;
unsigned int diff;
bool old_vote = (qca->tx_vote | qca->rx_vote);
bool new_vote;
switch (vote) {
case HCI_IBS_VOTE_STATS_UPDATE:
diff = jiffies_to_msecs(jiffies - qca->vote_last_jif);
if (old_vote)
qca->vote_off_ms += diff;
else
qca->vote_on_ms += diff;
return;
case HCI_IBS_TX_VOTE_CLOCK_ON:
qca->tx_vote = true;
qca->tx_votes_on++;
new_vote = true;
break;
case HCI_IBS_RX_VOTE_CLOCK_ON:
qca->rx_vote = true;
qca->rx_votes_on++;
new_vote = true;
break;
case HCI_IBS_TX_VOTE_CLOCK_OFF:
qca->tx_vote = false;
qca->tx_votes_off++;
new_vote = qca->rx_vote | qca->tx_vote;
break;
case HCI_IBS_RX_VOTE_CLOCK_OFF:
qca->rx_vote = false;
qca->rx_votes_off++;
new_vote = qca->rx_vote | qca->tx_vote;
break;
default:
BT_ERR("Voting irregularity");
return;
}
if (new_vote != old_vote) {
if (new_vote)
__serial_clock_on(hu->tty);
else
__serial_clock_off(hu->tty);
BT_DBG("Vote serial clock %s(%s)", new_vote ? "true" : "false",
vote ? "true" : "false");
diff = jiffies_to_msecs(jiffies - qca->vote_last_jif);
if (new_vote) {
qca->votes_on++;
qca->vote_off_ms += diff;
} else {
qca->votes_off++;
qca->vote_on_ms += diff;
}
qca->vote_last_jif = jiffies;
}
}
/* Builds and sends an HCI_IBS command packet.
* These are very simple packets with only 1 cmd byte.
*/
static int send_hci_ibs_cmd(u8 cmd, struct hci_uart *hu)
{
int err = 0;
struct sk_buff *skb = NULL;
struct qca_data *qca = hu->priv;
BT_DBG("hu %p send hci ibs cmd 0x%x", hu, cmd);
skb = bt_skb_alloc(1, GFP_ATOMIC);
if (!skb) {
BT_ERR("Failed to allocate memory for HCI_IBS packet");
return -ENOMEM;
}
/* Assign HCI_IBS type */
skb_put_u8(skb, cmd);
skb_queue_tail(&qca->txq, skb);
return err;
}
static void qca_wq_awake_device(struct work_struct *work)
{
struct qca_data *qca = container_of(work, struct qca_data,
ws_awake_device);
struct hci_uart *hu = qca->hu;
unsigned long retrans_delay;
BT_DBG("hu %p wq awake device", hu);
/* Vote for serial clock */
serial_clock_vote(HCI_IBS_TX_VOTE_CLOCK_ON, hu);
spin_lock(&qca->hci_ibs_lock);
/* Send wake indication to device */
if (send_hci_ibs_cmd(HCI_IBS_WAKE_IND, hu) < 0)
BT_ERR("Failed to send WAKE to device");
qca->ibs_sent_wakes++;
/* Start retransmit timer */
retrans_delay = msecs_to_jiffies(qca->wake_retrans);
mod_timer(&qca->wake_retrans_timer, jiffies + retrans_delay);
spin_unlock(&qca->hci_ibs_lock);
/* Actually send the packets */
hci_uart_tx_wakeup(hu);
}
static void qca_wq_awake_rx(struct work_struct *work)
{
struct qca_data *qca = container_of(work, struct qca_data,
ws_awake_rx);
struct hci_uart *hu = qca->hu;
BT_DBG("hu %p wq awake rx", hu);
serial_clock_vote(HCI_IBS_RX_VOTE_CLOCK_ON, hu);
spin_lock(&qca->hci_ibs_lock);
qca->rx_ibs_state = HCI_IBS_RX_AWAKE;
/* Always acknowledge device wake up,
* sending IBS message doesn't count as TX ON.
*/
if (send_hci_ibs_cmd(HCI_IBS_WAKE_ACK, hu) < 0)
BT_ERR("Failed to acknowledge device wake up");
qca->ibs_sent_wacks++;
spin_unlock(&qca->hci_ibs_lock);
/* Actually send the packets */
hci_uart_tx_wakeup(hu);
}
static void qca_wq_serial_rx_clock_vote_off(struct work_struct *work)
{
struct qca_data *qca = container_of(work, struct qca_data,
ws_rx_vote_off);
struct hci_uart *hu = qca->hu;
BT_DBG("hu %p rx clock vote off", hu);
serial_clock_vote(HCI_IBS_RX_VOTE_CLOCK_OFF, hu);
}
static void qca_wq_serial_tx_clock_vote_off(struct work_struct *work)
{
struct qca_data *qca = container_of(work, struct qca_data,
ws_tx_vote_off);
struct hci_uart *hu = qca->hu;
BT_DBG("hu %p tx clock vote off", hu);
/* Run HCI tx handling unlocked */
hci_uart_tx_wakeup(hu);
/* Now that message queued to tty driver, vote for tty clocks off.
* It is up to the tty driver to pend the clocks off until tx done.
*/
serial_clock_vote(HCI_IBS_TX_VOTE_CLOCK_OFF, hu);
}
static void hci_ibs_tx_idle_timeout(struct timer_list *t)
{
struct qca_data *qca = from_timer(qca, t, tx_idle_timer);
struct hci_uart *hu = qca->hu;
unsigned long flags;
BT_DBG("hu %p idle timeout in %d state", hu, qca->tx_ibs_state);
spin_lock_irqsave_nested(&qca->hci_ibs_lock,
flags, SINGLE_DEPTH_NESTING);
switch (qca->tx_ibs_state) {
case HCI_IBS_TX_AWAKE:
/* TX_IDLE, go to SLEEP */
if (send_hci_ibs_cmd(HCI_IBS_SLEEP_IND, hu) < 0) {
BT_ERR("Failed to send SLEEP to device");
break;
}
qca->tx_ibs_state = HCI_IBS_TX_ASLEEP;
qca->ibs_sent_slps++;
queue_work(qca->workqueue, &qca->ws_tx_vote_off);
break;
case HCI_IBS_TX_ASLEEP:
case HCI_IBS_TX_WAKING:
/* Fall through */
default:
BT_ERR("Spurious timeout tx state %d", qca->tx_ibs_state);
break;
}
spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
}
static void hci_ibs_wake_retrans_timeout(struct timer_list *t)
{
struct qca_data *qca = from_timer(qca, t, wake_retrans_timer);
struct hci_uart *hu = qca->hu;
unsigned long flags, retrans_delay;
bool retransmit = false;
BT_DBG("hu %p wake retransmit timeout in %d state",
hu, qca->tx_ibs_state);
spin_lock_irqsave_nested(&qca->hci_ibs_lock,
flags, SINGLE_DEPTH_NESTING);
switch (qca->tx_ibs_state) {
case HCI_IBS_TX_WAKING:
/* No WAKE_ACK, retransmit WAKE */
retransmit = true;
if (send_hci_ibs_cmd(HCI_IBS_WAKE_IND, hu) < 0) {
BT_ERR("Failed to acknowledge device wake up");
break;
}
qca->ibs_sent_wakes++;
retrans_delay = msecs_to_jiffies(qca->wake_retrans);
mod_timer(&qca->wake_retrans_timer, jiffies + retrans_delay);
break;
case HCI_IBS_TX_ASLEEP:
case HCI_IBS_TX_AWAKE:
/* Fall through */
default:
BT_ERR("Spurious timeout tx state %d", qca->tx_ibs_state);
break;
}
spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
if (retransmit)
hci_uart_tx_wakeup(hu);
}
/* Initialize protocol */
static int qca_open(struct hci_uart *hu)
{
struct qca_serdev *qcadev;
struct qca_data *qca;
int ret;
BT_DBG("hu %p qca_open", hu);
qca = kzalloc(sizeof(struct qca_data), GFP_KERNEL);
if (!qca)
return -ENOMEM;
skb_queue_head_init(&qca->txq);
skb_queue_head_init(&qca->tx_wait_q);
spin_lock_init(&qca->hci_ibs_lock);
qca->workqueue = alloc_ordered_workqueue("qca_wq", 0);
if (!qca->workqueue) {
BT_ERR("QCA Workqueue not initialized properly");
kfree(qca);
return -ENOMEM;
}
INIT_WORK(&qca->ws_awake_rx, qca_wq_awake_rx);
INIT_WORK(&qca->ws_awake_device, qca_wq_awake_device);
INIT_WORK(&qca->ws_rx_vote_off, qca_wq_serial_rx_clock_vote_off);
INIT_WORK(&qca->ws_tx_vote_off, qca_wq_serial_tx_clock_vote_off);
qca->hu = hu;
/* Assume we start with both sides asleep -- extra wakes OK */
qca->tx_ibs_state = HCI_IBS_TX_ASLEEP;
qca->rx_ibs_state = HCI_IBS_RX_ASLEEP;
/* clocks actually on, but we start votes off */
qca->tx_vote = false;
qca->rx_vote = false;
qca->flags = 0;
qca->ibs_sent_wacks = 0;
qca->ibs_sent_slps = 0;
qca->ibs_sent_wakes = 0;
qca->ibs_recv_wacks = 0;
qca->ibs_recv_slps = 0;
qca->ibs_recv_wakes = 0;
qca->vote_last_jif = jiffies;
qca->vote_on_ms = 0;
qca->vote_off_ms = 0;
qca->votes_on = 0;
qca->votes_off = 0;
qca->tx_votes_on = 0;
qca->tx_votes_off = 0;
qca->rx_votes_on = 0;
qca->rx_votes_off = 0;
hu->priv = qca;
if (hu->serdev) {
qcadev = serdev_device_get_drvdata(hu->serdev);
if (qcadev->btsoc_type != QCA_WCN3990) {
gpiod_set_value_cansleep(qcadev->bt_en, 1);
} else {
hu->init_speed = qcadev->init_speed;
hu->oper_speed = qcadev->oper_speed;
ret = qca_power_setup(hu, true);
if (ret) {
destroy_workqueue(qca->workqueue);
kfree_skb(qca->rx_skb);
hu->priv = NULL;
kfree(qca);
return ret;
}
}
}
timer_setup(&qca->wake_retrans_timer, hci_ibs_wake_retrans_timeout, 0);
qca->wake_retrans = IBS_WAKE_RETRANS_TIMEOUT_MS;
timer_setup(&qca->tx_idle_timer, hci_ibs_tx_idle_timeout, 0);
qca->tx_idle_delay = IBS_TX_IDLE_TIMEOUT_MS;
BT_DBG("HCI_UART_QCA open, tx_idle_delay=%u, wake_retrans=%u",
qca->tx_idle_delay, qca->wake_retrans);
return 0;
}
static void qca_debugfs_init(struct hci_dev *hdev)
{
struct hci_uart *hu = hci_get_drvdata(hdev);
struct qca_data *qca = hu->priv;
struct dentry *ibs_dir;
umode_t mode;
if (!hdev->debugfs)
return;
ibs_dir = debugfs_create_dir("ibs", hdev->debugfs);
/* read only */
mode = S_IRUGO;
debugfs_create_u8("tx_ibs_state", mode, ibs_dir, &qca->tx_ibs_state);
debugfs_create_u8("rx_ibs_state", mode, ibs_dir, &qca->rx_ibs_state);
debugfs_create_u64("ibs_sent_sleeps", mode, ibs_dir,
&qca->ibs_sent_slps);
debugfs_create_u64("ibs_sent_wakes", mode, ibs_dir,
&qca->ibs_sent_wakes);
debugfs_create_u64("ibs_sent_wake_acks", mode, ibs_dir,
&qca->ibs_sent_wacks);
debugfs_create_u64("ibs_recv_sleeps", mode, ibs_dir,
&qca->ibs_recv_slps);
debugfs_create_u64("ibs_recv_wakes", mode, ibs_dir,
&qca->ibs_recv_wakes);
debugfs_create_u64("ibs_recv_wake_acks", mode, ibs_dir,
&qca->ibs_recv_wacks);
debugfs_create_bool("tx_vote", mode, ibs_dir, &qca->tx_vote);
debugfs_create_u64("tx_votes_on", mode, ibs_dir, &qca->tx_votes_on);
debugfs_create_u64("tx_votes_off", mode, ibs_dir, &qca->tx_votes_off);
debugfs_create_bool("rx_vote", mode, ibs_dir, &qca->rx_vote);
debugfs_create_u64("rx_votes_on", mode, ibs_dir, &qca->rx_votes_on);
debugfs_create_u64("rx_votes_off", mode, ibs_dir, &qca->rx_votes_off);
debugfs_create_u64("votes_on", mode, ibs_dir, &qca->votes_on);
debugfs_create_u64("votes_off", mode, ibs_dir, &qca->votes_off);
debugfs_create_u32("vote_on_ms", mode, ibs_dir, &qca->vote_on_ms);
debugfs_create_u32("vote_off_ms", mode, ibs_dir, &qca->vote_off_ms);
/* read/write */
mode = S_IRUGO | S_IWUSR;
debugfs_create_u32("wake_retrans", mode, ibs_dir, &qca->wake_retrans);
debugfs_create_u32("tx_idle_delay", mode, ibs_dir,
&qca->tx_idle_delay);
}
/* Flush protocol data */
static int qca_flush(struct hci_uart *hu)
{
struct qca_data *qca = hu->priv;
BT_DBG("hu %p qca flush", hu);
skb_queue_purge(&qca->tx_wait_q);
skb_queue_purge(&qca->txq);
return 0;
}
/* Close protocol */
static int qca_close(struct hci_uart *hu)
{
struct qca_serdev *qcadev;
struct qca_data *qca = hu->priv;
BT_DBG("hu %p qca close", hu);
serial_clock_vote(HCI_IBS_VOTE_STATS_UPDATE, hu);
skb_queue_purge(&qca->tx_wait_q);
skb_queue_purge(&qca->txq);
del_timer(&qca->tx_idle_timer);
del_timer(&qca->wake_retrans_timer);
destroy_workqueue(qca->workqueue);
qca->hu = NULL;
if (hu->serdev) {
qcadev = serdev_device_get_drvdata(hu->serdev);
if (qcadev->btsoc_type == QCA_WCN3990)
qca_power_shutdown(hu);
else
gpiod_set_value_cansleep(qcadev->bt_en, 0);
}
kfree_skb(qca->rx_skb);
hu->priv = NULL;
kfree(qca);
return 0;
}
/* Called upon a wake-up-indication from the device.
*/
static void device_want_to_wakeup(struct hci_uart *hu)
{
unsigned long flags;
struct qca_data *qca = hu->priv;
BT_DBG("hu %p want to wake up", hu);
spin_lock_irqsave(&qca->hci_ibs_lock, flags);
qca->ibs_recv_wakes++;
switch (qca->rx_ibs_state) {
case HCI_IBS_RX_ASLEEP:
/* Make sure clock is on - we may have turned clock off since
* receiving the wake up indicator awake rx clock.
*/
queue_work(qca->workqueue, &qca->ws_awake_rx);
spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
return;
case HCI_IBS_RX_AWAKE:
/* Always acknowledge device wake up,
* sending IBS message doesn't count as TX ON.
*/
if (send_hci_ibs_cmd(HCI_IBS_WAKE_ACK, hu) < 0) {
BT_ERR("Failed to acknowledge device wake up");
break;
}
qca->ibs_sent_wacks++;
break;
default:
/* Any other state is illegal */
BT_ERR("Received HCI_IBS_WAKE_IND in rx state %d",
qca->rx_ibs_state);
break;
}
spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
/* Actually send the packets */
hci_uart_tx_wakeup(hu);
}
/* Called upon a sleep-indication from the device.
*/
static void device_want_to_sleep(struct hci_uart *hu)
{
unsigned long flags;
struct qca_data *qca = hu->priv;
BT_DBG("hu %p want to sleep", hu);
spin_lock_irqsave(&qca->hci_ibs_lock, flags);
qca->ibs_recv_slps++;
switch (qca->rx_ibs_state) {
case HCI_IBS_RX_AWAKE:
/* Update state */
qca->rx_ibs_state = HCI_IBS_RX_ASLEEP;
/* Vote off rx clock under workqueue */
queue_work(qca->workqueue, &qca->ws_rx_vote_off);
break;
case HCI_IBS_RX_ASLEEP:
/* Fall through */
default:
/* Any other state is illegal */
BT_ERR("Received HCI_IBS_SLEEP_IND in rx state %d",
qca->rx_ibs_state);
break;
}
spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
}
/* Called upon wake-up-acknowledgement from the device
*/
static void device_woke_up(struct hci_uart *hu)
{
unsigned long flags, idle_delay;
struct qca_data *qca = hu->priv;
struct sk_buff *skb = NULL;
BT_DBG("hu %p woke up", hu);
spin_lock_irqsave(&qca->hci_ibs_lock, flags);
qca->ibs_recv_wacks++;
switch (qca->tx_ibs_state) {
case HCI_IBS_TX_AWAKE:
/* Expect one if we send 2 WAKEs */
BT_DBG("Received HCI_IBS_WAKE_ACK in tx state %d",
qca->tx_ibs_state);
break;
case HCI_IBS_TX_WAKING:
/* Send pending packets */
while ((skb = skb_dequeue(&qca->tx_wait_q)))
skb_queue_tail(&qca->txq, skb);
/* Switch timers and change state to HCI_IBS_TX_AWAKE */
del_timer(&qca->wake_retrans_timer);
idle_delay = msecs_to_jiffies(qca->tx_idle_delay);
mod_timer(&qca->tx_idle_timer, jiffies + idle_delay);
qca->tx_ibs_state = HCI_IBS_TX_AWAKE;
break;
case HCI_IBS_TX_ASLEEP:
/* Fall through */
default:
BT_ERR("Received HCI_IBS_WAKE_ACK in tx state %d",
qca->tx_ibs_state);
break;
}
spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
/* Actually send the packets */
hci_uart_tx_wakeup(hu);
}
/* Enqueue frame for transmittion (padding, crc, etc) may be called from
* two simultaneous tasklets.
*/
static int qca_enqueue(struct hci_uart *hu, struct sk_buff *skb)
{
unsigned long flags = 0, idle_delay;
struct qca_data *qca = hu->priv;
BT_DBG("hu %p qca enq skb %p tx_ibs_state %d", hu, skb,
qca->tx_ibs_state);
/* Prepend skb with frame type */
memcpy(skb_push(skb, 1), &hci_skb_pkt_type(skb), 1);
/* Don't go to sleep in middle of patch download or
* Out-Of-Band(GPIOs control) sleep is selected.
*/
if (!test_bit(STATE_IN_BAND_SLEEP_ENABLED, &qca->flags)) {
skb_queue_tail(&qca->txq, skb);
return 0;
}
spin_lock_irqsave(&qca->hci_ibs_lock, flags);
/* Act according to current state */
switch (qca->tx_ibs_state) {
case HCI_IBS_TX_AWAKE:
BT_DBG("Device awake, sending normally");
skb_queue_tail(&qca->txq, skb);
idle_delay = msecs_to_jiffies(qca->tx_idle_delay);
mod_timer(&qca->tx_idle_timer, jiffies + idle_delay);
break;
case HCI_IBS_TX_ASLEEP:
BT_DBG("Device asleep, waking up and queueing packet");
/* Save packet for later */
skb_queue_tail(&qca->tx_wait_q, skb);
qca->tx_ibs_state = HCI_IBS_TX_WAKING;
/* Schedule a work queue to wake up device */
queue_work(qca->workqueue, &qca->ws_awake_device);
break;
case HCI_IBS_TX_WAKING:
BT_DBG("Device waking up, queueing packet");
/* Transient state; just keep packet for later */
skb_queue_tail(&qca->tx_wait_q, skb);
break;
default:
BT_ERR("Illegal tx state: %d (losing packet)",
qca->tx_ibs_state);
kfree_skb(skb);
break;
}
spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
return 0;
}
static int qca_ibs_sleep_ind(struct hci_dev *hdev, struct sk_buff *skb)
{
struct hci_uart *hu = hci_get_drvdata(hdev);
BT_DBG("hu %p recv hci ibs cmd 0x%x", hu, HCI_IBS_SLEEP_IND);
device_want_to_sleep(hu);
kfree_skb(skb);
return 0;
}
static int qca_ibs_wake_ind(struct hci_dev *hdev, struct sk_buff *skb)
{
struct hci_uart *hu = hci_get_drvdata(hdev);
BT_DBG("hu %p recv hci ibs cmd 0x%x", hu, HCI_IBS_WAKE_IND);
device_want_to_wakeup(hu);
kfree_skb(skb);
return 0;
}
static int qca_ibs_wake_ack(struct hci_dev *hdev, struct sk_buff *skb)
{
struct hci_uart *hu = hci_get_drvdata(hdev);
BT_DBG("hu %p recv hci ibs cmd 0x%x", hu, HCI_IBS_WAKE_ACK);
device_woke_up(hu);
kfree_skb(skb);
return 0;
}
static int qca_recv_acl_data(struct hci_dev *hdev, struct sk_buff *skb)
{
/* We receive debug logs from chip as an ACL packets.
* Instead of sending the data to ACL to decode the
* received data, we are pushing them to the above layers
* as a diagnostic packet.
*/
if (get_unaligned_le16(skb->data) == QCA_DEBUG_HANDLE)
return hci_recv_diag(hdev, skb);
return hci_recv_frame(hdev, skb);
}
#define QCA_IBS_SLEEP_IND_EVENT \
.type = HCI_IBS_SLEEP_IND, \
.hlen = 0, \
.loff = 0, \
.lsize = 0, \
.maxlen = HCI_MAX_IBS_SIZE
#define QCA_IBS_WAKE_IND_EVENT \
.type = HCI_IBS_WAKE_IND, \
.hlen = 0, \
.loff = 0, \
.lsize = 0, \
.maxlen = HCI_MAX_IBS_SIZE
#define QCA_IBS_WAKE_ACK_EVENT \
.type = HCI_IBS_WAKE_ACK, \
.hlen = 0, \
.loff = 0, \
.lsize = 0, \
.maxlen = HCI_MAX_IBS_SIZE
static const struct h4_recv_pkt qca_recv_pkts[] = {
{ H4_RECV_ACL, .recv = qca_recv_acl_data },
{ H4_RECV_SCO, .recv = hci_recv_frame },
{ H4_RECV_EVENT, .recv = hci_recv_frame },
{ QCA_IBS_WAKE_IND_EVENT, .recv = qca_ibs_wake_ind },
{ QCA_IBS_WAKE_ACK_EVENT, .recv = qca_ibs_wake_ack },
{ QCA_IBS_SLEEP_IND_EVENT, .recv = qca_ibs_sleep_ind },
};
static int qca_recv(struct hci_uart *hu, const void *data, int count)
{
struct qca_data *qca = hu->priv;
if (!test_bit(HCI_UART_REGISTERED, &hu->flags))
return -EUNATCH;
qca->rx_skb = h4_recv_buf(hu->hdev, qca->rx_skb, data, count,
qca_recv_pkts, ARRAY_SIZE(qca_recv_pkts));
if (IS_ERR(qca->rx_skb)) {
int err = PTR_ERR(qca->rx_skb);
bt_dev_err(hu->hdev, "Frame reassembly failed (%d)", err);
qca->rx_skb = NULL;
return err;
}
return count;
}
static struct sk_buff *qca_dequeue(struct hci_uart *hu)
{
struct qca_data *qca = hu->priv;
return skb_dequeue(&qca->txq);
}
static uint8_t qca_get_baudrate_value(int speed)
{
switch (speed) {
case 9600:
return QCA_BAUDRATE_9600;
case 19200:
return QCA_BAUDRATE_19200;
case 38400:
return QCA_BAUDRATE_38400;
case 57600:
return QCA_BAUDRATE_57600;
case 115200:
return QCA_BAUDRATE_115200;
case 230400:
return QCA_BAUDRATE_230400;
case 460800:
return QCA_BAUDRATE_460800;
case 500000:
return QCA_BAUDRATE_500000;
case 921600:
return QCA_BAUDRATE_921600;
case 1000000:
return QCA_BAUDRATE_1000000;
case 2000000:
return QCA_BAUDRATE_2000000;
case 3000000:
return QCA_BAUDRATE_3000000;
case 3200000:
return QCA_BAUDRATE_3200000;
case 3500000:
return QCA_BAUDRATE_3500000;
default:
return QCA_BAUDRATE_115200;
}
}
static int qca_set_baudrate(struct hci_dev *hdev, uint8_t baudrate)
{
struct hci_uart *hu = hci_get_drvdata(hdev);
struct qca_data *qca = hu->priv;
struct sk_buff *skb;
struct qca_serdev *qcadev;
u8 cmd[] = { 0x01, 0x48, 0xFC, 0x01, 0x00 };
if (baudrate > QCA_BAUDRATE_3200000)
return -EINVAL;
cmd[4] = baudrate;
skb = bt_skb_alloc(sizeof(cmd), GFP_KERNEL);
if (!skb) {
bt_dev_err(hdev, "Failed to allocate baudrate packet");
return -ENOMEM;
}
/* Disabling hardware flow control is mandatory while
* sending change baudrate request to wcn3990 SoC.
*/
qcadev = serdev_device_get_drvdata(hu->serdev);
if (qcadev->btsoc_type == QCA_WCN3990)
hci_uart_set_flow_control(hu, true);
/* Assign commands to change baudrate and packet type. */
skb_put_data(skb, cmd, sizeof(cmd));
hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
skb_queue_tail(&qca->txq, skb);
hci_uart_tx_wakeup(hu);
/* wait 300ms to change new baudrate on controller side
* controller will come back after they receive this HCI command
* then host can communicate with new baudrate to controller
*/
set_current_state(TASK_UNINTERRUPTIBLE);
schedule_timeout(msecs_to_jiffies(BAUDRATE_SETTLE_TIMEOUT_MS));
set_current_state(TASK_RUNNING);
if (qcadev->btsoc_type == QCA_WCN3990)
hci_uart_set_flow_control(hu, false);
return 0;
}
static inline void host_set_baudrate(struct hci_uart *hu, unsigned int speed)
{
if (hu->serdev)
serdev_device_set_baudrate(hu->serdev, speed);
else
hci_uart_set_baudrate(hu, speed);
}
static int qca_send_power_pulse(struct hci_dev *hdev, u8 cmd)
{
struct hci_uart *hu = hci_get_drvdata(hdev);
struct qca_data *qca = hu->priv;
struct sk_buff *skb;
/* These power pulses are single byte command which are sent
* at required baudrate to wcn3990. On wcn3990, we have an external
* circuit at Tx pin which decodes the pulse sent at specific baudrate.
* For example, wcn3990 supports RF COEX antenna for both Wi-Fi/BT
* and also we use the same power inputs to turn on and off for
* Wi-Fi/BT. Powering up the power sources will not enable BT, until
* we send a power on pulse at 115200 bps. This algorithm will help to
* save power. Disabling hardware flow control is mandatory while
* sending power pulses to SoC.
*/
bt_dev_dbg(hdev, "sending power pulse %02x to SoC", cmd);
skb = bt_skb_alloc(sizeof(cmd), GFP_KERNEL);
if (!skb)
return -ENOMEM;
hci_uart_set_flow_control(hu, true);
skb_put_u8(skb, cmd);
hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
skb_queue_tail(&qca->txq, skb);
hci_uart_tx_wakeup(hu);
/* Wait for 100 uS for SoC to settle down */
usleep_range(100, 200);
hci_uart_set_flow_control(hu, false);
return 0;
}
static unsigned int qca_get_speed(struct hci_uart *hu,
enum qca_speed_type speed_type)
{
unsigned int speed = 0;
if (speed_type == QCA_INIT_SPEED) {
if (hu->init_speed)
speed = hu->init_speed;
else if (hu->proto->init_speed)
speed = hu->proto->init_speed;
} else {
if (hu->oper_speed)
speed = hu->oper_speed;
else if (hu->proto->oper_speed)
speed = hu->proto->oper_speed;
}
return speed;
}
static int qca_check_speeds(struct hci_uart *hu)
{
struct qca_serdev *qcadev;
qcadev = serdev_device_get_drvdata(hu->serdev);
if (qcadev->btsoc_type == QCA_WCN3990) {
if (!qca_get_speed(hu, QCA_INIT_SPEED) &&
!qca_get_speed(hu, QCA_OPER_SPEED))
return -EINVAL;
} else {
if (!qca_get_speed(hu, QCA_INIT_SPEED) ||
!qca_get_speed(hu, QCA_OPER_SPEED))
return -EINVAL;
}
return 0;
}
static int qca_set_speed(struct hci_uart *hu, enum qca_speed_type speed_type)
{
unsigned int speed, qca_baudrate;
int ret;
if (speed_type == QCA_INIT_SPEED) {
speed = qca_get_speed(hu, QCA_INIT_SPEED);
if (speed)
host_set_baudrate(hu, speed);
} else {
speed = qca_get_speed(hu, QCA_OPER_SPEED);
if (!speed)
return 0;
qca_baudrate = qca_get_baudrate_value(speed);
bt_dev_dbg(hu->hdev, "Set UART speed to %d", speed);
ret = qca_set_baudrate(hu->hdev, qca_baudrate);
if (ret)
return ret;
host_set_baudrate(hu, speed);
}
return 0;
}
static int qca_wcn3990_init(struct hci_uart *hu)
{
struct hci_dev *hdev = hu->hdev;
struct qca_serdev *qcadev;
int ret;
/* Check for vregs status, may be hci down has turned
* off the voltage regulator.
*/
qcadev = serdev_device_get_drvdata(hu->serdev);
if (!qcadev->bt_power->vregs_on) {
serdev_device_close(hu->serdev);
ret = qca_power_setup(hu, true);
if (ret)
return ret;
ret = serdev_device_open(hu->serdev);
if (ret) {
bt_dev_err(hu->hdev, "failed to open port");
return ret;
}
}
/* Forcefully enable wcn3990 to enter in to boot mode. */
host_set_baudrate(hu, 2400);
ret = qca_send_power_pulse(hdev, QCA_WCN3990_POWEROFF_PULSE);
if (ret)
return ret;
qca_set_speed(hu, QCA_INIT_SPEED);
ret = qca_send_power_pulse(hdev, QCA_WCN3990_POWERON_PULSE);
if (ret)
return ret;
/* Wait for 100 ms for SoC to boot */
msleep(100);
/* Now the device is in ready state to communicate with host.
* To sync host with device we need to reopen port.
* Without this, we will have RTS and CTS synchronization
* issues.
*/
serdev_device_close(hu->serdev);
ret = serdev_device_open(hu->serdev);
if (ret) {
bt_dev_err(hu->hdev, "failed to open port");
return ret;
}
hci_uart_set_flow_control(hu, false);
return 0;
}
static int qca_setup(struct hci_uart *hu)
{
struct hci_dev *hdev = hu->hdev;
struct qca_data *qca = hu->priv;
unsigned int speed, qca_baudrate = QCA_BAUDRATE_115200;
struct qca_serdev *qcadev;
int ret;
int soc_ver = 0;
qcadev = serdev_device_get_drvdata(hu->serdev);
ret = qca_check_speeds(hu);
if (ret)
return ret;
/* Patch downloading has to be done without IBS mode */
clear_bit(STATE_IN_BAND_SLEEP_ENABLED, &qca->flags);
if (qcadev->btsoc_type == QCA_WCN3990) {
bt_dev_info(hdev, "setting up wcn3990");
/* Enable NON_PERSISTENT_SETUP QUIRK to ensure to execute
* setup for every hci up.
*/
set_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks);
hu->hdev->shutdown = qca_power_off;
ret = qca_wcn3990_init(hu);
if (ret)
return ret;
ret = qca_read_soc_version(hdev, &soc_ver);
if (ret)
return ret;
} else {
bt_dev_info(hdev, "ROME setup");
qca_set_speed(hu, QCA_INIT_SPEED);
}
/* Setup user speed if needed */
speed = qca_get_speed(hu, QCA_OPER_SPEED);
if (speed) {
ret = qca_set_speed(hu, QCA_OPER_SPEED);
if (ret)
return ret;
qca_baudrate = qca_get_baudrate_value(speed);
}
if (qcadev->btsoc_type != QCA_WCN3990) {
/* Get QCA version information */
ret = qca_read_soc_version(hdev, &soc_ver);
if (ret)
return ret;
}
bt_dev_info(hdev, "QCA controller version 0x%08x", soc_ver);
/* Setup patch / NVM configurations */
ret = qca_uart_setup(hdev, qca_baudrate, qcadev->btsoc_type, soc_ver);
if (!ret) {
set_bit(STATE_IN_BAND_SLEEP_ENABLED, &qca->flags);
qca_debugfs_init(hdev);
} else if (ret == -ENOENT) {
/* No patch/nvm-config found, run with original fw/config */
ret = 0;
} else if (ret == -EAGAIN) {
/*
* Userspace firmware loader will return -EAGAIN in case no
* patch/nvm-config is found, so run with original fw/config.
*/
ret = 0;
}
/* Setup bdaddr */
hu->hdev->set_bdaddr = qca_set_bdaddr_rome;
return ret;
}
static struct hci_uart_proto qca_proto = {
.id = HCI_UART_QCA,
.name = "QCA",
.manufacturer = 29,
.init_speed = 115200,
.oper_speed = 3000000,
.open = qca_open,
.close = qca_close,
.flush = qca_flush,
.setup = qca_setup,
.recv = qca_recv,
.enqueue = qca_enqueue,
.dequeue = qca_dequeue,
};
static const struct qca_vreg_data qca_soc_data = {
.soc_type = QCA_WCN3990,
.vregs = (struct qca_vreg []) {
{ "vddio", 1800000, 1900000, 15000 },
{ "vddxo", 1800000, 1900000, 80000 },
{ "vddrf", 1300000, 1350000, 300000 },
{ "vddch0", 3300000, 3400000, 450000 },
},
.num_vregs = 4,
};
static void qca_power_shutdown(struct hci_uart *hu)
{
struct serdev_device *serdev = hu->serdev;
unsigned char cmd = QCA_WCN3990_POWEROFF_PULSE;
host_set_baudrate(hu, 2400);
hci_uart_set_flow_control(hu, true);
serdev_device_write_buf(serdev, &cmd, sizeof(cmd));
hci_uart_set_flow_control(hu, false);
qca_power_setup(hu, false);
}
static int qca_power_off(struct hci_dev *hdev)
{
struct hci_uart *hu = hci_get_drvdata(hdev);
qca_power_shutdown(hu);
return 0;
}
static int qca_enable_regulator(struct qca_vreg vregs,
struct regulator *regulator)
{
int ret;
ret = regulator_set_voltage(regulator, vregs.min_uV,
vregs.max_uV);
if (ret)
return ret;
if (vregs.load_uA)
ret = regulator_set_load(regulator,
vregs.load_uA);
if (ret)
return ret;
return regulator_enable(regulator);
}
static void qca_disable_regulator(struct qca_vreg vregs,
struct regulator *regulator)
{
regulator_disable(regulator);
regulator_set_voltage(regulator, 0, vregs.max_uV);
if (vregs.load_uA)
regulator_set_load(regulator, 0);
}
static int qca_power_setup(struct hci_uart *hu, bool on)
{
struct qca_vreg *vregs;
struct regulator_bulk_data *vreg_bulk;
struct qca_serdev *qcadev;
int i, num_vregs, ret = 0;
qcadev = serdev_device_get_drvdata(hu->serdev);
if (!qcadev || !qcadev->bt_power || !qcadev->bt_power->vreg_data ||
!qcadev->bt_power->vreg_bulk)
return -EINVAL;
vregs = qcadev->bt_power->vreg_data->vregs;
vreg_bulk = qcadev->bt_power->vreg_bulk;
num_vregs = qcadev->bt_power->vreg_data->num_vregs;
BT_DBG("on: %d", on);
if (on && !qcadev->bt_power->vregs_on) {
for (i = 0; i < num_vregs; i++) {
ret = qca_enable_regulator(vregs[i],
vreg_bulk[i].consumer);
if (ret)
break;
}
if (ret) {
BT_ERR("failed to enable regulator:%s", vregs[i].name);
/* turn off regulators which are enabled */
for (i = i - 1; i >= 0; i--)
qca_disable_regulator(vregs[i],
vreg_bulk[i].consumer);
} else {
qcadev->bt_power->vregs_on = true;
}
} else if (!on && qcadev->bt_power->vregs_on) {
/* turn off regulator in reverse order */
i = qcadev->bt_power->vreg_data->num_vregs - 1;
for ( ; i >= 0; i--)
qca_disable_regulator(vregs[i], vreg_bulk[i].consumer);
qcadev->bt_power->vregs_on = false;
}
return ret;
}
static int qca_init_regulators(struct qca_power *qca,
const struct qca_vreg *vregs, size_t num_vregs)
{
int i;
qca->vreg_bulk = devm_kcalloc(qca->dev, num_vregs,
sizeof(struct regulator_bulk_data),
GFP_KERNEL);
if (!qca->vreg_bulk)
return -ENOMEM;
for (i = 0; i < num_vregs; i++)
qca->vreg_bulk[i].supply = vregs[i].name;
return devm_regulator_bulk_get(qca->dev, num_vregs, qca->vreg_bulk);
}
static int qca_serdev_probe(struct serdev_device *serdev)
{
struct qca_serdev *qcadev;
const struct qca_vreg_data *data;
int err;
qcadev = devm_kzalloc(&serdev->dev, sizeof(*qcadev), GFP_KERNEL);
if (!qcadev)
return -ENOMEM;
qcadev->serdev_hu.serdev = serdev;
data = of_device_get_match_data(&serdev->dev);
serdev_device_set_drvdata(serdev, qcadev);
if (data && data->soc_type == QCA_WCN3990) {
qcadev->btsoc_type = QCA_WCN3990;
qcadev->bt_power = devm_kzalloc(&serdev->dev,
sizeof(struct qca_power),
GFP_KERNEL);
if (!qcadev->bt_power)
return -ENOMEM;
qcadev->bt_power->dev = &serdev->dev;
qcadev->bt_power->vreg_data = data;
err = qca_init_regulators(qcadev->bt_power, data->vregs,
data->num_vregs);
if (err) {
BT_ERR("Failed to init regulators:%d", err);
goto out;
}
qcadev->bt_power->vregs_on = false;
device_property_read_u32(&serdev->dev, "max-speed",
&qcadev->oper_speed);
if (!qcadev->oper_speed)
BT_DBG("UART will pick default operating speed");
err = hci_uart_register_device(&qcadev->serdev_hu, &qca_proto);
if (err) {
BT_ERR("wcn3990 serdev registration failed");
goto out;
}
} else {
qcadev->btsoc_type = QCA_ROME;
qcadev->bt_en = devm_gpiod_get(&serdev->dev, "enable",
GPIOD_OUT_LOW);
if (IS_ERR(qcadev->bt_en)) {
dev_err(&serdev->dev, "failed to acquire enable gpio\n");
return PTR_ERR(qcadev->bt_en);
}
qcadev->susclk = devm_clk_get(&serdev->dev, NULL);
if (IS_ERR(qcadev->susclk)) {
dev_err(&serdev->dev, "failed to acquire clk\n");
return PTR_ERR(qcadev->susclk);
}
err = clk_set_rate(qcadev->susclk, SUSCLK_RATE_32KHZ);
if (err)
return err;
err = clk_prepare_enable(qcadev->susclk);
if (err)
return err;
err = hci_uart_register_device(&qcadev->serdev_hu, &qca_proto);
if (err)
clk_disable_unprepare(qcadev->susclk);
}
out: return err;
}
static void qca_serdev_remove(struct serdev_device *serdev)
{
struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev);
if (qcadev->btsoc_type == QCA_WCN3990)
qca_power_shutdown(&qcadev->serdev_hu);
else
clk_disable_unprepare(qcadev->susclk);
hci_uart_unregister_device(&qcadev->serdev_hu);
}
static const struct of_device_id qca_bluetooth_of_match[] = {
{ .compatible = "qcom,qca6174-bt" },
{ .compatible = "qcom,wcn3990-bt", .data = &qca_soc_data},
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, qca_bluetooth_of_match);
static struct serdev_device_driver qca_serdev_driver = {
.probe = qca_serdev_probe,
.remove = qca_serdev_remove,
.driver = {
.name = "hci_uart_qca",
.of_match_table = qca_bluetooth_of_match,
},
};
int __init qca_init(void)
{
serdev_device_driver_register(&qca_serdev_driver);
return hci_uart_register_proto(&qca_proto);
}
int __exit qca_deinit(void)
{
serdev_device_driver_unregister(&qca_serdev_driver);
return hci_uart_unregister_proto(&qca_proto);
}