// SPDX-License-Identifier: GPL-2.0-or-later
/*
* RDMA Network Block Driver
*
* Copyright (c) 2014 - 2018 ProfitBricks GmbH. All rights reserved.
* Copyright (c) 2018 - 2019 1&1 IONOS Cloud GmbH. All rights reserved.
* Copyright (c) 2019 - 2020 1&1 IONOS SE. All rights reserved.
*/
#undef pr_fmt
#define pr_fmt(fmt) KBUILD_MODNAME " L" __stringify(__LINE__) ": " fmt
#include <linux/module.h>
#include <linux/blkdev.h>
#include <linux/hdreg.h>
#include <linux/scatterlist.h>
#include <linux/idr.h>
#include "rnbd-clt.h"
MODULE_DESCRIPTION("RDMA Network Block Device Client");
MODULE_LICENSE("GPL");
static int rnbd_client_major;
static DEFINE_IDA(index_ida);
static DEFINE_MUTEX(ida_lock);
static DEFINE_MUTEX(sess_lock);
static LIST_HEAD(sess_list);
/*
* Maximum number of partitions an instance can have.
* 6 bits = 64 minors = 63 partitions (one minor is used for the device itself)
*/
#define RNBD_PART_BITS 6
static inline bool rnbd_clt_get_sess(struct rnbd_clt_session *sess)
{
return refcount_inc_not_zero(&sess->refcount);
}
static void free_sess(struct rnbd_clt_session *sess);
static void rnbd_clt_put_sess(struct rnbd_clt_session *sess)
{
might_sleep();
if (refcount_dec_and_test(&sess->refcount))
free_sess(sess);
}
static void rnbd_clt_put_dev(struct rnbd_clt_dev *dev)
{
might_sleep();
if (!refcount_dec_and_test(&dev->refcount))
return;
mutex_lock(&ida_lock);
ida_simple_remove(&index_ida, dev->clt_device_id);
mutex_unlock(&ida_lock);
kfree(dev->hw_queues);
rnbd_clt_put_sess(dev->sess);
mutex_destroy(&dev->lock);
kfree(dev);
}
static inline bool rnbd_clt_get_dev(struct rnbd_clt_dev *dev)
{
return refcount_inc_not_zero(&dev->refcount);
}
static int rnbd_clt_set_dev_attr(struct rnbd_clt_dev *dev,
const struct rnbd_msg_open_rsp *rsp)
{
struct rnbd_clt_session *sess = dev->sess;
if (!rsp->logical_block_size)
return -EINVAL;
dev->device_id = le32_to_cpu(rsp->device_id);
dev->nsectors = le64_to_cpu(rsp->nsectors);
dev->logical_block_size = le16_to_cpu(rsp->logical_block_size);
dev->physical_block_size = le16_to_cpu(rsp->physical_block_size);
dev->max_write_same_sectors = le32_to_cpu(rsp->max_write_same_sectors);
dev->max_discard_sectors = le32_to_cpu(rsp->max_discard_sectors);
dev->discard_granularity = le32_to_cpu(rsp->discard_granularity);
dev->discard_alignment = le32_to_cpu(rsp->discard_alignment);
dev->secure_discard = le16_to_cpu(rsp->secure_discard);
dev->rotational = rsp->rotational;
dev->max_hw_sectors = sess->max_io_size / SECTOR_SIZE;
dev->max_segments = BMAX_SEGMENTS;
dev->max_hw_sectors = min_t(u32, dev->max_hw_sectors,
le32_to_cpu(rsp->max_hw_sectors));
dev->max_segments = min_t(u16, dev->max_segments,
le16_to_cpu(rsp->max_segments));
return 0;
}
static int rnbd_clt_change_capacity(struct rnbd_clt_dev *dev,
size_t new_nsectors)
{
rnbd_clt_info(dev, "Device size changed from %zu to %zu sectors\n",
dev->nsectors, new_nsectors);
dev->nsectors = new_nsectors;
set_capacity(dev->gd, dev->nsectors);
revalidate_disk_size(dev->gd, true);
return 0;
}
static int process_msg_open_rsp(struct rnbd_clt_dev *dev,
struct rnbd_msg_open_rsp *rsp)
{
int err = 0;
mutex_lock(&dev->lock);
if (dev->dev_state == DEV_STATE_UNMAPPED) {
rnbd_clt_info(dev,
"Ignoring Open-Response message from server for unmapped device\n");
err = -ENOENT;
goto out;
}
if (dev->dev_state == DEV_STATE_MAPPED_DISCONNECTED) {
u64 nsectors = le64_to_cpu(rsp->nsectors);
/*
* If the device was remapped and the size changed in the
* meantime we need to revalidate it
*/
if (dev->nsectors != nsectors)
rnbd_clt_change_capacity(dev, nsectors);
rnbd_clt_info(dev, "Device online, device remapped successfully\n");
}
err = rnbd_clt_set_dev_attr(dev, rsp);
if (err)
goto out;
dev->dev_state = DEV_STATE_MAPPED;
out:
mutex_unlock(&dev->lock);
return err;
}
int rnbd_clt_resize_disk(struct rnbd_clt_dev *dev, size_t newsize)
{
int ret = 0;
mutex_lock(&dev->lock);
if (dev->dev_state != DEV_STATE_MAPPED) {
pr_err("Failed to set new size of the device, device is not opened\n");
ret = -ENOENT;
goto out;
}
ret = rnbd_clt_change_capacity(dev, newsize);
out:
mutex_unlock(&dev->lock);
return ret;
}
static inline void rnbd_clt_dev_requeue(struct rnbd_queue *q)
{
if (WARN_ON(!q->hctx))
return;
/* We can come here from interrupt, thus async=true */
blk_mq_run_hw_queue(q->hctx, true);
}
enum {
RNBD_DELAY_IFBUSY = -1,
};
/**
* rnbd_get_cpu_qlist() - finds a list with HW queues to be rerun
* @sess: Session to find a queue for
* @cpu: Cpu to start the search from
*
* Description:
* Each CPU has a list of HW queues, which needs to be rerun. If a list
* is not empty - it is marked with a bit. This function finds first
* set bit in a bitmap and returns corresponding CPU list.
*/
static struct rnbd_cpu_qlist *
rnbd_get_cpu_qlist(struct rnbd_clt_session *sess, int cpu)
{
int bit;
/* Search from cpu to nr_cpu_ids */
bit = find_next_bit(sess->cpu_queues_bm, nr_cpu_ids, cpu);
if (bit < nr_cpu_ids) {
return per_cpu_ptr(sess->cpu_queues, bit);
} else if (cpu != 0) {
/* Search from 0 to cpu */
bit = find_next_bit(sess->cpu_queues_bm, cpu, 0);
if (bit < cpu)
return per_cpu_ptr(sess->cpu_queues, bit);
}
return NULL;
}
static inline int nxt_cpu(int cpu)
{
return (cpu + 1) % nr_cpu_ids;
}
/**
* rnbd_rerun_if_needed() - rerun next queue marked as stopped
* @sess: Session to rerun a queue on
*
* Description:
* Each CPU has it's own list of HW queues, which should be rerun.
* Function finds such list with HW queues, takes a list lock, picks up
* the first HW queue out of the list and requeues it.
*
* Return:
* True if the queue was requeued, false otherwise.
*
* Context:
* Does not matter.
*/
static bool rnbd_rerun_if_needed(struct rnbd_clt_session *sess)
{
struct rnbd_queue *q = NULL;
struct rnbd_cpu_qlist *cpu_q;
unsigned long flags;
int *cpup;
/*
* To keep fairness and not to let other queues starve we always
* try to wake up someone else in round-robin manner. That of course
* increases latency but queues always have a chance to be executed.
*/
cpup = get_cpu_ptr(sess->cpu_rr);
for (cpu_q = rnbd_get_cpu_qlist(sess, nxt_cpu(*cpup)); cpu_q;
cpu_q = rnbd_get_cpu_qlist(sess, nxt_cpu(cpu_q->cpu))) {
if (!spin_trylock_irqsave(&cpu_q->requeue_lock, flags))
continue;
if (unlikely(!test_bit(cpu_q->cpu, sess->cpu_queues_bm)))
goto unlock;
q = list_first_entry_or_null(&cpu_q->requeue_list,
typeof(*q), requeue_list);
if (WARN_ON(!q))
goto clear_bit;
list_del_init(&q->requeue_list);
clear_bit_unlock(0, &q->in_list);
if (list_empty(&cpu_q->requeue_list)) {
/* Clear bit if nothing is left */
clear_bit:
clear_bit(cpu_q->cpu, sess->cpu_queues_bm);
}
unlock:
spin_unlock_irqrestore(&cpu_q->requeue_lock, flags);
if (q)
break;
}
/**
* Saves the CPU that is going to be requeued on the per-cpu var. Just
* incrementing it doesn't work because rnbd_get_cpu_qlist() will
* always return the first CPU with something on the queue list when the
* value stored on the var is greater than the last CPU with something
* on the list.
*/
if (cpu_q)
*cpup = cpu_q->cpu;
put_cpu_var(sess->cpu_rr);
if (q)
rnbd_clt_dev_requeue(q);
return q;
}
/**
* rnbd_rerun_all_if_idle() - rerun all queues left in the list if
* session is idling (there are no requests
* in-flight).
* @sess: Session to rerun the queues on
*
* Description:
* This function tries to rerun all stopped queues if there are no
* requests in-flight anymore. This function tries to solve an obvious
* problem, when number of tags < than number of queues (hctx), which
* are stopped and put to sleep. If last permit, which has been just put,
* does not wake up all left queues (hctxs), IO requests hang forever.
*
* That can happen when all number of permits, say N, have been exhausted
* from one CPU, and we have many block devices per session, say M.
* Each block device has it's own queue (hctx) for each CPU, so eventually
* we can put that number of queues (hctxs) to sleep: M x nr_cpu_ids.
* If number of permits N < M x nr_cpu_ids finally we will get an IO hang.
*
* To avoid this hang last caller of rnbd_put_permit() (last caller is the
* one who observes sess->busy == 0) must wake up all remaining queues.
*
* Context:
* Does not matter.
*/
static void rnbd_rerun_all_if_idle(struct rnbd_clt_session *sess)
{
bool requeued;
do {
requeued = rnbd_rerun_if_needed(sess);
} while (atomic_read(&sess->busy) == 0 && requeued);
}
static struct rtrs_permit *rnbd_get_permit(struct rnbd_clt_session *sess,
enum rtrs_clt_con_type con_type,
int wait)
{
struct rtrs_permit *permit;
permit = rtrs_clt_get_permit(sess->rtrs, con_type,
wait ? RTRS_PERMIT_WAIT :
RTRS_PERMIT_NOWAIT);
if (likely(permit))
/* We have a subtle rare case here, when all permits can be
* consumed before busy counter increased. This is safe,
* because loser will get NULL as a permit, observe 0 busy
* counter and immediately restart the queue himself.
*/
atomic_inc(&sess->busy);
return permit;
}
static void rnbd_put_permit(struct rnbd_clt_session *sess,
struct rtrs_permit *permit)
{
rtrs_clt_put_permit(sess->rtrs, permit);
atomic_dec(&sess->busy);
/* Paired with rnbd_clt_dev_add_to_requeue(). Decrement first
* and then check queue bits.
*/
smp_mb__after_atomic();
rnbd_rerun_all_if_idle(sess);
}
static struct rnbd_iu *rnbd_get_iu(struct rnbd_clt_session *sess,
enum rtrs_clt_con_type con_type,
int wait)
{
struct rnbd_iu *iu;
struct rtrs_permit *permit;
permit = rnbd_get_permit(sess, con_type,
wait ? RTRS_PERMIT_WAIT :
RTRS_PERMIT_NOWAIT);
if (unlikely(!permit))
return NULL;
iu = rtrs_permit_to_pdu(permit);
iu->permit = permit;
/*
* 1st reference is dropped after finishing sending a "user" message,
* 2nd reference is dropped after confirmation with the response is
* returned.
* 1st and 2nd can happen in any order, so the rnbd_iu should be
* released (rtrs_permit returned to ibbtrs) only leased after both
* are finished.
*/
atomic_set(&iu->refcount, 2);
init_waitqueue_head(&iu->comp.wait);
iu->comp.errno = INT_MAX;
return iu;
}
static void rnbd_put_iu(struct rnbd_clt_session *sess, struct rnbd_iu *iu)
{
if (atomic_dec_and_test(&iu->refcount))
rnbd_put_permit(sess, iu->permit);
}
static void rnbd_softirq_done_fn(struct request *rq)
{
struct rnbd_clt_dev *dev = rq->rq_disk->private_data;
struct rnbd_clt_session *sess = dev->sess;
struct rnbd_iu *iu;
iu = blk_mq_rq_to_pdu(rq);
rnbd_put_permit(sess, iu->permit);
blk_mq_end_request(rq, errno_to_blk_status(iu->errno));
}
static void msg_io_conf(void *priv, int errno)
{
struct rnbd_iu *iu = priv;
struct rnbd_clt_dev *dev = iu->dev;
struct request *rq = iu->rq;
int rw = rq_data_dir(rq);
iu->errno = errno;
blk_mq_complete_request(rq);
if (errno)
rnbd_clt_info_rl(dev, "%s I/O failed with err: %d\n",
rw == READ ? "read" : "write", errno);
}
static void wake_up_iu_comp(struct rnbd_iu *iu, int errno)
{
iu->comp.errno = errno;
wake_up(&iu->comp.wait);
}
static void msg_conf(void *priv, int errno)
{
struct rnbd_iu *iu = priv;
iu->errno = errno;
schedule_work(&iu->work);
}
enum wait_type {
NO_WAIT = 0,
WAIT = 1
};
static int send_usr_msg(struct rtrs_clt *rtrs, int dir,
struct rnbd_iu *iu, struct kvec *vec, size_t nr,
size_t len, struct scatterlist *sg, unsigned int sg_len,
void (*conf)(struct work_struct *work),
int *errno, enum wait_type wait)
{
int err;
struct rtrs_clt_req_ops req_ops;
INIT_WORK(&iu->work, conf);
req_ops = (struct rtrs_clt_req_ops) {
.priv = iu,
.conf_fn = msg_conf,
};
err = rtrs_clt_request(dir, &req_ops, rtrs, iu->permit,
vec, nr, len, sg, sg_len);
if (!err && wait) {
wait_event(iu->comp.wait, iu->comp.errno != INT_MAX);
*errno = iu->comp.errno;
} else {
*errno = 0;
}
return err;
}
static void msg_close_conf(struct work_struct *work)
{
struct rnbd_iu *iu = container_of(work, struct rnbd_iu, work);
struct rnbd_clt_dev *dev = iu->dev;
wake_up_iu_comp(iu, iu->errno);
rnbd_put_iu(dev->sess, iu);
rnbd_clt_put_dev(dev);
}
static int send_msg_close(struct rnbd_clt_dev *dev, u32 device_id, bool wait)
{
struct rnbd_clt_session *sess = dev->sess;
struct rnbd_msg_close msg;
struct rnbd_iu *iu;
struct kvec vec = {
.iov_base = &msg,
.iov_len = sizeof(msg)
};
int err, errno;
iu = rnbd_get_iu(sess, RTRS_ADMIN_CON, RTRS_PERMIT_WAIT);
if (!iu)
return -ENOMEM;
iu->buf = NULL;
iu->dev = dev;
sg_mark_end(&iu->sglist[0]);
msg.hdr.type = cpu_to_le16(RNBD_MSG_CLOSE);
msg.device_id = cpu_to_le32(device_id);
WARN_ON(!rnbd_clt_get_dev(dev));
err = send_usr_msg(sess->rtrs, WRITE, iu, &vec, 1, 0, NULL, 0,
msg_close_conf, &errno, wait);
if (err) {
rnbd_clt_put_dev(dev);
rnbd_put_iu(sess, iu);
} else {
err = errno;
}
rnbd_put_iu(sess, iu);
return err;
}
static void msg_open_conf(struct work_struct *work)
{
struct rnbd_iu *iu = container_of(work, struct rnbd_iu, work);
struct rnbd_msg_open_rsp *rsp = iu->buf;
struct rnbd_clt_dev *dev = iu->dev;
int errno = iu->errno;
if (errno) {
rnbd_clt_err(dev,
"Opening failed, server responded: %d\n",
errno);
} else {
errno = process_msg_open_rsp(dev, rsp);
if (errno) {
u32 device_id = le32_to_cpu(rsp->device_id);
/*
* If server thinks its fine, but we fail to process
* then be nice and send a close to server.
*/
(void)send_msg_close(dev, device_id, NO_WAIT);
}
}
kfree(rsp);
wake_up_iu_comp(iu, errno);
rnbd_put_iu(dev->sess, iu);
rnbd_clt_put_dev(dev);
}
static void msg_sess_info_conf(struct work_struct *work)
{
struct rnbd_iu *iu = container_of(work, struct rnbd_iu, work);
struct rnbd_msg_sess_info_rsp *rsp = iu->buf;
struct rnbd_clt_session *sess = iu->sess;
if (!iu->errno)
sess->ver = min_t(u8, rsp->ver, RNBD_PROTO_VER_MAJOR);
kfree(rsp);
wake_up_iu_comp(iu, iu->errno);
rnbd_put_iu(sess, iu);
rnbd_clt_put_sess(sess);
}
static int send_msg_open(struct rnbd_clt_dev *dev, bool wait)
{
struct rnbd_clt_session *sess = dev->sess;
struct rnbd_msg_open_rsp *rsp;
struct rnbd_msg_open msg;
struct rnbd_iu *iu;
struct kvec vec = {
.iov_base = &msg,
.iov_len = sizeof(msg)
};
int err, errno;
rsp = kzalloc(sizeof(*rsp), GFP_KERNEL);
if (!rsp)
return -ENOMEM;
iu = rnbd_get_iu(sess, RTRS_ADMIN_CON, RTRS_PERMIT_WAIT);
if (!iu) {
kfree(rsp);
return -ENOMEM;
}
iu->buf = rsp;
iu->dev = dev;
sg_init_one(iu->sglist, rsp, sizeof(*rsp));
msg.hdr.type = cpu_to_le16(RNBD_MSG_OPEN);
msg.access_mode = dev->access_mode;
strlcpy(msg.dev_name, dev->pathname, sizeof(msg.dev_name));
WARN_ON(!rnbd_clt_get_dev(dev));
err = send_usr_msg(sess->rtrs, READ, iu,
&vec, 1, sizeof(*rsp), iu->sglist, 1,
msg_open_conf, &errno, wait);
if (err) {
rnbd_clt_put_dev(dev);
rnbd_put_iu(sess, iu);
kfree(rsp);
} else {
err = errno;
}
rnbd_put_iu(sess, iu);
return err;
}
static int send_msg_sess_info(struct rnbd_clt_session *sess, bool wait)
{
struct rnbd_msg_sess_info_rsp *rsp;
struct rnbd_msg_sess_info msg;
struct rnbd_iu *iu;
struct kvec vec = {
.iov_base = &msg,
.iov_len = sizeof(msg)
};
int err, errno;
rsp = kzalloc(sizeof(*rsp), GFP_KERNEL);
if (!rsp)
return -ENOMEM;
iu = rnbd_get_iu(sess, RTRS_ADMIN_CON, RTRS_PERMIT_WAIT);
if (!iu) {
kfree(rsp);
return -ENOMEM;
}
iu->buf = rsp;
iu->sess = sess;
sg_init_one(iu->sglist, rsp, sizeof(*rsp));
msg.hdr.type = cpu_to_le16(RNBD_MSG_SESS_INFO);
msg.ver = RNBD_PROTO_VER_MAJOR;
if (!rnbd_clt_get_sess(sess)) {
/*
* That can happen only in one case, when RTRS has restablished
* the connection and link_ev() is called, but session is almost
* dead, last reference on session is put and caller is waiting
* for RTRS to close everything.
*/
err = -ENODEV;
goto put_iu;
}
err = send_usr_msg(sess->rtrs, READ, iu,
&vec, 1, sizeof(*rsp), iu->sglist, 1,
msg_sess_info_conf, &errno, wait);
if (err) {
rnbd_clt_put_sess(sess);
put_iu:
rnbd_put_iu(sess, iu);
kfree(rsp);
} else {
err = errno;
}
rnbd_put_iu(sess, iu);
return err;
}
static void set_dev_states_to_disconnected(struct rnbd_clt_session *sess)
{
struct rnbd_clt_dev *dev;
mutex_lock(&sess->lock);
list_for_each_entry(dev, &sess->devs_list, list) {
rnbd_clt_err(dev, "Device disconnected.\n");
mutex_lock(&dev->lock);
if (dev->dev_state == DEV_STATE_MAPPED)
dev->dev_state = DEV_STATE_MAPPED_DISCONNECTED;
mutex_unlock(&dev->lock);
}
mutex_unlock(&sess->lock);
}
static void remap_devs(struct rnbd_clt_session *sess)
{
struct rnbd_clt_dev *dev;
struct rtrs_attrs attrs;
int err;
/*
* Careful here: we are called from RTRS link event directly,
* thus we can't send any RTRS request and wait for response
* or RTRS will not be able to complete request with failure
* if something goes wrong (failing of outstanding requests
* happens exactly from the context where we are blocking now).
*
* So to avoid deadlocks each usr message sent from here must
* be asynchronous.
*/
err = send_msg_sess_info(sess, NO_WAIT);
if (err) {
pr_err("send_msg_sess_info(\"%s\"): %d\n", sess->sessname, err);
return;
}
rtrs_clt_query(sess->rtrs, &attrs);
mutex_lock(&sess->lock);
sess->max_io_size = attrs.max_io_size;
list_for_each_entry(dev, &sess->devs_list, list) {
bool skip;
mutex_lock(&dev->lock);
skip = (dev->dev_state == DEV_STATE_INIT);
mutex_unlock(&dev->lock);
if (skip)
/*
* When device is establishing connection for the first
* time - do not remap, it will be closed soon.
*/
continue;
rnbd_clt_info(dev, "session reconnected, remapping device\n");
err = send_msg_open(dev, NO_WAIT);
if (err) {
rnbd_clt_err(dev, "send_msg_open(): %d\n", err);
break;
}
}
mutex_unlock(&sess->lock);
}
static void rnbd_clt_link_ev(void *priv, enum rtrs_clt_link_ev ev)
{
struct rnbd_clt_session *sess = priv;
switch (ev) {
case RTRS_CLT_LINK_EV_DISCONNECTED:
set_dev_states_to_disconnected(sess);
break;
case RTRS_CLT_LINK_EV_RECONNECTED:
remap_devs(sess);
break;
default:
pr_err("Unknown session event received (%d), session: %s\n",
ev, sess->sessname);
}
}
static void rnbd_init_cpu_qlists(struct rnbd_cpu_qlist __percpu *cpu_queues)
{
unsigned int cpu;
struct rnbd_cpu_qlist *cpu_q;
for_each_possible_cpu(cpu) {
cpu_q = per_cpu_ptr(cpu_queues, cpu);
cpu_q->cpu = cpu;
INIT_LIST_HEAD(&cpu_q->requeue_list);
spin_lock_init(&cpu_q->requeue_lock);
}
}
static void destroy_mq_tags(struct rnbd_clt_session *sess)
{
if (sess->tag_set.tags)
blk_mq_free_tag_set(&sess->tag_set);
}
static inline void wake_up_rtrs_waiters(struct rnbd_clt_session *sess)
{
sess->rtrs_ready = true;
wake_up_all(&sess->rtrs_waitq);
}
static void close_rtrs(struct rnbd_clt_session *sess)
{
might_sleep();
if (!IS_ERR_OR_NULL(sess->rtrs)) {
rtrs_clt_close(sess->rtrs);
sess->rtrs = NULL;
wake_up_rtrs_waiters(sess);
}
}
static void free_sess(struct rnbd_clt_session *sess)
{
WARN_ON(!list_empty(&sess->devs_list));
might_sleep();
close_rtrs(sess);
destroy_mq_tags(sess);
if (!list_empty(&sess->list)) {
mutex_lock(&sess_lock);
list_del(&sess->list);
mutex_unlock(&sess_lock);
}
free_percpu(sess->cpu_queues);
free_percpu(sess->cpu_rr);
mutex_destroy(&sess->lock);
kfree(sess);
}
static struct rnbd_clt_session *alloc_sess(const char *sessname)
{
struct rnbd_clt_session *sess;
int err, cpu;
sess = kzalloc_node(sizeof(*sess), GFP_KERNEL, NUMA_NO_NODE);
if (!sess)
return ERR_PTR(-ENOMEM);
strlcpy(sess->sessname, sessname, sizeof(sess->sessname));
atomic_set(&sess->busy, 0);
mutex_init(&sess->lock);
INIT_LIST_HEAD(&sess->devs_list);
INIT_LIST_HEAD(&sess->list);
bitmap_zero(sess->cpu_queues_bm, NR_CPUS);
init_waitqueue_head(&sess->rtrs_waitq);
refcount_set(&sess->refcount, 1);
sess->cpu_queues = alloc_percpu(struct rnbd_cpu_qlist);
if (!sess->cpu_queues) {
err = -ENOMEM;
goto err;
}
rnbd_init_cpu_qlists(sess->cpu_queues);
/*
* That is simple percpu variable which stores cpu indeces, which are
* incremented on each access. We need that for the sake of fairness
* to wake up queues in a round-robin manner.
*/
sess->cpu_rr = alloc_percpu(int);
if (!sess->cpu_rr) {
err = -ENOMEM;
goto err;
}
for_each_possible_cpu(cpu)
* per_cpu_ptr(sess->cpu_rr, cpu) = cpu;
return sess;
err:
free_sess(sess);
return ERR_PTR(err);
}
static int wait_for_rtrs_connection(struct rnbd_clt_session *sess)
{
wait_event(sess->rtrs_waitq, sess->rtrs_ready);
if (IS_ERR_OR_NULL(sess->rtrs))
return -ECONNRESET;
return 0;
}
static void wait_for_rtrs_disconnection(struct rnbd_clt_session *sess)
__releases(&sess_lock)
__acquires(&sess_lock)
{
DEFINE_WAIT(wait);
prepare_to_wait(&sess->rtrs_waitq, &wait, TASK_UNINTERRUPTIBLE);
if (IS_ERR_OR_NULL(sess->rtrs)) {
finish_wait(&sess->rtrs_waitq, &wait);
return;
}
mutex_unlock(&sess_lock);
/* loop in caller, see __find_and_get_sess().
* You can't leave mutex locked and call schedule(), you will catch a
* deadlock with a caller of free_sess(), which has just put the last
* reference and is about to take the sess_lock in order to delete
* the session from the list.
*/
schedule();
mutex_lock(&sess_lock);
}
static struct rnbd_clt_session *__find_and_get_sess(const char *sessname)
__releases(&sess_lock)
__acquires(&sess_lock)
{
struct rnbd_clt_session *sess, *sn;
int err;
again:
list_for_each_entry_safe(sess, sn, &sess_list, list) {
if (strcmp(sessname, sess->sessname))
continue;
if (sess->rtrs_ready && IS_ERR_OR_NULL(sess->rtrs))
/*
* No RTRS connection, session is dying.
*/
continue;
if (rnbd_clt_get_sess(sess)) {
/*
* Alive session is found, wait for RTRS connection.
*/
mutex_unlock(&sess_lock);
err = wait_for_rtrs_connection(sess);
if (err)
rnbd_clt_put_sess(sess);
mutex_lock(&sess_lock);
if (err)
/* Session is dying, repeat the loop */
goto again;
return sess;
}
/*
* Ref is 0, session is dying, wait for RTRS disconnect
* in order to avoid session names clashes.
*/
wait_for_rtrs_disconnection(sess);
/*
* RTRS is disconnected and soon session will be freed,
* so repeat a loop.
*/
goto again;
}
return NULL;
}
static struct
rnbd_clt_session *find_or_create_sess(const char *sessname, bool *first)
{
struct rnbd_clt_session *sess = NULL;
mutex_lock(&sess_lock);
sess = __find_and_get_sess(sessname);
if (!sess) {
sess = alloc_sess(sessname);
if (IS_ERR(sess)) {
mutex_unlock(&sess_lock);
return sess;
}
list_add(&sess->list, &sess_list);
*first = true;
} else
*first = false;
mutex_unlock(&sess_lock);
return sess;
}
static int rnbd_client_open(struct block_device *block_device, fmode_t mode)
{
struct rnbd_clt_dev *dev = block_device->bd_disk->private_data;
if (dev->read_only && (mode & FMODE_WRITE))
return -EPERM;
if (dev->dev_state == DEV_STATE_UNMAPPED ||
!rnbd_clt_get_dev(dev))
return -EIO;
return 0;
}
static void rnbd_client_release(struct gendisk *gen, fmode_t mode)
{
struct rnbd_clt_dev *dev = gen->private_data;
rnbd_clt_put_dev(dev);
}
static int rnbd_client_getgeo(struct block_device *block_device,
struct hd_geometry *geo)
{
u64 size;
struct rnbd_clt_dev *dev;
dev = block_device->bd_disk->private_data;
size = dev->size * (dev->logical_block_size / SECTOR_SIZE);
geo->cylinders = size >> 6; /* size/64 */
geo->heads = 4;
geo->sectors = 16;
geo->start = 0;
return 0;
}
static const struct block_device_operations rnbd_client_ops = {
.owner = THIS_MODULE,
.open = rnbd_client_open,
.release = rnbd_client_release,
.getgeo = rnbd_client_getgeo
};
/* The amount of data that belongs to an I/O and the amount of data that
* should be read or written to the disk (bi_size) can differ.
*
* E.g. When WRITE_SAME is used, only a small amount of data is
* transferred that is then written repeatedly over a lot of sectors.
*
* Get the size of data to be transferred via RTRS by summing up the size
* of the scather-gather list entries.
*/
static size_t rnbd_clt_get_sg_size(struct scatterlist *sglist, u32 len)
{
struct scatterlist *sg;
size_t tsize = 0;
int i;
for_each_sg(sglist, sg, len, i)
tsize += sg->length;
return tsize;
}
static int rnbd_client_xfer_request(struct rnbd_clt_dev *dev,
struct request *rq,
struct rnbd_iu *iu)
{
struct rtrs_clt *rtrs = dev->sess->rtrs;
struct rtrs_permit *permit = iu->permit;
struct rnbd_msg_io msg;
struct rtrs_clt_req_ops req_ops;
unsigned int sg_cnt = 0;
struct kvec vec;
size_t size;
int err;
iu->rq = rq;
iu->dev = dev;
msg.sector = cpu_to_le64(blk_rq_pos(rq));
msg.bi_size = cpu_to_le32(blk_rq_bytes(rq));
msg.rw = cpu_to_le32(rq_to_rnbd_flags(rq));
msg.prio = cpu_to_le16(req_get_ioprio(rq));
/*
* We only support discards with single segment for now.
* See queue limits.
*/
if (req_op(rq) != REQ_OP_DISCARD)
sg_cnt = blk_rq_map_sg(dev->queue, rq, iu->sglist);
if (sg_cnt == 0)
/* Do not forget to mark the end */
sg_mark_end(&iu->sglist[0]);
msg.hdr.type = cpu_to_le16(RNBD_MSG_IO);
msg.device_id = cpu_to_le32(dev->device_id);
vec = (struct kvec) {
.iov_base = &msg,
.iov_len = sizeof(msg)
};
size = rnbd_clt_get_sg_size(iu->sglist, sg_cnt);
req_ops = (struct rtrs_clt_req_ops) {
.priv = iu,
.conf_fn = msg_io_conf,
};
err = rtrs_clt_request(rq_data_dir(rq), &req_ops, rtrs, permit,
&vec, 1, size, iu->sglist, sg_cnt);
if (unlikely(err)) {
rnbd_clt_err_rl(dev, "RTRS failed to transfer IO, err: %d\n",
err);
return err;
}
return 0;
}
/**
* rnbd_clt_dev_add_to_requeue() - add device to requeue if session is busy
* @dev: Device to be checked
* @q: Queue to be added to the requeue list if required
*
* Description:
* If session is busy, that means someone will requeue us when resources
* are freed. If session is not doing anything - device is not added to
* the list and @false is returned.
*/
static bool rnbd_clt_dev_add_to_requeue(struct rnbd_clt_dev *dev,
struct rnbd_queue *q)
{
struct rnbd_clt_session *sess = dev->sess;
struct rnbd_cpu_qlist *cpu_q;
unsigned long flags;
bool added = true;
bool need_set;
cpu_q = get_cpu_ptr(sess->cpu_queues);
spin_lock_irqsave(&cpu_q->requeue_lock, flags);
if (likely(!test_and_set_bit_lock(0, &q->in_list))) {
if (WARN_ON(!list_empty(&q->requeue_list)))
goto unlock;
need_set = !test_bit(cpu_q->cpu, sess->cpu_queues_bm);
if (need_set) {
set_bit(cpu_q->cpu, sess->cpu_queues_bm);
/* Paired with rnbd_put_permit(). Set a bit first
* and then observe the busy counter.
*/
smp_mb__before_atomic();
}
if (likely(atomic_read(&sess->busy))) {
list_add_tail(&q->requeue_list, &cpu_q->requeue_list);
} else {
/* Very unlikely, but possible: busy counter was
* observed as zero. Drop all bits and return
* false to restart the queue by ourselves.
*/
if (need_set)
clear_bit(cpu_q->cpu, sess->cpu_queues_bm);
clear_bit_unlock(0, &q->in_list);
added = false;
}
}
unlock:
spin_unlock_irqrestore(&cpu_q->requeue_lock, flags);
put_cpu_ptr(sess->cpu_queues);
return added;
}
static void rnbd_clt_dev_kick_mq_queue(struct rnbd_clt_dev *dev,
struct blk_mq_hw_ctx *hctx,
int delay)
{
struct rnbd_queue *q = hctx->driver_data;
if (delay != RNBD_DELAY_IFBUSY)
blk_mq_delay_run_hw_queue(hctx, delay);
else if (unlikely(!rnbd_clt_dev_add_to_requeue(dev, q)))
/*
* If session is not busy we have to restart
* the queue ourselves.
*/
blk_mq_delay_run_hw_queue(hctx, 10/*ms*/);
}
static blk_status_t rnbd_queue_rq(struct blk_mq_hw_ctx *hctx,
const struct blk_mq_queue_data *bd)
{
struct request *rq = bd->rq;
struct rnbd_clt_dev *dev = rq->rq_disk->private_data;
struct rnbd_iu *iu = blk_mq_rq_to_pdu(rq);
int err;
if (unlikely(dev->dev_state != DEV_STATE_MAPPED))
return BLK_STS_IOERR;
iu->permit = rnbd_get_permit(dev->sess, RTRS_IO_CON,
RTRS_PERMIT_NOWAIT);
if (unlikely(!iu->permit)) {
rnbd_clt_dev_kick_mq_queue(dev, hctx, RNBD_DELAY_IFBUSY);
return BLK_STS_RESOURCE;
}
blk_mq_start_request(rq);
err = rnbd_client_xfer_request(dev, rq, iu);
if (likely(err == 0))
return BLK_STS_OK;
if (unlikely(err == -EAGAIN || err == -ENOMEM)) {
rnbd_clt_dev_kick_mq_queue(dev, hctx, 10/*ms*/);
rnbd_put_permit(dev->sess, iu->permit);
return BLK_STS_RESOURCE;
}
rnbd_put_permit(dev->sess, iu->permit);
return BLK_STS_IOERR;
}
static int rnbd_init_request(struct blk_mq_tag_set *set, struct request *rq,
unsigned int hctx_idx, unsigned int numa_node)
{
struct rnbd_iu *iu = blk_mq_rq_to_pdu(rq);
sg_init_table(iu->sglist, BMAX_SEGMENTS);
return 0;
}
static struct blk_mq_ops rnbd_mq_ops = {
.queue_rq = rnbd_queue_rq,
.init_request = rnbd_init_request,
.complete = rnbd_softirq_done_fn,
};
static int setup_mq_tags(struct rnbd_clt_session *sess)
{
struct blk_mq_tag_set *tag_set = &sess->tag_set;
memset(tag_set, 0, sizeof(*tag_set));
tag_set->ops = &rnbd_mq_ops;
tag_set->queue_depth = sess->queue_depth;
tag_set->numa_node = NUMA_NO_NODE;
tag_set->flags = BLK_MQ_F_SHOULD_MERGE |
BLK_MQ_F_TAG_QUEUE_SHARED;
tag_set->cmd_size = sizeof(struct rnbd_iu);
tag_set->nr_hw_queues = num_online_cpus();
return blk_mq_alloc_tag_set(tag_set);
}
static struct rnbd_clt_session *
find_and_get_or_create_sess(const char *sessname,
const struct rtrs_addr *paths,
size_t path_cnt, u16 port_nr)
{
struct rnbd_clt_session *sess;
struct rtrs_attrs attrs;
int err;
bool first;
struct rtrs_clt_ops rtrs_ops;
sess = find_or_create_sess(sessname, &first);
if (sess == ERR_PTR(-ENOMEM))
return ERR_PTR(-ENOMEM);
else if (!first)
return sess;
rtrs_ops = (struct rtrs_clt_ops) {
.priv = sess,
.link_ev = rnbd_clt_link_ev,
};
/*
* Nothing was found, establish rtrs connection and proceed further.
*/
sess->rtrs = rtrs_clt_open(&rtrs_ops, sessname,
paths, path_cnt, port_nr,
sizeof(struct rnbd_iu),
RECONNECT_DELAY, BMAX_SEGMENTS,
BLK_MAX_SEGMENT_SIZE,
MAX_RECONNECTS);
if (IS_ERR(sess->rtrs)) {
err = PTR_ERR(sess->rtrs);
goto wake_up_and_put;
}
rtrs_clt_query(sess->rtrs, &attrs);
sess->max_io_size = attrs.max_io_size;
sess->queue_depth = attrs.queue_depth;
err = setup_mq_tags(sess);
if (err)
goto close_rtrs;
err = send_msg_sess_info(sess, WAIT);
if (err)
goto close_rtrs;
wake_up_rtrs_waiters(sess);
return sess;
close_rtrs:
close_rtrs(sess);
put_sess:
rnbd_clt_put_sess(sess);
return ERR_PTR(err);
wake_up_and_put:
wake_up_rtrs_waiters(sess);
goto put_sess;
}
static inline void rnbd_init_hw_queue(struct rnbd_clt_dev *dev,
struct rnbd_queue *q,
struct blk_mq_hw_ctx *hctx)
{
INIT_LIST_HEAD(&q->requeue_list);
q->dev = dev;
q->hctx = hctx;
}
static void rnbd_init_mq_hw_queues(struct rnbd_clt_dev *dev)
{
int i;
struct blk_mq_hw_ctx *hctx;
struct rnbd_queue *q;
queue_for_each_hw_ctx(dev->queue, hctx, i) {
q = &dev->hw_queues[i];
rnbd_init_hw_queue(dev, q, hctx);
hctx->driver_data = q;
}
}
static int setup_mq_dev(struct rnbd_clt_dev *dev)
{
dev->queue = blk_mq_init_queue(&dev->sess->tag_set);
if (IS_ERR(dev->queue)) {
rnbd_clt_err(dev, "Initializing multiqueue queue failed, err: %ld\n",
PTR_ERR(dev->queue));
return PTR_ERR(dev->queue);
}
rnbd_init_mq_hw_queues(dev);
return 0;
}
static void setup_request_queue(struct rnbd_clt_dev *dev)
{
blk_queue_logical_block_size(dev->queue, dev->logical_block_size);
blk_queue_physical_block_size(dev->queue, dev->physical_block_size);
blk_queue_max_hw_sectors(dev->queue, dev->max_hw_sectors);
blk_queue_max_write_same_sectors(dev->queue,
dev->max_write_same_sectors);
/*
* we don't support discards to "discontiguous" segments
* in on request
*/
blk_queue_max_discard_segments(dev->queue, 1);
blk_queue_max_discard_sectors(dev->queue, dev->max_discard_sectors);
dev->queue->limits.discard_granularity = dev->discard_granularity;
dev->queue->limits.discard_alignment = dev->discard_alignment;
if (dev->max_discard_sectors)
blk_queue_flag_set(QUEUE_FLAG_DISCARD, dev->queue);
if (dev->secure_discard)
blk_queue_flag_set(QUEUE_FLAG_SECERASE, dev->queue);
blk_queue_flag_set(QUEUE_FLAG_SAME_COMP, dev->queue);
blk_queue_flag_set(QUEUE_FLAG_SAME_FORCE, dev->queue);
blk_queue_max_segments(dev->queue, dev->max_segments);
blk_queue_io_opt(dev->queue, dev->sess->max_io_size);
blk_queue_virt_boundary(dev->queue, SZ_4K - 1);
blk_queue_write_cache(dev->queue, true, true);
dev->queue->queuedata = dev;
}
static void rnbd_clt_setup_gen_disk(struct rnbd_clt_dev *dev, int idx)
{
dev->gd->major = rnbd_client_major;
dev->gd->first_minor = idx << RNBD_PART_BITS;
dev->gd->fops = &rnbd_client_ops;
dev->gd->queue = dev->queue;
dev->gd->private_data = dev;
snprintf(dev->gd->disk_name, sizeof(dev->gd->disk_name), "rnbd%d",
idx);
pr_debug("disk_name=%s, capacity=%zu\n",
dev->gd->disk_name,
dev->nsectors * (dev->logical_block_size / SECTOR_SIZE)
);
set_capacity(dev->gd, dev->nsectors);
if (dev->access_mode == RNBD_ACCESS_RO) {
dev->read_only = true;
set_disk_ro(dev->gd, true);
} else {
dev->read_only = false;
}
if (!dev->rotational)
blk_queue_flag_set(QUEUE_FLAG_NONROT, dev->queue);
}
static int rnbd_client_setup_device(struct rnbd_clt_session *sess,
struct rnbd_clt_dev *dev, int idx)
{
int err;
dev->size = dev->nsectors * dev->logical_block_size;
err = setup_mq_dev(dev);
if (err)
return err;
setup_request_queue(dev);
dev->gd = alloc_disk_node(1 << RNBD_PART_BITS, NUMA_NO_NODE);
if (!dev->gd) {
blk_cleanup_queue(dev->queue);
return -ENOMEM;
}
rnbd_clt_setup_gen_disk(dev, idx);
return 0;
}
static struct rnbd_clt_dev *init_dev(struct rnbd_clt_session *sess,
enum rnbd_access_mode access_mode,
const char *pathname)
{
struct rnbd_clt_dev *dev;
int ret;
dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, NUMA_NO_NODE);
if (!dev)
return ERR_PTR(-ENOMEM);
dev->hw_queues = kcalloc(nr_cpu_ids, sizeof(*dev->hw_queues),
GFP_KERNEL);
if (!dev->hw_queues) {
ret = -ENOMEM;
goto out_alloc;
}
mutex_lock(&ida_lock);
ret = ida_simple_get(&index_ida, 0, 1 << (MINORBITS - RNBD_PART_BITS),
GFP_KERNEL);
mutex_unlock(&ida_lock);
if (ret < 0) {
pr_err("Failed to initialize device '%s' from session %s, allocating idr failed, err: %d\n",
pathname, sess->sessname, ret);
goto out_queues;
}
dev->clt_device_id = ret;
dev->sess = sess;
dev->access_mode = access_mode;
strlcpy(dev->pathname, pathname, sizeof(dev->pathname));
mutex_init(&dev->lock);
refcount_set(&dev->refcount, 1);
dev->dev_state = DEV_STATE_INIT;
/*
* Here we called from sysfs entry, thus clt-sysfs is
* responsible that session will not disappear.
*/
WARN_ON(!rnbd_clt_get_sess(sess));
return dev;
out_queues:
kfree(dev->hw_queues);
out_alloc:
kfree(dev);
return ERR_PTR(ret);
}
static bool __exists_dev(const char *pathname)
{
struct rnbd_clt_session *sess;
struct rnbd_clt_dev *dev;
bool found = false;
list_for_each_entry(sess, &sess_list, list) {
mutex_lock(&sess->lock);
list_for_each_entry(dev, &sess->devs_list, list) {
if (!strncmp(dev->pathname, pathname,
sizeof(dev->pathname))) {
found = true;
break;
}
}
mutex_unlock(&sess->lock);
if (found)
break;
}
return found;
}
static bool exists_devpath(const char *pathname)
{
bool found;
mutex_lock(&sess_lock);
found = __exists_dev(pathname);
mutex_unlock(&sess_lock);
return found;
}
static bool insert_dev_if_not_exists_devpath(const char *pathname,
struct rnbd_clt_session *sess,
struct rnbd_clt_dev *dev)
{
bool found;
mutex_lock(&sess_lock);
found = __exists_dev(pathname);
if (!found) {
mutex_lock(&sess->lock);
list_add_tail(&dev->list, &sess->devs_list);
mutex_unlock(&sess->lock);
}
mutex_unlock(&sess_lock);
return found;
}
static void delete_dev(struct rnbd_clt_dev *dev)
{
struct rnbd_clt_session *sess = dev->sess;
mutex_lock(&sess->lock);
list_del(&dev->list);
mutex_unlock(&sess->lock);
}
struct rnbd_clt_dev *rnbd_clt_map_device(const char *sessname,
struct rtrs_addr *paths,
size_t path_cnt, u16 port_nr,
const char *pathname,
enum rnbd_access_mode access_mode)
{
struct rnbd_clt_session *sess;
struct rnbd_clt_dev *dev;
int ret;
if (exists_devpath(pathname))
return ERR_PTR(-EEXIST);
sess = find_and_get_or_create_sess(sessname, paths, path_cnt, port_nr);
if (IS_ERR(sess))
return ERR_CAST(sess);
dev = init_dev(sess, access_mode, pathname);
if (IS_ERR(dev)) {
pr_err("map_device: failed to map device '%s' from session %s, can't initialize device, err: %ld\n",
pathname, sess->sessname, PTR_ERR(dev));
ret = PTR_ERR(dev);
goto put_sess;
}
if (insert_dev_if_not_exists_devpath(pathname, sess, dev)) {
ret = -EEXIST;
goto put_dev;
}
ret = send_msg_open(dev, WAIT);
if (ret) {
rnbd_clt_err(dev,
"map_device: failed, can't open remote device, err: %d\n",
ret);
goto del_dev;
}
mutex_lock(&dev->lock);
pr_debug("Opened remote device: session=%s, path='%s'\n",
sess->sessname, pathname);
ret = rnbd_client_setup_device(sess, dev, dev->clt_device_id);
if (ret) {
rnbd_clt_err(dev,
"map_device: Failed to configure device, err: %d\n",
ret);
mutex_unlock(&dev->lock);
goto del_dev;
}
rnbd_clt_info(dev,
"map_device: Device mapped as %s (nsectors: %zu, logical_block_size: %d, physical_block_size: %d, max_write_same_sectors: %d, max_discard_sectors: %d, discard_granularity: %d, discard_alignment: %d, secure_discard: %d, max_segments: %d, max_hw_sectors: %d, rotational: %d)\n",
dev->gd->disk_name, dev->nsectors,
dev->logical_block_size, dev->physical_block_size,
dev->max_write_same_sectors, dev->max_discard_sectors,
dev->discard_granularity, dev->discard_alignment,
dev->secure_discard, dev->max_segments,
dev->max_hw_sectors, dev->rotational);
mutex_unlock(&dev->lock);
add_disk(dev->gd);
rnbd_clt_put_sess(sess);
return dev;
del_dev:
delete_dev(dev);
put_dev:
rnbd_clt_put_dev(dev);
put_sess:
rnbd_clt_put_sess(sess);
return ERR_PTR(ret);
}
static void destroy_gen_disk(struct rnbd_clt_dev *dev)
{
del_gendisk(dev->gd);
blk_cleanup_queue(dev->queue);
put_disk(dev->gd);
}
static void destroy_sysfs(struct rnbd_clt_dev *dev,
const struct attribute *sysfs_self)
{
rnbd_clt_remove_dev_symlink(dev);
if (dev->kobj.state_initialized) {
if (sysfs_self)
/* To avoid deadlock firstly remove itself */
sysfs_remove_file_self(&dev->kobj, sysfs_self);
kobject_del(&dev->kobj);
kobject_put(&dev->kobj);
}
}
int rnbd_clt_unmap_device(struct rnbd_clt_dev *dev, bool force,
const struct attribute *sysfs_self)
{
struct rnbd_clt_session *sess = dev->sess;
int refcount, ret = 0;
bool was_mapped;
mutex_lock(&dev->lock);
if (dev->dev_state == DEV_STATE_UNMAPPED) {
rnbd_clt_info(dev, "Device is already being unmapped\n");
ret = -EALREADY;
goto err;
}
refcount = refcount_read(&dev->refcount);
if (!force && refcount > 1) {
rnbd_clt_err(dev,
"Closing device failed, device is in use, (%d device users)\n",
refcount - 1);
ret = -EBUSY;
goto err;
}
was_mapped = (dev->dev_state == DEV_STATE_MAPPED);
dev->dev_state = DEV_STATE_UNMAPPED;
mutex_unlock(&dev->lock);
delete_dev(dev);
destroy_sysfs(dev, sysfs_self);
destroy_gen_disk(dev);
if (was_mapped && sess->rtrs)
send_msg_close(dev, dev->device_id, WAIT);
rnbd_clt_info(dev, "Device is unmapped\n");
/* Likely last reference put */
rnbd_clt_put_dev(dev);
/*
* Here device and session can be vanished!
*/
return 0;
err:
mutex_unlock(&dev->lock);
return ret;
}
int rnbd_clt_remap_device(struct rnbd_clt_dev *dev)
{
int err;
mutex_lock(&dev->lock);
if (dev->dev_state == DEV_STATE_MAPPED_DISCONNECTED)
err = 0;
else if (dev->dev_state == DEV_STATE_UNMAPPED)
err = -ENODEV;
else if (dev->dev_state == DEV_STATE_MAPPED)
err = -EALREADY;
else
err = -EBUSY;
mutex_unlock(&dev->lock);
if (!err) {
rnbd_clt_info(dev, "Remapping device.\n");
err = send_msg_open(dev, WAIT);
if (err)
rnbd_clt_err(dev, "remap_device: %d\n", err);
}
return err;
}
static void unmap_device_work(struct work_struct *work)
{
struct rnbd_clt_dev *dev;
dev = container_of(work, typeof(*dev), unmap_on_rmmod_work);
rnbd_clt_unmap_device(dev, true, NULL);
}
static void rnbd_destroy_sessions(void)
{
struct rnbd_clt_session *sess, *sn;
struct rnbd_clt_dev *dev, *tn;
/* Firstly forbid access through sysfs interface */
rnbd_clt_destroy_default_group();
rnbd_clt_destroy_sysfs_files();
/*
* Here at this point there is no any concurrent access to sessions
* list and devices list:
* 1. New session or device can'be be created - session sysfs files
* are removed.
* 2. Device or session can't be removed - module reference is taken
* into account in unmap device sysfs callback.
* 3. No IO requests inflight - each file open of block_dev increases
* module reference in get_disk().
*
* But still there can be user requests inflights, which are sent by
* asynchronous send_msg_*() functions, thus before unmapping devices
* RTRS session must be explicitly closed.
*/
list_for_each_entry_safe(sess, sn, &sess_list, list) {
WARN_ON(!rnbd_clt_get_sess(sess));
close_rtrs(sess);
list_for_each_entry_safe(dev, tn, &sess->devs_list, list) {
/*
* Here unmap happens in parallel for only one reason:
* blk_cleanup_queue() takes around half a second, so
* on huge amount of devices the whole module unload
* procedure takes minutes.
*/
INIT_WORK(&dev->unmap_on_rmmod_work, unmap_device_work);
queue_work(system_long_wq, &dev->unmap_on_rmmod_work);
}
rnbd_clt_put_sess(sess);
}
/* Wait for all scheduled unmap works */
flush_workqueue(system_long_wq);
WARN_ON(!list_empty(&sess_list));
}
static int __init rnbd_client_init(void)
{
int err = 0;
BUILD_BUG_ON(sizeof(struct rnbd_msg_hdr) != 4);
BUILD_BUG_ON(sizeof(struct rnbd_msg_sess_info) != 36);
BUILD_BUG_ON(sizeof(struct rnbd_msg_sess_info_rsp) != 36);
BUILD_BUG_ON(sizeof(struct rnbd_msg_open) != 264);
BUILD_BUG_ON(sizeof(struct rnbd_msg_close) != 8);
BUILD_BUG_ON(sizeof(struct rnbd_msg_open_rsp) != 56);
rnbd_client_major = register_blkdev(rnbd_client_major, "rnbd");
if (rnbd_client_major <= 0) {
pr_err("Failed to load module, block device registration failed\n");
return -EBUSY;
}
err = rnbd_clt_create_sysfs_files();
if (err) {
pr_err("Failed to load module, creating sysfs device files failed, err: %d\n",
err);
unregister_blkdev(rnbd_client_major, "rnbd");
}
return err;
}
static void __exit rnbd_client_exit(void)
{
rnbd_destroy_sessions();
unregister_blkdev(rnbd_client_major, "rnbd");
ida_destroy(&index_ida);
}
module_init(rnbd_client_init);
module_exit(rnbd_client_exit);