// SPDX-License-Identifier: GPL-2.0-only
/*
* ACPI device specific properties support.
*
* Copyright (C) 2014, Intel Corporation
* All rights reserved.
*
* Authors: Mika Westerberg <mika.westerberg@linux.intel.com>
* Darren Hart <dvhart@linux.intel.com>
* Rafael J. Wysocki <rafael.j.wysocki@intel.com>
*/
#include <linux/acpi.h>
#include <linux/device.h>
#include <linux/export.h>
#include "internal.h"
static int acpi_data_get_property_array(const struct acpi_device_data *data,
const char *name,
acpi_object_type type,
const union acpi_object **obj);
/*
* The GUIDs here are made equivalent to each other in order to avoid extra
* complexity in the properties handling code, with the caveat that the
* kernel will accept certain combinations of GUID and properties that are
* not defined without a warning. For instance if any of the properties
* from different GUID appear in a property list of another, it will be
* accepted by the kernel. Firmware validation tools should catch these.
*/
static const guid_t prp_guids[] = {
/* ACPI _DSD device properties GUID: daffd814-6eba-4d8c-8a91-bc9bbf4aa301 */
GUID_INIT(0xdaffd814, 0x6eba, 0x4d8c,
0x8a, 0x91, 0xbc, 0x9b, 0xbf, 0x4a, 0xa3, 0x01),
/* Hotplug in D3 GUID: 6211e2c0-58a3-4af3-90e1-927a4e0c55a4 */
GUID_INIT(0x6211e2c0, 0x58a3, 0x4af3,
0x90, 0xe1, 0x92, 0x7a, 0x4e, 0x0c, 0x55, 0xa4),
/* External facing port GUID: efcc06cc-73ac-4bc3-bff0-76143807c389 */
GUID_INIT(0xefcc06cc, 0x73ac, 0x4bc3,
0xbf, 0xf0, 0x76, 0x14, 0x38, 0x07, 0xc3, 0x89),
/* Thunderbolt GUID for IMR_VALID: c44d002f-69f9-4e7d-a904-a7baabdf43f7 */
GUID_INIT(0xc44d002f, 0x69f9, 0x4e7d,
0xa9, 0x04, 0xa7, 0xba, 0xab, 0xdf, 0x43, 0xf7),
/* Thunderbolt GUID for WAKE_SUPPORTED: 6c501103-c189-4296-ba72-9bf5a26ebe5d */
GUID_INIT(0x6c501103, 0xc189, 0x4296,
0xba, 0x72, 0x9b, 0xf5, 0xa2, 0x6e, 0xbe, 0x5d),
/* Storage device needs D3 GUID: 5025030f-842f-4ab4-a561-99a5189762d0 */
GUID_INIT(0x5025030f, 0x842f, 0x4ab4,
0xa5, 0x61, 0x99, 0xa5, 0x18, 0x97, 0x62, 0xd0),
};
/* ACPI _DSD data subnodes GUID: dbb8e3e6-5886-4ba6-8795-1319f52a966b */
static const guid_t ads_guid =
GUID_INIT(0xdbb8e3e6, 0x5886, 0x4ba6,
0x87, 0x95, 0x13, 0x19, 0xf5, 0x2a, 0x96, 0x6b);
static const guid_t buffer_prop_guid =
GUID_INIT(0xedb12dd0, 0x363d, 0x4085,
0xa3, 0xd2, 0x49, 0x52, 0x2c, 0xa1, 0x60, 0xc4);
static bool acpi_enumerate_nondev_subnodes(acpi_handle scope,
union acpi_object *desc,
struct acpi_device_data *data,
struct fwnode_handle *parent);
static bool acpi_extract_properties(acpi_handle handle,
union acpi_object *desc,
struct acpi_device_data *data);
static bool acpi_nondev_subnode_extract(union acpi_object *desc,
acpi_handle handle,
const union acpi_object *link,
struct list_head *list,
struct fwnode_handle *parent)
{
struct acpi_data_node *dn;
bool result;
dn = kzalloc(sizeof(*dn), GFP_KERNEL);
if (!dn)
return false;
dn->name = link->package.elements[0].string.pointer;
fwnode_init(&dn->fwnode, &acpi_data_fwnode_ops);
dn->parent = parent;
INIT_LIST_HEAD(&dn->data.properties);
INIT_LIST_HEAD(&dn->data.subnodes);
result = acpi_extract_properties(handle, desc, &dn->data);
if (handle) {
acpi_handle scope;
acpi_status status;
/*
* The scope for the subnode object lookup is the one of the
* namespace node (device) containing the object that has
* returned the package. That is, it's the scope of that
* object's parent.
*/
status = acpi_get_parent(handle, &scope);
if (ACPI_SUCCESS(status)
&& acpi_enumerate_nondev_subnodes(scope, desc, &dn->data,
&dn->fwnode))
result = true;
} else if (acpi_enumerate_nondev_subnodes(NULL, desc, &dn->data,
&dn->fwnode)) {
result = true;
}
if (result) {
dn->handle = handle;
dn->data.pointer = desc;
list_add_tail(&dn->sibling, list);
return true;
}
kfree(dn);
acpi_handle_debug(handle, "Invalid properties/subnodes data, skipping\n");
return false;
}
static bool acpi_nondev_subnode_data_ok(acpi_handle handle,
const union acpi_object *link,
struct list_head *list,
struct fwnode_handle *parent)
{
struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER };
acpi_status status;
status = acpi_evaluate_object_typed(handle, NULL, NULL, &buf,
ACPI_TYPE_PACKAGE);
if (ACPI_FAILURE(status))
return false;
if (acpi_nondev_subnode_extract(buf.pointer, handle, link, list,
parent))
return true;
ACPI_FREE(buf.pointer);
return false;
}
static bool acpi_nondev_subnode_ok(acpi_handle scope,
const union acpi_object *link,
struct list_head *list,
struct fwnode_handle *parent)
{
acpi_handle handle;
acpi_status status;
if (!scope)
return false;
status = acpi_get_handle(scope, link->package.elements[1].string.pointer,
&handle);
if (ACPI_FAILURE(status))
return false;
return acpi_nondev_subnode_data_ok(handle, link, list, parent);
}
static bool acpi_add_nondev_subnodes(acpi_handle scope,
union acpi_object *links,
struct list_head *list,
struct fwnode_handle *parent)
{
bool ret = false;
int i;
for (i = 0; i < links->package.count; i++) {
union acpi_object *link, *desc;
acpi_handle handle;
bool result;
link = &links->package.elements[i];
/* Only two elements allowed. */
if (link->package.count != 2)
continue;
/* The first one must be a string. */
if (link->package.elements[0].type != ACPI_TYPE_STRING)
continue;
/* The second one may be a string, a reference or a package. */
switch (link->package.elements[1].type) {
case ACPI_TYPE_STRING:
result = acpi_nondev_subnode_ok(scope, link, list,
parent);
break;
case ACPI_TYPE_LOCAL_REFERENCE:
handle = link->package.elements[1].reference.handle;
result = acpi_nondev_subnode_data_ok(handle, link, list,
parent);
break;
case ACPI_TYPE_PACKAGE:
desc = &link->package.elements[1];
result = acpi_nondev_subnode_extract(desc, NULL, link,
list, parent);
break;
default:
result = false;
break;
}
ret = ret || result;
}
return ret;
}
static bool acpi_enumerate_nondev_subnodes(acpi_handle scope,
union acpi_object *desc,
struct acpi_device_data *data,
struct fwnode_handle *parent)
{
int i;
/* Look for the ACPI data subnodes GUID. */
for (i = 0; i < desc->package.count; i += 2) {
const union acpi_object *guid;
union acpi_object *links;
guid = &desc->package.elements[i];
links = &desc->package.elements[i + 1];
/*
* The first element must be a GUID and the second one must be
* a package.
*/
if (guid->type != ACPI_TYPE_BUFFER ||
guid->buffer.length != 16 ||
links->type != ACPI_TYPE_PACKAGE)
break;
if (!guid_equal((guid_t *)guid->buffer.pointer, &ads_guid))
continue;
return acpi_add_nondev_subnodes(scope, links, &data->subnodes,
parent);
}
return false;
}
static bool acpi_property_value_ok(const union acpi_object *value)
{
int j;
/*
* The value must be an integer, a string, a reference, or a package
* whose every element must be an integer, a string, or a reference.
*/
switch (value->type) {
case ACPI_TYPE_INTEGER:
case ACPI_TYPE_STRING:
case ACPI_TYPE_LOCAL_REFERENCE:
return true;
case ACPI_TYPE_PACKAGE:
for (j = 0; j < value->package.count; j++)
switch (value->package.elements[j].type) {
case ACPI_TYPE_INTEGER:
case ACPI_TYPE_STRING:
case ACPI_TYPE_LOCAL_REFERENCE:
continue;
default:
return false;
}
return true;
}
return false;
}
static bool acpi_properties_format_valid(const union acpi_object *properties)
{
int i;
for (i = 0; i < properties->package.count; i++) {
const union acpi_object *property;
property = &properties->package.elements[i];
/*
* Only two elements allowed, the first one must be a string and
* the second one has to satisfy certain conditions.
*/
if (property->package.count != 2
|| property->package.elements[0].type != ACPI_TYPE_STRING
|| !acpi_property_value_ok(&property->package.elements[1]))
return false;
}
return true;
}
static void acpi_init_of_compatible(struct acpi_device *adev)
{
const union acpi_object *of_compatible;
int ret;
ret = acpi_data_get_property_array(&adev->data, "compatible",
ACPI_TYPE_STRING, &of_compatible);
if (ret) {
ret = acpi_dev_get_property(adev, "compatible",
ACPI_TYPE_STRING, &of_compatible);
if (ret) {
struct acpi_device *parent;
parent = acpi_dev_parent(adev);
if (parent && parent->flags.of_compatible_ok)
goto out;
return;
}
}
adev->data.of_compatible = of_compatible;
out:
adev->flags.of_compatible_ok = 1;
}
static bool acpi_is_property_guid(const guid_t *guid)
{
int i;
for (i = 0; i < ARRAY_SIZE(prp_guids); i++) {
if (guid_equal(guid, &prp_guids[i]))
return true;
}
return false;
}
struct acpi_device_properties *
acpi_data_add_props(struct acpi_device_data *data, const guid_t *guid,
union acpi_object *properties)
{
struct acpi_device_properties *props;
props = kzalloc(sizeof(*props), GFP_KERNEL);
if (props) {
INIT_LIST_HEAD(&props->list);
props->guid = guid;
props->properties = properties;
list_add_tail(&props->list, &data->properties);
}
return props;
}
static void acpi_nondev_subnode_tag(acpi_handle handle, void *context)
{
}
static void acpi_untie_nondev_subnodes(struct acpi_device_data *data)
{
struct acpi_data_node *dn;
list_for_each_entry(dn, &data->subnodes, sibling) {
acpi_detach_data(dn->handle, acpi_nondev_subnode_tag);
acpi_untie_nondev_subnodes(&dn->data);
}
}
static bool acpi_tie_nondev_subnodes(struct acpi_device_data *data)
{
struct acpi_data_node *dn;
list_for_each_entry(dn, &data->subnodes, sibling) {
acpi_status status;
bool ret;
status = acpi_attach_data(dn->handle, acpi_nondev_subnode_tag, dn);
if (ACPI_FAILURE(status) && status != AE_ALREADY_EXISTS) {
acpi_handle_err(dn->handle, "Can't tag data node\n");
return false;
}
ret = acpi_tie_nondev_subnodes(&dn->data);
if (!ret)
return ret;
}
return true;
}
static void acpi_data_add_buffer_props(acpi_handle handle,
struct acpi_device_data *data,
union acpi_object *properties)
{
struct acpi_device_properties *props;
union acpi_object *package;
size_t alloc_size;
unsigned int i;
u32 *count;
if (check_mul_overflow((size_t)properties->package.count,
sizeof(*package) + sizeof(void *),
&alloc_size) ||
check_add_overflow(sizeof(*props) + sizeof(*package), alloc_size,
&alloc_size)) {
acpi_handle_warn(handle,
"can't allocate memory for %u buffer props",
properties->package.count);
return;
}
props = kvzalloc(alloc_size, GFP_KERNEL);
if (!props)
return;
props->guid = &buffer_prop_guid;
props->bufs = (void *)(props + 1);
props->properties = (void *)(props->bufs + properties->package.count);
/* Outer package */
package = props->properties;
package->type = ACPI_TYPE_PACKAGE;
package->package.elements = package + 1;
count = &package->package.count;
*count = 0;
/* Inner packages */
package++;
for (i = 0; i < properties->package.count; i++) {
struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER };
union acpi_object *property = &properties->package.elements[i];
union acpi_object *prop, *obj, *buf_obj;
acpi_status status;
if (property->type != ACPI_TYPE_PACKAGE ||
property->package.count != 2) {
acpi_handle_warn(handle,
"buffer property %u has %u entries\n",
i, property->package.count);
continue;
}
prop = &property->package.elements[0];
obj = &property->package.elements[1];
if (prop->type != ACPI_TYPE_STRING ||
obj->type != ACPI_TYPE_STRING) {
acpi_handle_warn(handle,
"wrong object types %u and %u\n",
prop->type, obj->type);
continue;
}
status = acpi_evaluate_object_typed(handle, obj->string.pointer,
NULL, &buf,
ACPI_TYPE_BUFFER);
if (ACPI_FAILURE(status)) {
acpi_handle_warn(handle,
"can't evaluate \"%*pE\" as buffer\n",
obj->string.length,
obj->string.pointer);
continue;
}
package->type = ACPI_TYPE_PACKAGE;
package->package.elements = prop;
package->package.count = 2;
buf_obj = buf.pointer;
/* Replace the string object with a buffer object */
obj->type = ACPI_TYPE_BUFFER;
obj->buffer.length = buf_obj->buffer.length;
obj->buffer.pointer = buf_obj->buffer.pointer;
props->bufs[i] = buf.pointer;
package++;
(*count)++;
}
if (*count)
list_add(&props->list, &data->properties);
else
kvfree(props);
}
static bool acpi_extract_properties(acpi_handle scope, union acpi_object *desc,
struct acpi_device_data *data)
{
int i;
if (desc->package.count % 2)
return false;
/* Look for the device properties GUID. */
for (i = 0; i < desc->package.count; i += 2) {
const union acpi_object *guid;
union acpi_object *properties;
guid = &desc->package.elements[i];
properties = &desc->package.elements[i + 1];
/*
* The first element must be a GUID and the second one must be
* a package.
*/
if (guid->type != ACPI_TYPE_BUFFER ||
guid->buffer.length != 16 ||
properties->type != ACPI_TYPE_PACKAGE)
break;
if (guid_equal((guid_t *)guid->buffer.pointer,
&buffer_prop_guid)) {
acpi_data_add_buffer_props(scope, data, properties);
continue;
}
if (!acpi_is_property_guid((guid_t *)guid->buffer.pointer))
continue;
/*
* We found the matching GUID. Now validate the format of the
* package immediately following it.
*/
if (!acpi_properties_format_valid(properties))
continue;
acpi_data_add_props(data, (const guid_t *)guid->buffer.pointer,
properties);
}
return !list_empty(&data->properties);
}
void acpi_init_properties(struct acpi_device *adev)
{
struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER };
struct acpi_hardware_id *hwid;
acpi_status status;
bool acpi_of = false;
INIT_LIST_HEAD(&adev->data.properties);
INIT_LIST_HEAD(&adev->data.subnodes);
if (!adev->handle)
return;
/*
* Check if ACPI_DT_NAMESPACE_HID is present and inthat case we fill in
* Device Tree compatible properties for this device.
*/
list_for_each_entry(hwid, &adev->pnp.ids, list) {
if (!strcmp(hwid->id, ACPI_DT_NAMESPACE_HID)) {
acpi_of = true;
break;
}
}
status = acpi_evaluate_object_typed(adev->handle, "_DSD", NULL, &buf,
ACPI_TYPE_PACKAGE);
if (ACPI_FAILURE(status))
goto out;
if (acpi_extract_properties(adev->handle, buf.pointer, &adev->data)) {
adev->data.pointer = buf.pointer;
if (acpi_of)
acpi_init_of_compatible(adev);
}
if (acpi_enumerate_nondev_subnodes(adev->handle, buf.pointer,
&adev->data, acpi_fwnode_handle(adev)))
adev->data.pointer = buf.pointer;
if (!adev->data.pointer) {
acpi_handle_debug(adev->handle, "Invalid _DSD data, skipping\n");
ACPI_FREE(buf.pointer);
} else {
if (!acpi_tie_nondev_subnodes(&adev->data))
acpi_untie_nondev_subnodes(&adev->data);
}
out:
if (acpi_of && !adev->flags.of_compatible_ok)
acpi_handle_info(adev->handle,
ACPI_DT_NAMESPACE_HID " requires 'compatible' property\n");
if (!adev->data.pointer)
acpi_extract_apple_properties(adev);
}
static void acpi_free_device_properties(struct list_head *list)
{
struct acpi_device_properties *props, *tmp;
list_for_each_entry_safe(props, tmp, list, list) {
u32 i;
list_del(&props->list);
/* Buffer data properties were separately allocated */
if (props->bufs)
for (i = 0; i < props->properties->package.count; i++)
ACPI_FREE(props->bufs[i]);
kvfree(props);
}
}
static void acpi_destroy_nondev_subnodes(struct list_head *list)
{
struct acpi_data_node *dn, *next;
if (list_empty(list))
return;
list_for_each_entry_safe_reverse(dn, next, list, sibling) {
acpi_destroy_nondev_subnodes(&dn->data.subnodes);
wait_for_completion(&dn->kobj_done);
list_del(&dn->sibling);
ACPI_FREE((void *)dn->data.pointer);
acpi_free_device_properties(&dn->data.properties);
kfree(dn);
}
}
void acpi_free_properties(struct acpi_device *adev)
{
acpi_untie_nondev_subnodes(&adev->data);
acpi_destroy_nondev_subnodes(&adev->data.subnodes);
ACPI_FREE((void *)adev->data.pointer);
adev->data.of_compatible = NULL;
adev->data.pointer = NULL;
acpi_free_device_properties(&adev->data.properties);
}
/**
* acpi_data_get_property - return an ACPI property with given name
* @data: ACPI device deta object to get the property from
* @name: Name of the property
* @type: Expected property type
* @obj: Location to store the property value (if not %NULL)
*
* Look up a property with @name and store a pointer to the resulting ACPI
* object at the location pointed to by @obj if found.
*
* Callers must not attempt to free the returned objects. These objects will be
* freed by the ACPI core automatically during the removal of @data.
*
* Return: %0 if property with @name has been found (success),
* %-EINVAL if the arguments are invalid,
* %-EINVAL if the property doesn't exist,
* %-EPROTO if the property value type doesn't match @type.
*/
static int acpi_data_get_property(const struct acpi_device_data *data,
const char *name, acpi_object_type type,
const union acpi_object **obj)
{
const struct acpi_device_properties *props;
if (!data || !name)
return -EINVAL;
if (!data->pointer || list_empty(&data->properties))
return -EINVAL;
list_for_each_entry(props, &data->properties, list) {
const union acpi_object *properties;
unsigned int i;
properties = props->properties;
for (i = 0; i < properties->package.count; i++) {
const union acpi_object *propname, *propvalue;
const union acpi_object *property;
property = &properties->package.elements[i];
propname = &property->package.elements[0];
propvalue = &property->package.elements[1];
if (!strcmp(name, propname->string.pointer)) {
if (type != ACPI_TYPE_ANY &&
propvalue->type != type)
return -EPROTO;
if (obj)
*obj = propvalue;
return 0;
}
}
}
return -EINVAL;
}
/**
* acpi_dev_get_property - return an ACPI property with given name.
* @adev: ACPI device to get the property from.
* @name: Name of the property.
* @type: Expected property type.
* @obj: Location to store the property value (if not %NULL).
*/
int acpi_dev_get_property(const struct acpi_device *adev, const char *name,
acpi_object_type type, const union acpi_object **obj)
{
return adev ? acpi_data_get_property(&adev->data, name, type, obj) : -EINVAL;
}
EXPORT_SYMBOL_GPL(acpi_dev_get_property);
static const struct acpi_device_data *
acpi_device_data_of_node(const struct fwnode_handle *fwnode)
{
if (is_acpi_device_node(fwnode)) {
const struct acpi_device *adev = to_acpi_device_node(fwnode);
return &adev->data;
}
if (is_acpi_data_node(fwnode)) {
const struct acpi_data_node *dn = to_acpi_data_node(fwnode);
return &dn->data;
}
return NULL;
}
/**
* acpi_node_prop_get - return an ACPI property with given name.
* @fwnode: Firmware node to get the property from.
* @propname: Name of the property.
* @valptr: Location to store a pointer to the property value (if not %NULL).
*/
int acpi_node_prop_get(const struct fwnode_handle *fwnode,
const char *propname, void **valptr)
{
return acpi_data_get_property(acpi_device_data_of_node(fwnode),
propname, ACPI_TYPE_ANY,
(const union acpi_object **)valptr);
}
/**
* acpi_data_get_property_array - return an ACPI array property with given name
* @data: ACPI data object to get the property from
* @name: Name of the property
* @type: Expected type of array elements
* @obj: Location to store a pointer to the property value (if not NULL)
*
* Look up an array property with @name and store a pointer to the resulting
* ACPI object at the location pointed to by @obj if found.
*
* Callers must not attempt to free the returned objects. Those objects will be
* freed by the ACPI core automatically during the removal of @data.
*
* Return: %0 if array property (package) with @name has been found (success),
* %-EINVAL if the arguments are invalid,
* %-EINVAL if the property doesn't exist,
* %-EPROTO if the property is not a package or the type of its elements
* doesn't match @type.
*/
static int acpi_data_get_property_array(const struct acpi_device_data *data,
const char *name,
acpi_object_type type,
const union acpi_object **obj)
{
const union acpi_object *prop;
int ret, i;
ret = acpi_data_get_property(data, name, ACPI_TYPE_PACKAGE, &prop);
if (ret)
return ret;
if (type != ACPI_TYPE_ANY) {
/* Check that all elements are of correct type. */
for (i = 0; i < prop->package.count; i++)
if (prop->package.elements[i].type != type)
return -EPROTO;
}
if (obj)
*obj = prop;
return 0;
}
static struct fwnode_handle *
acpi_fwnode_get_named_child_node(const struct fwnode_handle *fwnode,
const char *childname)
{
struct fwnode_handle *child;
fwnode_for_each_child_node(fwnode, child) {
if (is_acpi_data_node(child)) {
if (acpi_data_node_match(child, childname))
return child;
continue;
}
if (!strncmp(acpi_device_bid(to_acpi_device_node(child)),
childname, ACPI_NAMESEG_SIZE))
return child;
}
return NULL;
}
static int acpi_get_ref_args(struct fwnode_reference_args *args,
struct fwnode_handle *ref_fwnode,
const union acpi_object **element,
const union acpi_object *end, size_t num_args)
{
u32 nargs = 0, i;
/*
* Find the referred data extension node under the
* referred device node.
*/
for (; *element < end && (*element)->type == ACPI_TYPE_STRING;
(*element)++) {
const char *child_name = (*element)->string.pointer;
ref_fwnode = acpi_fwnode_get_named_child_node(ref_fwnode, child_name);
if (!ref_fwnode)
return -EINVAL;
}
/*
* Assume the following integer elements are all args. Stop counting on
* the first reference or end of the package arguments. In case of
* neither reference, nor integer, return an error, we can't parse it.
*/
for (i = 0; (*element) + i < end && i < num_args; i++) {
acpi_object_type type = (*element)[i].type;
if (type == ACPI_TYPE_LOCAL_REFERENCE)
break;
if (type == ACPI_TYPE_INTEGER)
nargs++;
else
return -EINVAL;
}
if (nargs > NR_FWNODE_REFERENCE_ARGS)
return -EINVAL;
if (args) {
args->fwnode = ref_fwnode;
args->nargs = nargs;
for (i = 0; i < nargs; i++)
args->args[i] = (*element)[i].integer.value;
}
(*element) += nargs;
return 0;
}
/**
* __acpi_node_get_property_reference - returns handle to the referenced object
* @fwnode: Firmware node to get the property from
* @propname: Name of the property
* @index: Index of the reference to return
* @num_args: Maximum number of arguments after each reference
* @args: Location to store the returned reference with optional arguments
*
* Find property with @name, verifify that it is a package containing at least
* one object reference and if so, store the ACPI device object pointer to the
* target object in @args->adev. If the reference includes arguments, store
* them in the @args->args[] array.
*
* If there's more than one reference in the property value package, @index is
* used to select the one to return.
*
* It is possible to leave holes in the property value set like in the
* example below:
*
* Package () {
* "cs-gpios",
* Package () {
* ^GPIO, 19, 0, 0,
* ^GPIO, 20, 0, 0,
* 0,
* ^GPIO, 21, 0, 0,
* }
* }
*
* Calling this function with index %2 or index %3 return %-ENOENT. If the
* property does not contain any more values %-ENOENT is returned. The NULL
* entry must be single integer and preferably contain value %0.
*
* Return: %0 on success, negative error code on failure.
*/
int __acpi_node_get_property_reference(const struct fwnode_handle *fwnode,
const char *propname, size_t index, size_t num_args,
struct fwnode_reference_args *args)
{
const union acpi_object *element, *end;
const union acpi_object *obj;
const struct acpi_device_data *data;
struct acpi_device *device;
int ret, idx = 0;
data = acpi_device_data_of_node(fwnode);
if (!data)
return -ENOENT;
ret = acpi_data_get_property(data, propname, ACPI_TYPE_ANY, &obj);
if (ret)
return ret == -EINVAL ? -ENOENT : -EINVAL;
switch (obj->type) {
case ACPI_TYPE_LOCAL_REFERENCE:
/* Plain single reference without arguments. */
if (index)
return -ENOENT;
device = acpi_fetch_acpi_dev(obj->reference.handle);
if (!device)
return -EINVAL;
args->fwnode = acpi_fwnode_handle(device);
args->nargs = 0;
return 0;
case ACPI_TYPE_PACKAGE:
/*
* If it is not a single reference, then it is a package of
* references followed by number of ints as follows:
*
* Package () { REF, INT, REF, INT, INT }
*
* The index argument is then used to determine which reference
* the caller wants (along with the arguments).
*/
break;
default:
return -EINVAL;
}
if (index >= obj->package.count)
return -ENOENT;
element = obj->package.elements;
end = element + obj->package.count;
while (element < end) {
switch (element->type) {
case ACPI_TYPE_LOCAL_REFERENCE:
device = acpi_fetch_acpi_dev(element->reference.handle);
if (!device)
return -EINVAL;
element++;
ret = acpi_get_ref_args(idx == index ? args : NULL,
acpi_fwnode_handle(device),
&element, end, num_args);
if (ret < 0)
return ret;
if (idx == index)
return 0;
break;
case ACPI_TYPE_INTEGER:
if (idx == index)
return -ENOENT;
element++;
break;
default:
return -EINVAL;
}
idx++;
}
return -ENOENT;
}
EXPORT_SYMBOL_GPL(__acpi_node_get_property_reference);
static int acpi_data_prop_read_single(const struct acpi_device_data *data,
const char *propname,
enum dev_prop_type proptype, void *val)
{
const union acpi_object *obj;
int ret;
if (proptype >= DEV_PROP_U8 && proptype <= DEV_PROP_U64) {
ret = acpi_data_get_property(data, propname, ACPI_TYPE_INTEGER, &obj);
if (ret)
return ret;
switch (proptype) {
case DEV_PROP_U8:
if (obj->integer.value > U8_MAX)
return -EOVERFLOW;
if (val)
*(u8 *)val = obj->integer.value;
break;
case DEV_PROP_U16:
if (obj->integer.value > U16_MAX)
return -EOVERFLOW;
if (val)
*(u16 *)val = obj->integer.value;
break;
case DEV_PROP_U32:
if (obj->integer.value > U32_MAX)
return -EOVERFLOW;
if (val)
*(u32 *)val = obj->integer.value;
break;
default:
if (val)
*(u64 *)val = obj->integer.value;
break;
}
if (!val)
return 1;
} else if (proptype == DEV_PROP_STRING) {
ret = acpi_data_get_property(data, propname, ACPI_TYPE_STRING, &obj);
if (ret)
return ret;
if (val)
*(char **)val = obj->string.pointer;
return 1;
} else {
ret = -EINVAL;
}
return ret;
}
#define acpi_copy_property_array_uint(items, val, nval) \
({ \
typeof(items) __items = items; \
typeof(val) __val = val; \
typeof(nval) __nval = nval; \
size_t i; \
int ret = 0; \
\
for (i = 0; i < __nval; i++) { \
if (__items->type == ACPI_TYPE_BUFFER) { \
__val[i] = __items->buffer.pointer[i]; \
continue; \
} \
if (__items[i].type != ACPI_TYPE_INTEGER) { \
ret = -EPROTO; \
break; \
} \
if (__items[i].integer.value > _Generic(__val, \
u8 *: U8_MAX, \
u16 *: U16_MAX, \
u32 *: U32_MAX, \
u64 *: U64_MAX)) { \
ret = -EOVERFLOW; \
break; \
} \
\
__val[i] = __items[i].integer.value; \
} \
ret; \
})
static int acpi_copy_property_array_string(const union acpi_object *items,
char **val, size_t nval)
{
int i;
for (i = 0; i < nval; i++) {
if (items[i].type != ACPI_TYPE_STRING)
return -EPROTO;
val[i] = items[i].string.pointer;
}
return nval;
}
static int acpi_data_prop_read(const struct acpi_device_data *data,
const char *propname,
enum dev_prop_type proptype,
void *val, size_t nval)
{
const union acpi_object *obj;
const union acpi_object *items;
int ret;
if (nval == 1 || !val) {
ret = acpi_data_prop_read_single(data, propname, proptype, val);
/*
* The overflow error means that the property is there and it is
* single-value, but its type does not match, so return.
*/
if (ret >= 0 || ret == -EOVERFLOW)
return ret;
/*
* Reading this property as a single-value one failed, but its
* value may still be represented as one-element array, so
* continue.
*/
}
ret = acpi_data_get_property_array(data, propname, ACPI_TYPE_ANY, &obj);
if (ret && proptype >= DEV_PROP_U8 && proptype <= DEV_PROP_U64)
ret = acpi_data_get_property(data, propname, ACPI_TYPE_BUFFER,
&obj);
if (ret)
return ret;
if (!val) {
if (obj->type == ACPI_TYPE_BUFFER)
return obj->buffer.length;
return obj->package.count;
}
switch (proptype) {
case DEV_PROP_STRING:
break;
case DEV_PROP_U8 ... DEV_PROP_U64:
if (obj->type == ACPI_TYPE_BUFFER) {
if (nval > obj->buffer.length)
return -EOVERFLOW;
break;
}
fallthrough;
default:
if (nval > obj->package.count)
return -EOVERFLOW;
break;
}
if (nval == 0)
return -EINVAL;
if (obj->type != ACPI_TYPE_BUFFER)
items = obj->package.elements;
else
items = obj;
switch (proptype) {
case DEV_PROP_U8:
ret = acpi_copy_property_array_uint(items, (u8 *)val, nval);
break;
case DEV_PROP_U16:
ret = acpi_copy_property_array_uint(items, (u16 *)val, nval);
break;
case DEV_PROP_U32:
ret = acpi_copy_property_array_uint(items, (u32 *)val, nval);
break;
case DEV_PROP_U64:
ret = acpi_copy_property_array_uint(items, (u64 *)val, nval);
break;
case DEV_PROP_STRING:
ret = acpi_copy_property_array_string(
items, (char **)val,
min_t(u32, nval, obj->package.count));
break;
default:
ret = -EINVAL;
break;
}
return ret;
}
/**
* acpi_node_prop_read - retrieve the value of an ACPI property with given name.
* @fwnode: Firmware node to get the property from.
* @propname: Name of the property.
* @proptype: Expected property type.
* @val: Location to store the property value (if not %NULL).
* @nval: Size of the array pointed to by @val.
*
* If @val is %NULL, return the number of array elements comprising the value
* of the property. Otherwise, read at most @nval values to the array at the
* location pointed to by @val.
*/
static int acpi_node_prop_read(const struct fwnode_handle *fwnode,
const char *propname, enum dev_prop_type proptype,
void *val, size_t nval)
{
return acpi_data_prop_read(acpi_device_data_of_node(fwnode),
propname, proptype, val, nval);
}
static int stop_on_next(struct acpi_device *adev, void *data)
{
struct acpi_device **ret_p = data;
if (!*ret_p) {
*ret_p = adev;
return 1;
}
/* Skip until the "previous" object is found. */
if (*ret_p == adev)
*ret_p = NULL;
return 0;
}
/**
* acpi_get_next_subnode - Return the next child node handle for a fwnode
* @fwnode: Firmware node to find the next child node for.
* @child: Handle to one of the device's child nodes or a null handle.
*/
struct fwnode_handle *acpi_get_next_subnode(const struct fwnode_handle *fwnode,
struct fwnode_handle *child)
{
struct acpi_device *adev = to_acpi_device_node(fwnode);
if ((!child || is_acpi_device_node(child)) && adev) {
struct acpi_device *child_adev = to_acpi_device_node(child);
acpi_dev_for_each_child(adev, stop_on_next, &child_adev);
if (child_adev)
return acpi_fwnode_handle(child_adev);
child = NULL;
}
if (!child || is_acpi_data_node(child)) {
const struct acpi_data_node *data = to_acpi_data_node(fwnode);
const struct list_head *head;
struct list_head *next;
struct acpi_data_node *dn;
/*
* We can have a combination of device and data nodes, e.g. with
* hierarchical _DSD properties. Make sure the adev pointer is
* restored before going through data nodes, otherwise we will
* be looking for data_nodes below the last device found instead
* of the common fwnode shared by device_nodes and data_nodes.
*/
adev = to_acpi_device_node(fwnode);
if (adev)
head = &adev->data.subnodes;
else if (data)
head = &data->data.subnodes;
else
return NULL;
if (list_empty(head))
return NULL;
if (child) {
dn = to_acpi_data_node(child);
next = dn->sibling.next;
if (next == head)
return NULL;
dn = list_entry(next, struct acpi_data_node, sibling);
} else {
dn = list_first_entry(head, struct acpi_data_node, sibling);
}
return &dn->fwnode;
}
return NULL;
}
/**
* acpi_node_get_parent - Return parent fwnode of this fwnode
* @fwnode: Firmware node whose parent to get
*
* Returns parent node of an ACPI device or data firmware node or %NULL if
* not available.
*/
static struct fwnode_handle *
acpi_node_get_parent(const struct fwnode_handle *fwnode)
{
if (is_acpi_data_node(fwnode)) {
/* All data nodes have parent pointer so just return that */
return to_acpi_data_node(fwnode)->parent;
}
if (is_acpi_device_node(fwnode)) {
struct acpi_device *parent;
parent = acpi_dev_parent(to_acpi_device_node(fwnode));
if (parent)
return acpi_fwnode_handle(parent);
}
return NULL;
}
/*
* Return true if the node is an ACPI graph node. Called on either ports
* or endpoints.
*/
static bool is_acpi_graph_node(struct fwnode_handle *fwnode,
const char *str)
{
unsigned int len = strlen(str);
const char *name;
if (!len || !is_acpi_data_node(fwnode))
return false;
name = to_acpi_data_node(fwnode)->name;
return (fwnode_property_present(fwnode, "reg") &&
!strncmp(name, str, len) && name[len] == '@') ||
fwnode_property_present(fwnode, str);
}
/**
* acpi_graph_get_next_endpoint - Get next endpoint ACPI firmware node
* @fwnode: Pointer to the parent firmware node
* @prev: Previous endpoint node or %NULL to get the first
*
* Looks up next endpoint ACPI firmware node below a given @fwnode. Returns
* %NULL if there is no next endpoint or in case of error. In case of success
* the next endpoint is returned.
*/
static struct fwnode_handle *acpi_graph_get_next_endpoint(
const struct fwnode_handle *fwnode, struct fwnode_handle *prev)
{
struct fwnode_handle *port = NULL;
struct fwnode_handle *endpoint;
if (!prev) {
do {
port = fwnode_get_next_child_node(fwnode, port);
/*
* The names of the port nodes begin with "port@"
* followed by the number of the port node and they also
* have a "reg" property that also has the number of the
* port node. For compatibility reasons a node is also
* recognised as a port node from the "port" property.
*/
if (is_acpi_graph_node(port, "port"))
break;
} while (port);
} else {
port = fwnode_get_parent(prev);
}
if (!port)
return NULL;
endpoint = fwnode_get_next_child_node(port, prev);
while (!endpoint) {
port = fwnode_get_next_child_node(fwnode, port);
if (!port)
break;
if (is_acpi_graph_node(port, "port"))
endpoint = fwnode_get_next_child_node(port, NULL);
}
/*
* The names of the endpoint nodes begin with "endpoint@" followed by
* the number of the endpoint node and they also have a "reg" property
* that also has the number of the endpoint node. For compatibility
* reasons a node is also recognised as an endpoint node from the
* "endpoint" property.
*/
if (!is_acpi_graph_node(endpoint, "endpoint"))
return NULL;
return endpoint;
}
/**
* acpi_graph_get_child_prop_value - Return a child with a given property value
* @fwnode: device fwnode
* @prop_name: The name of the property to look for
* @val: the desired property value
*
* Return the port node corresponding to a given port number. Returns
* the child node on success, NULL otherwise.
*/
static struct fwnode_handle *acpi_graph_get_child_prop_value(
const struct fwnode_handle *fwnode, const char *prop_name,
unsigned int val)
{
struct fwnode_handle *child;
fwnode_for_each_child_node(fwnode, child) {
u32 nr;
if (fwnode_property_read_u32(child, prop_name, &nr))
continue;
if (val == nr)
return child;
}
return NULL;
}
/**
* acpi_graph_get_remote_endpoint - Parses and returns remote end of an endpoint
* @__fwnode: Endpoint firmware node pointing to a remote device
*
* Returns the remote endpoint corresponding to @__fwnode. NULL on error.
*/
static struct fwnode_handle *
acpi_graph_get_remote_endpoint(const struct fwnode_handle *__fwnode)
{
struct fwnode_handle *fwnode;
unsigned int port_nr, endpoint_nr;
struct fwnode_reference_args args;
int ret;
memset(&args, 0, sizeof(args));
ret = acpi_node_get_property_reference(__fwnode, "remote-endpoint", 0,
&args);
if (ret)
return NULL;
/* Direct endpoint reference? */
if (!is_acpi_device_node(args.fwnode))
return args.nargs ? NULL : args.fwnode;
/*
* Always require two arguments with the reference: port and
* endpoint indices.
*/
if (args.nargs != 2)
return NULL;
fwnode = args.fwnode;
port_nr = args.args[0];
endpoint_nr = args.args[1];
fwnode = acpi_graph_get_child_prop_value(fwnode, "port", port_nr);
return acpi_graph_get_child_prop_value(fwnode, "endpoint", endpoint_nr);
}
static bool acpi_fwnode_device_is_available(const struct fwnode_handle *fwnode)
{
if (!is_acpi_device_node(fwnode))
return false;
return acpi_device_is_present(to_acpi_device_node(fwnode));
}
static const void *
acpi_fwnode_device_get_match_data(const struct fwnode_handle *fwnode,
const struct device *dev)
{
return acpi_device_get_match_data(dev);
}
static bool acpi_fwnode_device_dma_supported(const struct fwnode_handle *fwnode)
{
return acpi_dma_supported(to_acpi_device_node(fwnode));
}
static enum dev_dma_attr
acpi_fwnode_device_get_dma_attr(const struct fwnode_handle *fwnode)
{
return acpi_get_dma_attr(to_acpi_device_node(fwnode));
}
static bool acpi_fwnode_property_present(const struct fwnode_handle *fwnode,
const char *propname)
{
return !acpi_node_prop_get(fwnode, propname, NULL);
}
static int
acpi_fwnode_property_read_int_array(const struct fwnode_handle *fwnode,
const char *propname,
unsigned int elem_size, void *val,
size_t nval)
{
enum dev_prop_type type;
switch (elem_size) {
case sizeof(u8):
type = DEV_PROP_U8;
break;
case sizeof(u16):
type = DEV_PROP_U16;
break;
case sizeof(u32):
type = DEV_PROP_U32;
break;
case sizeof(u64):
type = DEV_PROP_U64;
break;
default:
return -ENXIO;
}
return acpi_node_prop_read(fwnode, propname, type, val, nval);
}
static int
acpi_fwnode_property_read_string_array(const struct fwnode_handle *fwnode,
const char *propname, const char **val,
size_t nval)
{
return acpi_node_prop_read(fwnode, propname, DEV_PROP_STRING,
val, nval);
}
static int
acpi_fwnode_get_reference_args(const struct fwnode_handle *fwnode,
const char *prop, const char *nargs_prop,
unsigned int args_count, unsigned int index,
struct fwnode_reference_args *args)
{
return __acpi_node_get_property_reference(fwnode, prop, index,
args_count, args);
}
static const char *acpi_fwnode_get_name(const struct fwnode_handle *fwnode)
{
const struct acpi_device *adev;
struct fwnode_handle *parent;
/* Is this the root node? */
parent = fwnode_get_parent(fwnode);
if (!parent)
return "\\";
fwnode_handle_put(parent);
if (is_acpi_data_node(fwnode)) {
const struct acpi_data_node *dn = to_acpi_data_node(fwnode);
return dn->name;
}
adev = to_acpi_device_node(fwnode);
if (WARN_ON(!adev))
return NULL;
return acpi_device_bid(adev);
}
static const char *
acpi_fwnode_get_name_prefix(const struct fwnode_handle *fwnode)
{
struct fwnode_handle *parent;
/* Is this the root node? */
parent = fwnode_get_parent(fwnode);
if (!parent)
return "";
/* Is this 2nd node from the root? */
parent = fwnode_get_next_parent(parent);
if (!parent)
return "";
fwnode_handle_put(parent);
/* ACPI device or data node. */
return ".";
}
static struct fwnode_handle *
acpi_fwnode_get_parent(struct fwnode_handle *fwnode)
{
return acpi_node_get_parent(fwnode);
}
static int acpi_fwnode_graph_parse_endpoint(const struct fwnode_handle *fwnode,
struct fwnode_endpoint *endpoint)
{
struct fwnode_handle *port_fwnode = fwnode_get_parent(fwnode);
endpoint->local_fwnode = fwnode;
if (fwnode_property_read_u32(port_fwnode, "reg", &endpoint->port))
fwnode_property_read_u32(port_fwnode, "port", &endpoint->port);
if (fwnode_property_read_u32(fwnode, "reg", &endpoint->id))
fwnode_property_read_u32(fwnode, "endpoint", &endpoint->id);
return 0;
}
static int acpi_fwnode_irq_get(const struct fwnode_handle *fwnode,
unsigned int index)
{
struct resource res;
int ret;
ret = acpi_irq_get(ACPI_HANDLE_FWNODE(fwnode), index, &res);
if (ret)
return ret;
return res.start;
}
#define DECLARE_ACPI_FWNODE_OPS(ops) \
const struct fwnode_operations ops = { \
.device_is_available = acpi_fwnode_device_is_available, \
.device_get_match_data = acpi_fwnode_device_get_match_data, \
.device_dma_supported = \
acpi_fwnode_device_dma_supported, \
.device_get_dma_attr = acpi_fwnode_device_get_dma_attr, \
.property_present = acpi_fwnode_property_present, \
.property_read_int_array = \
acpi_fwnode_property_read_int_array, \
.property_read_string_array = \
acpi_fwnode_property_read_string_array, \
.get_parent = acpi_node_get_parent, \
.get_next_child_node = acpi_get_next_subnode, \
.get_named_child_node = acpi_fwnode_get_named_child_node, \
.get_name = acpi_fwnode_get_name, \
.get_name_prefix = acpi_fwnode_get_name_prefix, \
.get_reference_args = acpi_fwnode_get_reference_args, \
.graph_get_next_endpoint = \
acpi_graph_get_next_endpoint, \
.graph_get_remote_endpoint = \
acpi_graph_get_remote_endpoint, \
.graph_get_port_parent = acpi_fwnode_get_parent, \
.graph_parse_endpoint = acpi_fwnode_graph_parse_endpoint, \
.irq_get = acpi_fwnode_irq_get, \
}; \
EXPORT_SYMBOL_GPL(ops)
DECLARE_ACPI_FWNODE_OPS(acpi_device_fwnode_ops);
DECLARE_ACPI_FWNODE_OPS(acpi_data_fwnode_ops);
const struct fwnode_operations acpi_static_fwnode_ops;
bool is_acpi_device_node(const struct fwnode_handle *fwnode)
{
return !IS_ERR_OR_NULL(fwnode) &&
fwnode->ops == &acpi_device_fwnode_ops;
}
EXPORT_SYMBOL(is_acpi_device_node);
bool is_acpi_data_node(const struct fwnode_handle *fwnode)
{
return !IS_ERR_OR_NULL(fwnode) && fwnode->ops == &acpi_data_fwnode_ops;
}
EXPORT_SYMBOL(is_acpi_data_node);