summaryrefslogblamecommitdiff
path: root/crypto/echainiv.c
blob: d0e325d094ed72a612da0b081741b49c458d6264 (plain) (tree)
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531




































































                                                                             
                                                    









                                         
                                                           

































































































































































































































































































































































































































































                                                                              
/*
 * echainiv: Encrypted Chain IV Generator
 *
 * This generator generates an IV based on a sequence number by xoring it
 * with a salt and then encrypting it with the same key as used to encrypt
 * the plain text.  This algorithm requires that the block size be equal
 * to the IV size.  It is mainly useful for CBC.
 *
 * This generator can only be used by algorithms where authentication
 * is performed after encryption (i.e., authenc).
 *
 * Copyright (c) 2015 Herbert Xu <herbert@gondor.apana.org.au>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by the Free
 * Software Foundation; either version 2 of the License, or (at your option)
 * any later version.
 *
 */

#include <crypto/internal/aead.h>
#include <crypto/null.h>
#include <crypto/rng.h>
#include <crypto/scatterwalk.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/percpu.h>
#include <linux/spinlock.h>
#include <linux/string.h>

#define MAX_IV_SIZE 16

struct echainiv_request_ctx {
	struct scatterlist src[2];
	struct scatterlist dst[2];
	struct scatterlist ivbuf[2];
	struct scatterlist *ivsg;
	struct aead_givcrypt_request subreq;
};

struct echainiv_ctx {
	struct crypto_aead *child;
	spinlock_t lock;
	struct crypto_blkcipher *null;
	u8 salt[] __attribute__ ((aligned(__alignof__(u32))));
};

static DEFINE_PER_CPU(u32 [MAX_IV_SIZE / sizeof(u32)], echainiv_iv);

static int echainiv_setkey(struct crypto_aead *tfm,
			      const u8 *key, unsigned int keylen)
{
	struct echainiv_ctx *ctx = crypto_aead_ctx(tfm);

	return crypto_aead_setkey(ctx->child, key, keylen);
}

static int echainiv_setauthsize(struct crypto_aead *tfm,
				  unsigned int authsize)
{
	struct echainiv_ctx *ctx = crypto_aead_ctx(tfm);

	return crypto_aead_setauthsize(ctx->child, authsize);
}

/* We don't care if we get preempted and read/write IVs from the next CPU. */
static void echainiv_read_iv(u8 *dst, unsigned size)
{
	u32 *a = (u32 *)dst;
	u32 __percpu *b = echainiv_iv;

	for (; size >= 4; size -= 4) {
		*a++ = this_cpu_read(*b);
		b++;
	}
}

static void echainiv_write_iv(const u8 *src, unsigned size)
{
	const u32 *a = (const u32 *)src;
	u32 __percpu *b = echainiv_iv;

	for (; size >= 4; size -= 4) {
		this_cpu_write(*b, *a);
		a++;
		b++;
	}
}

static void echainiv_encrypt_compat_complete2(struct aead_request *req,
						 int err)
{
	struct echainiv_request_ctx *rctx = aead_request_ctx(req);
	struct aead_givcrypt_request *subreq = &rctx->subreq;
	struct crypto_aead *geniv;

	if (err == -EINPROGRESS)
		return;

	if (err)
		goto out;

	geniv = crypto_aead_reqtfm(req);
	scatterwalk_map_and_copy(subreq->giv, rctx->ivsg, 0,
				 crypto_aead_ivsize(geniv), 1);

out:
	kzfree(subreq->giv);
}

static void echainiv_encrypt_compat_complete(
	struct crypto_async_request *base, int err)
{
	struct aead_request *req = base->data;

	echainiv_encrypt_compat_complete2(req, err);
	aead_request_complete(req, err);
}

static void echainiv_encrypt_complete2(struct aead_request *req, int err)
{
	struct aead_request *subreq = aead_request_ctx(req);
	struct crypto_aead *geniv;
	unsigned int ivsize;

	if (err == -EINPROGRESS)
		return;

	if (err)
		goto out;

	geniv = crypto_aead_reqtfm(req);
	ivsize = crypto_aead_ivsize(geniv);

	echainiv_write_iv(subreq->iv, ivsize);

	if (req->iv != subreq->iv)
		memcpy(req->iv, subreq->iv, ivsize);

out:
	if (req->iv != subreq->iv)
		kzfree(subreq->iv);
}

static void echainiv_encrypt_complete(struct crypto_async_request *base,
					 int err)
{
	struct aead_request *req = base->data;

	echainiv_encrypt_complete2(req, err);
	aead_request_complete(req, err);
}

static int echainiv_encrypt_compat(struct aead_request *req)
{
	struct crypto_aead *geniv = crypto_aead_reqtfm(req);
	struct echainiv_ctx *ctx = crypto_aead_ctx(geniv);
	struct echainiv_request_ctx *rctx = aead_request_ctx(req);
	struct aead_givcrypt_request *subreq = &rctx->subreq;
	unsigned int ivsize = crypto_aead_ivsize(geniv);
	crypto_completion_t compl;
	void *data;
	u8 *info;
	__be64 seq;
	int err;

	compl = req->base.complete;
	data = req->base.data;

	rctx->ivsg = scatterwalk_ffwd(rctx->ivbuf, req->dst, req->assoclen);
	info = PageHighMem(sg_page(rctx->ivsg)) ? NULL : sg_virt(rctx->ivsg);

	if (!info) {
		info = kmalloc(ivsize, req->base.flags &
				       CRYPTO_TFM_REQ_MAY_SLEEP ? GFP_KERNEL:
								  GFP_ATOMIC);
		if (!info)
			return -ENOMEM;

		compl = echainiv_encrypt_compat_complete;
		data = req;
	}

	memcpy(&seq, req->iv + ivsize - sizeof(seq), sizeof(seq));

	aead_givcrypt_set_tfm(subreq, ctx->child);
	aead_givcrypt_set_callback(subreq, req->base.flags,
				   req->base.complete, req->base.data);
	aead_givcrypt_set_crypt(subreq,
				scatterwalk_ffwd(rctx->src, req->src,
						 req->assoclen + ivsize),
				scatterwalk_ffwd(rctx->dst, rctx->ivsg,
						 ivsize),
				req->cryptlen - ivsize, req->iv);
	aead_givcrypt_set_assoc(subreq, req->src, req->assoclen);
	aead_givcrypt_set_giv(subreq, info, be64_to_cpu(seq));

	err = crypto_aead_givencrypt(subreq);
	if (unlikely(PageHighMem(sg_page(rctx->ivsg))))
		echainiv_encrypt_compat_complete2(req, err);
	return err;
}

static int echainiv_encrypt(struct aead_request *req)
{
	struct crypto_aead *geniv = crypto_aead_reqtfm(req);
	struct echainiv_ctx *ctx = crypto_aead_ctx(geniv);
	struct aead_request *subreq = aead_request_ctx(req);
	crypto_completion_t compl;
	void *data;
	u8 *info;
	unsigned int ivsize;
	int err;

	aead_request_set_tfm(subreq, ctx->child);

	compl = echainiv_encrypt_complete;
	data = req;
	info = req->iv;

	ivsize = crypto_aead_ivsize(geniv);

	if (req->src != req->dst) {
		struct scatterlist src[2];
		struct scatterlist dst[2];
		struct blkcipher_desc desc = {
			.tfm = ctx->null,
		};

		err = crypto_blkcipher_encrypt(
			&desc,
			scatterwalk_ffwd(dst, req->dst,
					 req->assoclen + ivsize),
			scatterwalk_ffwd(src, req->src,
					 req->assoclen + ivsize),
			req->cryptlen - ivsize);
		if (err)
			return err;
	}

	if (unlikely(!IS_ALIGNED((unsigned long)info,
				 crypto_aead_alignmask(geniv) + 1))) {
		info = kmalloc(ivsize, req->base.flags &
				       CRYPTO_TFM_REQ_MAY_SLEEP ? GFP_KERNEL:
								  GFP_ATOMIC);
		if (!info)
			return -ENOMEM;

		memcpy(info, req->iv, ivsize);
	}

	aead_request_set_callback(subreq, req->base.flags, compl, data);
	aead_request_set_crypt(subreq, req->dst, req->dst,
			       req->cryptlen - ivsize, info);
	aead_request_set_ad(subreq, req->assoclen + ivsize, 0);

	crypto_xor(info, ctx->salt, ivsize);
	scatterwalk_map_and_copy(info, req->dst, req->assoclen, ivsize, 1);
	echainiv_read_iv(info, ivsize);

	err = crypto_aead_encrypt(subreq);
	echainiv_encrypt_complete2(req, err);
	return err;
}

static int echainiv_decrypt_compat(struct aead_request *req)
{
	struct crypto_aead *geniv = crypto_aead_reqtfm(req);
	struct echainiv_ctx *ctx = crypto_aead_ctx(geniv);
	struct aead_request *subreq = aead_request_ctx(req);
	crypto_completion_t compl;
	void *data;
	unsigned int ivsize;

	aead_request_set_tfm(subreq, ctx->child);

	compl = req->base.complete;
	data = req->base.data;

	ivsize = crypto_aead_ivsize(geniv);

	aead_request_set_callback(subreq, req->base.flags, compl, data);
	aead_request_set_crypt(subreq, req->src, req->dst,
			       req->cryptlen - ivsize, req->iv);
	aead_request_set_ad(subreq, req->assoclen, ivsize);

	scatterwalk_map_and_copy(req->iv, req->src, req->assoclen, ivsize, 0);

	return crypto_aead_decrypt(subreq);
}

static int echainiv_decrypt(struct aead_request *req)
{
	struct crypto_aead *geniv = crypto_aead_reqtfm(req);
	struct echainiv_ctx *ctx = crypto_aead_ctx(geniv);
	struct aead_request *subreq = aead_request_ctx(req);
	crypto_completion_t compl;
	void *data;
	unsigned int ivsize;

	aead_request_set_tfm(subreq, ctx->child);

	compl = req->base.complete;
	data = req->base.data;

	ivsize = crypto_aead_ivsize(geniv);

	aead_request_set_callback(subreq, req->base.flags, compl, data);
	aead_request_set_crypt(subreq, req->src, req->dst,
			       req->cryptlen - ivsize, req->iv);
	aead_request_set_ad(subreq, req->assoclen + ivsize, 0);

	scatterwalk_map_and_copy(req->iv, req->src, req->assoclen, ivsize, 0);
	if (req->src != req->dst)
		scatterwalk_map_and_copy(req->iv, req->dst,
					 req->assoclen, ivsize, 1);

	return crypto_aead_decrypt(subreq);
}

static int echainiv_encrypt_compat_first(struct aead_request *req)
{
	struct crypto_aead *geniv = crypto_aead_reqtfm(req);
	struct echainiv_ctx *ctx = crypto_aead_ctx(geniv);
	int err = 0;

	spin_lock_bh(&ctx->lock);
	if (geniv->encrypt != echainiv_encrypt_compat_first)
		goto unlock;

	geniv->encrypt = echainiv_encrypt_compat;
	err = crypto_rng_get_bytes(crypto_default_rng, ctx->salt,
				   crypto_aead_ivsize(geniv));

unlock:
	spin_unlock_bh(&ctx->lock);

	if (err)
		return err;

	return echainiv_encrypt_compat(req);
}

static int echainiv_encrypt_first(struct aead_request *req)
{
	struct crypto_aead *geniv = crypto_aead_reqtfm(req);
	struct echainiv_ctx *ctx = crypto_aead_ctx(geniv);
	int err = 0;

	spin_lock_bh(&ctx->lock);
	if (geniv->encrypt != echainiv_encrypt_first)
		goto unlock;

	geniv->encrypt = echainiv_encrypt;
	err = crypto_rng_get_bytes(crypto_default_rng, ctx->salt,
				   crypto_aead_ivsize(geniv));

unlock:
	spin_unlock_bh(&ctx->lock);

	if (err)
		return err;

	return echainiv_encrypt(req);
}

static int echainiv_compat_init(struct crypto_tfm *tfm)
{
	struct crypto_aead *geniv = __crypto_aead_cast(tfm);
	struct echainiv_ctx *ctx = crypto_aead_ctx(geniv);
	int err;

	spin_lock_init(&ctx->lock);

	crypto_aead_set_reqsize(geniv, sizeof(struct echainiv_request_ctx));

	err = aead_geniv_init(tfm);

	ctx->child = geniv->child;
	geniv->child = geniv;

	return err;
}

static int echainiv_init(struct crypto_tfm *tfm)
{
	struct crypto_aead *geniv = __crypto_aead_cast(tfm);
	struct echainiv_ctx *ctx = crypto_aead_ctx(geniv);
	int err;

	spin_lock_init(&ctx->lock);

	crypto_aead_set_reqsize(geniv, sizeof(struct aead_request));

	ctx->null = crypto_get_default_null_skcipher();
	err = PTR_ERR(ctx->null);
	if (IS_ERR(ctx->null))
		goto out;

	err = aead_geniv_init(tfm);
	if (err)
		goto drop_null;

	ctx->child = geniv->child;
	geniv->child = geniv;

out:
	return err;

drop_null:
	crypto_put_default_null_skcipher();
	goto out;
}

static void echainiv_compat_exit(struct crypto_tfm *tfm)
{
	struct echainiv_ctx *ctx = crypto_tfm_ctx(tfm);

	crypto_free_aead(ctx->child);
}

static void echainiv_exit(struct crypto_tfm *tfm)
{
	struct echainiv_ctx *ctx = crypto_tfm_ctx(tfm);

	crypto_free_aead(ctx->child);
	crypto_put_default_null_skcipher();
}

static struct crypto_template echainiv_tmpl;

static struct crypto_instance *echainiv_aead_alloc(struct rtattr **tb)
{
	struct aead_instance *inst;
	struct crypto_aead_spawn *spawn;
	struct aead_alg *alg;

	inst = aead_geniv_alloc(&echainiv_tmpl, tb, 0, 0);

	if (IS_ERR(inst))
		goto out;

	if (inst->alg.ivsize < sizeof(u64) ||
	    inst->alg.ivsize & (sizeof(u32) - 1) ||
	    inst->alg.ivsize > MAX_IV_SIZE) {
		aead_geniv_free(inst);
		inst = ERR_PTR(-EINVAL);
		goto out;
	}

	spawn = aead_instance_ctx(inst);
	alg = crypto_spawn_aead_alg(spawn);

	inst->alg.setkey = echainiv_setkey;
	inst->alg.setauthsize = echainiv_setauthsize;
	inst->alg.encrypt = echainiv_encrypt_first;
	inst->alg.decrypt = echainiv_decrypt;

	inst->alg.base.cra_init = echainiv_init;
	inst->alg.base.cra_exit = echainiv_exit;

	inst->alg.base.cra_alignmask |= __alignof__(u32) - 1;
	inst->alg.base.cra_ctxsize = sizeof(struct echainiv_ctx);
	inst->alg.base.cra_ctxsize += inst->alg.base.cra_aead.ivsize;

	if (alg->base.cra_aead.encrypt) {
		inst->alg.encrypt = echainiv_encrypt_compat_first;
		inst->alg.decrypt = echainiv_decrypt_compat;

		inst->alg.base.cra_init = echainiv_compat_init;
		inst->alg.base.cra_exit = echainiv_compat_exit;
	}

out:
	return aead_crypto_instance(inst);
}

static struct crypto_instance *echainiv_alloc(struct rtattr **tb)
{
	struct crypto_instance *inst;
	int err;

	err = crypto_get_default_rng();
	if (err)
		return ERR_PTR(err);

	inst = echainiv_aead_alloc(tb);

	if (IS_ERR(inst))
		goto put_rng;

out:
	return inst;

put_rng:
	crypto_put_default_rng();
	goto out;
}

static void echainiv_free(struct crypto_instance *inst)
{
	aead_geniv_free(aead_instance(inst));
	crypto_put_default_rng();
}

static struct crypto_template echainiv_tmpl = {
	.name = "echainiv",
	.alloc = echainiv_alloc,
	.free = echainiv_free,
	.module = THIS_MODULE,
};

static int __init echainiv_module_init(void)
{
	return crypto_register_template(&echainiv_tmpl);
}

static void __exit echainiv_module_exit(void)
{
	crypto_unregister_template(&echainiv_tmpl);
}

module_init(echainiv_module_init);
module_exit(echainiv_module_exit);

MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Encrypted Chain IV Generator");
MODULE_ALIAS_CRYPTO("echainiv");