/*
* Cryptographic API for algorithms (i.e., low-level API).
*
* Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 2 of the License, or (at your option)
* any later version.
*
*/
#include <crypto/algapi.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/fips.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/module.h>
#include <linux/rtnetlink.h>
#include <linux/slab.h>
#include <linux/string.h>
#include "internal.h"
static LIST_HEAD(crypto_template_list);
static inline int crypto_set_driver_name(struct crypto_alg *alg)
{
static const char suffix[] = "-generic";
char *driver_name = alg->cra_driver_name;
int len;
if (*driver_name)
return 0;
len = strlcpy(driver_name, alg->cra_name, CRYPTO_MAX_ALG_NAME);
if (len + sizeof(suffix) > CRYPTO_MAX_ALG_NAME)
return -ENAMETOOLONG;
memcpy(driver_name + len, suffix, sizeof(suffix));
return 0;
}
static inline void crypto_check_module_sig(struct module *mod)
{
if (fips_enabled && mod && !module_sig_ok(mod))
panic("Module %s signature verification failed in FIPS mode\n",
module_name(mod));
}
static int crypto_check_alg(struct crypto_alg *alg)
{
crypto_check_module_sig(alg->cra_module);
if (alg->cra_alignmask & (alg->cra_alignmask + 1))
return -EINVAL;
/* General maximums for all algs. */
if (alg->cra_alignmask > MAX_ALGAPI_ALIGNMASK)
return -EINVAL;
if (alg->cra_blocksize > MAX_ALGAPI_BLOCKSIZE)
return -EINVAL;
/* Lower maximums for specific alg types. */
if (!alg->cra_type && (alg->cra_flags & CRYPTO_ALG_TYPE_MASK) ==
CRYPTO_ALG_TYPE_CIPHER) {
if (alg->cra_alignmask > MAX_CIPHER_ALIGNMASK)
return -EINVAL;
if (alg->cra_blocksize > MAX_CIPHER_BLOCKSIZE)
return -EINVAL;
}
if (alg->cra_priority < 0)
return -EINVAL;
refcount_set(&alg->cra_refcnt, 1);
return crypto_set_driver_name(alg);
}
static void crypto_free_instance(struct crypto_instance *inst)
{
if (!inst->alg.cra_type->free) {
inst->tmpl->free(inst);
return;
}
inst->alg.cra_type->free(inst);
}
static void crypto_destroy_instance(struct crypto_alg *alg)
{
struct crypto_instance *inst = (void *)alg;
struct crypto_template *tmpl = inst->tmpl;
crypto_free_instance(inst);
crypto_tmpl_put(tmpl);
}
static struct list_head *crypto_more_spawns(struct crypto_alg *alg,
struct list_head *stack,
struct list_head *top,
struct list_head *secondary_spawns)
{
struct crypto_spawn *spawn, *n;
spawn = list_first_entry_or_null(stack, struct crypto_spawn, list);
if (!spawn)
return NULL;
n = list_next_entry(spawn, list);
if (spawn->alg && &n->list != stack && !n->alg)
n->alg = (n->list.next == stack) ? alg :
&list_next_entry(n, list)->inst->alg;
list_move(&spawn->list, secondary_spawns);
return &n->list == stack ? top : &n->inst->alg.cra_users;
}
static void crypto_remove_instance(struct crypto_instance *inst,
struct list_head *list)
{
struct crypto_template *tmpl = inst->tmpl;
if (crypto_is_dead(&inst->alg))
return;
inst->alg.cra_flags |= CRYPTO_ALG_DEAD;
if (hlist_unhashed(&inst->list))
return;
if (!tmpl || !crypto_tmpl_get(tmpl))
return;
list_move(&inst->alg.cra_list, list);
hlist_del(&inst->list);
inst->alg.cra_destroy = crypto_destroy_instance;
BUG_ON(!list_empty(&inst->alg.cra_users));
}
void crypto_remove_spawns(struct crypto_alg *alg, struct list_head *list,
struct crypto_alg *nalg)
{
u32 new_type = (nalg ?: alg)->cra_flags;
struct crypto_spawn *spawn, *n;
LIST_HEAD(secondary_spawns);
struct list_head *spawns;
LIST_HEAD(stack);
LIST_HEAD(top);
spawns = &alg->cra_users;
list_for_each_entry_safe(spawn, n, spawns, list) {
if ((spawn->alg->cra_flags ^ new_type) & spawn->mask)
continue;
list_move(&spawn->list, &top);
}
spawns = ⊤
do {
while (!list_empty(spawns)) {
struct crypto_instance *inst;
spawn = list_first_entry(spawns, struct crypto_spawn,
list);
inst = spawn->inst;
BUG_ON(&inst->alg == alg);
list_move(&spawn->list, &stack);
if (&inst->alg == nalg)
break;
spawn->alg = NULL;
spawns = &inst->alg.cra_users;
/*
* We may encounter an unregistered instance here, since
* an instance's spawns are set up prior to the instance
* being registered. An unregistered instance will have
* NULL ->cra_users.next, since ->cra_users isn't
* properly initialized until registration. But an
* unregistered instance cannot have any users, so treat
* it the same as ->cra_users being empty.
*/
if (spawns->next == NULL)
break;
}
} while ((spawns = crypto_more_spawns(alg, &stack, &top,
&secondary_spawns)));
list_for_each_entry_safe(spawn, n, &secondary_spawns, list) {
if (spawn->alg)
list_move(&spawn->list, &spawn->alg->cra_users);
else
crypto_remove_instance(spawn->inst, list);
}
}
EXPORT_SYMBOL_GPL(crypto_remove_spawns);
static struct crypto_larval *__crypto_register_alg(struct crypto_alg *alg)
{
struct crypto_alg *q;
struct crypto_larval *larval;
int ret = -EAGAIN;
if (crypto_is_dead(alg))
goto err;
INIT_LIST_HEAD(&alg->cra_users);
/* No cheating! */
alg->cra_flags &= ~CRYPTO_ALG_TESTED;
ret = -EEXIST;
list_for_each_entry(q, &crypto_alg_list, cra_list) {
if (q == alg)
goto err;
if (crypto_is_moribund(q))
continue;
if (crypto_is_larval(q)) {
if (!strcmp(alg->cra_driver_name, q->cra_driver_name))
goto err;
continue;
}
if (!strcmp(q->cra_driver_name, alg->cra_name) ||
!strcmp(q->cra_name, alg->cra_driver_name))
goto err;
}
larval = crypto_larval_alloc(alg->cra_name,
alg->cra_flags | CRYPTO_ALG_TESTED, 0);
if (IS_ERR(larval))
goto out;
ret = -ENOENT;
larval->adult = crypto_mod_get(alg);
if (!larval->adult)
goto free_larval;
refcount_set(&larval->alg.cra_refcnt, 1);
memcpy(larval->alg.cra_driver_name, alg->cra_driver_name,
CRYPTO_MAX_ALG_NAME);
larval->alg.cra_priority = alg->cra_priority;
list_add(&alg->cra_list, &crypto_alg_list);
list_add(&larval->alg.cra_list, &crypto_alg_list);
crypto_stats_init(alg);
out:
return larval;
free_larval:
kfree(larval);
err:
larval = ERR_PTR(ret);
goto out;
}
void crypto_alg_tested(const char *name, int err)
{
struct crypto_larval *test;
struct crypto_alg *alg;
struct crypto_alg *q;
LIST_HEAD(list);
down_write(&crypto_alg_sem);
list_for_each_entry(q, &crypto_alg_list, cra_list) {
if (crypto_is_moribund(q) || !crypto_is_larval(q))
continue;
test = (struct crypto_larval *)q;
if (!strcmp(q->cra_driver_name, name))
goto found;
}
pr_err("alg: Unexpected test result for %s: %d\n", name, err);
goto unlock;
found:
q->cra_flags |= CRYPTO_ALG_DEAD;
alg = test->adult;
if (err || list_empty(&alg->cra_list))
goto complete;
alg->cra_flags |= CRYPTO_ALG_TESTED;
list_for_each_entry(q, &crypto_alg_list, cra_list) {
if (q == alg)
continue;
if (crypto_is_moribund(q))
continue;
if (crypto_is_larval(q)) {
struct crypto_larval *larval = (void *)q;
/*
* Check to see if either our generic name or
* specific name can satisfy the name requested
* by the larval entry q.
*/
if (strcmp(alg->cra_name, q->cra_name) &&
strcmp(alg->cra_driver_name, q->cra_name))
continue;
if (larval->adult)
continue;
if ((q->cra_flags ^ alg->cra_flags) & larval->mask)
continue;
if (!crypto_mod_get(alg))
continue;
larval->adult = alg;
continue;
}
if (strcmp(alg->cra_name, q->cra_name))
continue;
if (strcmp(alg->cra_driver_name, q->cra_driver_name) &&
q->cra_priority > alg->cra_priority)
continue;
crypto_remove_spawns(q, &list, alg);
}
complete:
complete_all(&test->completion);
unlock:
up_write(&crypto_alg_sem);
crypto_remove_final(&list);
}
EXPORT_SYMBOL_GPL(crypto_alg_tested);
void crypto_remove_final(struct list_head *list)
{
struct crypto_alg *alg;
struct crypto_alg *n;
list_for_each_entry_safe(alg, n, list, cra_list) {
list_del_init(&alg->cra_list);
crypto_alg_put(alg);
}
}
EXPORT_SYMBOL_GPL(crypto_remove_final);
static void crypto_wait_for_test(struct crypto_larval *larval)
{
int err;
err = crypto_probing_notify(CRYPTO_MSG_ALG_REGISTER, larval->adult);
if (err != NOTIFY_STOP) {
if (WARN_ON(err != NOTIFY_DONE))
goto out;
crypto_alg_tested(larval->alg.cra_driver_name, 0);
}
err = wait_for_completion_killable(&larval->completion);
WARN_ON(err);
if (!err)
crypto_probing_notify(CRYPTO_MSG_ALG_LOADED, larval);
out:
crypto_larval_kill(&larval->alg);
}
int crypto_register_alg(struct crypto_alg *alg)
{
struct crypto_larval *larval;
int err;
alg->cra_flags &= ~CRYPTO_ALG_DEAD;
err = crypto_check_alg(alg);
if (err)
return err;
down_write(&crypto_alg_sem);
larval = __crypto_register_alg(alg);
up_write(&crypto_alg_sem);
if (IS_ERR(larval))
return PTR_ERR(larval);
crypto_wait_for_test(larval);
return 0;
}
EXPORT_SYMBOL_GPL(crypto_register_alg);
static int crypto_remove_alg(struct crypto_alg *alg, struct list_head *list)
{
if (unlikely(list_empty(&alg->cra_list)))
return -ENOENT;
alg->cra_flags |= CRYPTO_ALG_DEAD;
list_del_init(&alg->cra_list);
crypto_remove_spawns(alg, list, NULL);
return 0;
}
int crypto_unregister_alg(struct crypto_alg *alg)
{
int ret;
LIST_HEAD(list);
down_write(&crypto_alg_sem);
ret = crypto_remove_alg(alg, &list);
up_write(&crypto_alg_sem);
if (ret)
return ret;
BUG_ON(refcount_read(&alg->cra_refcnt) != 1);
if (alg->cra_destroy)
alg->cra_destroy(alg);
crypto_remove_final(&list);
return 0;
}
EXPORT_SYMBOL_GPL(crypto_unregister_alg);
int crypto_register_algs(struct crypto_alg *algs, int count)
{
int i, ret;
for (i = 0; i < count; i++) {
ret = crypto_register_alg(&algs[i]);
if (ret)
goto err;
}
return 0;
err:
for (--i; i >= 0; --i)
crypto_unregister_alg(&algs[i]);
return ret;
}
EXPORT_SYMBOL_GPL(crypto_register_algs);
int crypto_unregister_algs(struct crypto_alg *algs, int count)
{
int i, ret;
for (i = 0; i < count; i++) {
ret = crypto_unregister_alg(&algs[i]);
if (ret)
pr_err("Failed to unregister %s %s: %d\n",
algs[i].cra_driver_name, algs[i].cra_name, ret);
}
return 0;
}
EXPORT_SYMBOL_GPL(crypto_unregister_algs);
int crypto_register_template(struct crypto_template *tmpl)
{
struct crypto_template *q;
int err = -EEXIST;
down_write(&crypto_alg_sem);
crypto_check_module_sig(tmpl->module);
list_for_each_entry(q, &crypto_template_list, list) {
if (q == tmpl)
goto out;
}
list_add(&tmpl->list, &crypto_template_list);
err = 0;
out:
up_write(&crypto_alg_sem);
return err;
}
EXPORT_SYMBOL_GPL(crypto_register_template);
void crypto_unregister_template(struct crypto_template *tmpl)
{
struct crypto_instance *inst;
struct hlist_node *n;
struct hlist_head *list;
LIST_HEAD(users);
down_write(&crypto_alg_sem);
BUG_ON(list_empty(&tmpl->list));
list_del_init(&tmpl->list);
list = &tmpl->instances;
hlist_for_each_entry(inst, list, list) {
int err = crypto_remove_alg(&inst->alg, &users);
BUG_ON(err);
}
up_write(&crypto_alg_sem);
hlist_for_each_entry_safe(inst, n, list, list) {
BUG_ON(refcount_read(&inst->alg.cra_refcnt) != 1);
crypto_free_instance(inst);
}
crypto_remove_final(&users);
}
EXPORT_SYMBOL_GPL(crypto_unregister_template);
static struct crypto_template *__crypto_lookup_template(const char *name)
{
struct crypto_template *q, *tmpl = NULL;
down_read(&crypto_alg_sem);
list_for_each_entry(q, &crypto_template_list, list) {
if (strcmp(q->name, name))
continue;
if (unlikely(!crypto_tmpl_get(q)))
continue;
tmpl = q;
break;
}
up_read(&crypto_alg_sem);
return tmpl;
}
struct crypto_template *crypto_lookup_template(const char *name)
{
return try_then_request_module(__crypto_lookup_template(name),
"crypto-%s", name);
}
EXPORT_SYMBOL_GPL(crypto_lookup_template);
int crypto_register_instance(struct crypto_template *tmpl,
struct crypto_instance *inst)
{
struct crypto_larval *larval;
int err;
err = crypto_check_alg(&inst->alg);
if (err)
return err;
inst->alg.cra_module = tmpl->module;
inst->alg.cra_flags |= CRYPTO_ALG_INSTANCE;
down_write(&crypto_alg_sem);
larval = __crypto_register_alg(&inst->alg);
if (IS_ERR(larval))
goto unlock;
hlist_add_head(&inst->list, &tmpl->instances);
inst->tmpl = tmpl;
unlock:
up_write(&crypto_alg_sem);
err = PTR_ERR(larval);
if (IS_ERR(larval))
goto err;
crypto_wait_for_test(larval);
err = 0;
err:
return err;
}
EXPORT_SYMBOL_GPL(crypto_register_instance);
int crypto_unregister_instance(struct crypto_instance *inst)
{
LIST_HEAD(list);
down_write(&crypto_alg_sem);
crypto_remove_spawns(&inst->alg, &list, NULL);
crypto_remove_instance(inst, &list);
up_write(&crypto_alg_sem);
crypto_remove_final(&list);
return 0;
}
EXPORT_SYMBOL_GPL(crypto_unregister_instance);
int crypto_init_spawn(struct crypto_spawn *spawn, struct crypto_alg *alg,
struct crypto_instance *inst, u32 mask)
{
int err = -EAGAIN;
if (WARN_ON_ONCE(inst == NULL))
return -EINVAL;
spawn->inst = inst;
spawn->mask = mask;
down_write(&crypto_alg_sem);
if (!crypto_is_moribund(alg)) {
list_add(&spawn->list, &alg->cra_users);
spawn->alg = alg;
err = 0;
}
up_write(&crypto_alg_sem);
return err;
}
EXPORT_SYMBOL_GPL(crypto_init_spawn);
int crypto_init_spawn2(struct crypto_spawn *spawn, struct crypto_alg *alg,
struct crypto_instance *inst,
const struct crypto_type *frontend)
{
int err = -EINVAL;
if ((alg->cra_flags ^ frontend->type) & frontend->maskset)
goto out;
spawn->frontend = frontend;
err = crypto_init_spawn(spawn, alg, inst, frontend->maskset);
out:
return err;
}
EXPORT_SYMBOL_GPL(crypto_init_spawn2);
int crypto_grab_spawn(struct crypto_spawn *spawn, const char *name,
u32 type, u32 mask)
{
struct crypto_alg *alg;
int err;
alg = crypto_find_alg(name, spawn->frontend, type, mask);
if (IS_ERR(alg))
return PTR_ERR(alg);
err = crypto_init_spawn(spawn, alg, spawn->inst, mask);
crypto_mod_put(alg);
return err;
}
EXPORT_SYMBOL_GPL(crypto_grab_spawn);
void crypto_drop_spawn(struct crypto_spawn *spawn)
{
if (!spawn->alg)
return;
down_write(&crypto_alg_sem);
list_del(&spawn->list);
up_write(&crypto_alg_sem);
}
EXPORT_SYMBOL_GPL(crypto_drop_spawn);
static struct crypto_alg *crypto_spawn_alg(struct crypto_spawn *spawn)
{
struct crypto_alg *alg;
struct crypto_alg *alg2;
down_read(&crypto_alg_sem);
alg = spawn->alg;
alg2 = alg;
if (alg2)
alg2 = crypto_mod_get(alg2);
up_read(&crypto_alg_sem);
if (!alg2) {
if (alg)
crypto_shoot_alg(alg);
return ERR_PTR(-EAGAIN);
}
return alg;
}
struct crypto_tfm *crypto_spawn_tfm(struct crypto_spawn *spawn, u32 type,
u32 mask)
{
struct crypto_alg *alg;
struct crypto_tfm *tfm;
alg = crypto_spawn_alg(spawn);
if (IS_ERR(alg))
return ERR_CAST(alg);
tfm = ERR_PTR(-EINVAL);
if (unlikely((alg->cra_flags ^ type) & mask))
goto out_put_alg;
tfm = __crypto_alloc_tfm(alg, type, mask);
if (IS_ERR(tfm))
goto out_put_alg;
return tfm;
out_put_alg:
crypto_mod_put(alg);
return tfm;
}
EXPORT_SYMBOL_GPL(crypto_spawn_tfm);
void *crypto_spawn_tfm2(struct crypto_spawn *spawn)
{
struct crypto_alg *alg;
struct crypto_tfm *tfm;
alg = crypto_spawn_alg(spawn);
if (IS_ERR(alg))
return ERR_CAST(alg);
tfm = crypto_create_tfm(alg, spawn->frontend);
if (IS_ERR(tfm))
goto out_put_alg;
return tfm;
out_put_alg:
crypto_mod_put(alg);
return tfm;
}
EXPORT_SYMBOL_GPL(crypto_spawn_tfm2);
int crypto_register_notifier(struct notifier_block *nb)
{
return blocking_notifier_chain_register(&crypto_chain, nb);
}
EXPORT_SYMBOL_GPL(crypto_register_notifier);
int crypto_unregister_notifier(struct notifier_block *nb)
{
return blocking_notifier_chain_unregister(&crypto_chain, nb);
}
EXPORT_SYMBOL_GPL(crypto_unregister_notifier);
struct crypto_attr_type *crypto_get_attr_type(struct rtattr **tb)
{
struct rtattr *rta = tb[0];
struct crypto_attr_type *algt;
if (!rta)
return ERR_PTR(-ENOENT);
if (RTA_PAYLOAD(rta) < sizeof(*algt))
return ERR_PTR(-EINVAL);
if (rta->rta_type != CRYPTOA_TYPE)
return ERR_PTR(-EINVAL);
algt = RTA_DATA(rta);
return algt;
}
EXPORT_SYMBOL_GPL(crypto_get_attr_type);
int crypto_check_attr_type(struct rtattr **tb, u32 type)
{
struct crypto_attr_type *algt;
algt = crypto_get_attr_type(tb);
if (IS_ERR(algt))
return PTR_ERR(algt);
if ((algt->type ^ type) & algt->mask)
return -EINVAL;
return 0;
}
EXPORT_SYMBOL_GPL(crypto_check_attr_type);
const char *crypto_attr_alg_name(struct rtattr *rta)
{
struct crypto_attr_alg *alga;
if (!rta)
return ERR_PTR(-ENOENT);
if (RTA_PAYLOAD(rta) < sizeof(*alga))
return ERR_PTR(-EINVAL);
if (rta->rta_type != CRYPTOA_ALG)
return ERR_PTR(-EINVAL);
alga = RTA_DATA(rta);
alga->name[CRYPTO_MAX_ALG_NAME - 1] = 0;
return alga->name;
}
EXPORT_SYMBOL_GPL(crypto_attr_alg_name);
struct crypto_alg *crypto_attr_alg2(struct rtattr *rta,
const struct crypto_type *frontend,
u32 type, u32 mask)
{
const char *name;
name = crypto_attr_alg_name(rta);
if (IS_ERR(name))
return ERR_CAST(name);
return crypto_find_alg(name, frontend, type, mask);
}
EXPORT_SYMBOL_GPL(crypto_attr_alg2);
int crypto_attr_u32(struct rtattr *rta, u32 *num)
{
struct crypto_attr_u32 *nu32;
if (!rta)
return -ENOENT;
if (RTA_PAYLOAD(rta) < sizeof(*nu32))
return -EINVAL;
if (rta->rta_type != CRYPTOA_U32)
return -EINVAL;
nu32 = RTA_DATA(rta);
*num = nu32->num;
return 0;
}
EXPORT_SYMBOL_GPL(crypto_attr_u32);
int crypto_inst_setname(struct crypto_instance *inst, const char *name,
struct crypto_alg *alg)
{
if (snprintf(inst->alg.cra_name, CRYPTO_MAX_ALG_NAME, "%s(%s)", name,
alg->cra_name) >= CRYPTO_MAX_ALG_NAME)
return -ENAMETOOLONG;
if (snprintf(inst->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s(%s)",
name, alg->cra_driver_name) >= CRYPTO_MAX_ALG_NAME)
return -ENAMETOOLONG;
return 0;
}
EXPORT_SYMBOL_GPL(crypto_inst_setname);
void *crypto_alloc_instance(const char *name, struct crypto_alg *alg,
unsigned int head)
{
struct crypto_instance *inst;
char *p;
int err;
p = kzalloc(head + sizeof(*inst) + sizeof(struct crypto_spawn),
GFP_KERNEL);
if (!p)
return ERR_PTR(-ENOMEM);
inst = (void *)(p + head);
err = crypto_inst_setname(inst, name, alg);
if (err)
goto err_free_inst;
return p;
err_free_inst:
kfree(p);
return ERR_PTR(err);
}
EXPORT_SYMBOL_GPL(crypto_alloc_instance);
void crypto_init_queue(struct crypto_queue *queue, unsigned int max_qlen)
{
INIT_LIST_HEAD(&queue->list);
queue->backlog = &queue->list;
queue->qlen = 0;
queue->max_qlen = max_qlen;
}
EXPORT_SYMBOL_GPL(crypto_init_queue);
int crypto_enqueue_request(struct crypto_queue *queue,
struct crypto_async_request *request)
{
int err = -EINPROGRESS;
if (unlikely(queue->qlen >= queue->max_qlen)) {
if (!(request->flags & CRYPTO_TFM_REQ_MAY_BACKLOG)) {
err = -ENOSPC;
goto out;
}
err = -EBUSY;
if (queue->backlog == &queue->list)
queue->backlog = &request->list;
}
queue->qlen++;
list_add_tail(&request->list, &queue->list);
out:
return err;
}
EXPORT_SYMBOL_GPL(crypto_enqueue_request);
struct crypto_async_request *crypto_dequeue_request(struct crypto_queue *queue)
{
struct list_head *request;
if (unlikely(!queue->qlen))
return NULL;
queue->qlen--;
if (queue->backlog != &queue->list)
queue->backlog = queue->backlog->next;
request = queue->list.next;
list_del(request);
return list_entry(request, struct crypto_async_request, list);
}
EXPORT_SYMBOL_GPL(crypto_dequeue_request);
int crypto_tfm_in_queue(struct crypto_queue *queue, struct crypto_tfm *tfm)
{
struct crypto_async_request *req;
list_for_each_entry(req, &queue->list, list) {
if (req->tfm == tfm)
return 1;
}
return 0;
}
EXPORT_SYMBOL_GPL(crypto_tfm_in_queue);
static inline void crypto_inc_byte(u8 *a, unsigned int size)
{
u8 *b = (a + size);
u8 c;
for (; size; size--) {
c = *--b + 1;
*b = c;
if (c)
break;
}
}
void crypto_inc(u8 *a, unsigned int size)
{
__be32 *b = (__be32 *)(a + size);
u32 c;
if (IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) ||
IS_ALIGNED((unsigned long)b, __alignof__(*b)))
for (; size >= 4; size -= 4) {
c = be32_to_cpu(*--b) + 1;
*b = cpu_to_be32(c);
if (likely(c))
return;
}
crypto_inc_byte(a, size);
}
EXPORT_SYMBOL_GPL(crypto_inc);
void __crypto_xor(u8 *dst, const u8 *src1, const u8 *src2, unsigned int len)
{
int relalign = 0;
if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) {
int size = sizeof(unsigned long);
int d = (((unsigned long)dst ^ (unsigned long)src1) |
((unsigned long)dst ^ (unsigned long)src2)) &
(size - 1);
relalign = d ? 1 << __ffs(d) : size;
/*
* If we care about alignment, process as many bytes as
* needed to advance dst and src to values whose alignments
* equal their relative alignment. This will allow us to
* process the remainder of the input using optimal strides.
*/
while (((unsigned long)dst & (relalign - 1)) && len > 0) {
*dst++ = *src1++ ^ *src2++;
len--;
}
}
while (IS_ENABLED(CONFIG_64BIT) && len >= 8 && !(relalign & 7)) {
*(u64 *)dst = *(u64 *)src1 ^ *(u64 *)src2;
dst += 8;
src1 += 8;
src2 += 8;
len -= 8;
}
while (len >= 4 && !(relalign & 3)) {
*(u32 *)dst = *(u32 *)src1 ^ *(u32 *)src2;
dst += 4;
src1 += 4;
src2 += 4;
len -= 4;
}
while (len >= 2 && !(relalign & 1)) {
*(u16 *)dst = *(u16 *)src1 ^ *(u16 *)src2;
dst += 2;
src1 += 2;
src2 += 2;
len -= 2;
}
while (len--)
*dst++ = *src1++ ^ *src2++;
}
EXPORT_SYMBOL_GPL(__crypto_xor);
unsigned int crypto_alg_extsize(struct crypto_alg *alg)
{
return alg->cra_ctxsize +
(alg->cra_alignmask & ~(crypto_tfm_ctx_alignment() - 1));
}
EXPORT_SYMBOL_GPL(crypto_alg_extsize);
int crypto_type_has_alg(const char *name, const struct crypto_type *frontend,
u32 type, u32 mask)
{
int ret = 0;
struct crypto_alg *alg = crypto_find_alg(name, frontend, type, mask);
if (!IS_ERR(alg)) {
crypto_mod_put(alg);
ret = 1;
}
return ret;
}
EXPORT_SYMBOL_GPL(crypto_type_has_alg);
#ifdef CONFIG_CRYPTO_STATS
void crypto_stats_init(struct crypto_alg *alg)
{
memset(&alg->stats, 0, sizeof(alg->stats));
}
EXPORT_SYMBOL_GPL(crypto_stats_init);
void crypto_stats_get(struct crypto_alg *alg)
{
crypto_alg_get(alg);
}
EXPORT_SYMBOL_GPL(crypto_stats_get);
void crypto_stats_ablkcipher_encrypt(unsigned int nbytes, int ret,
struct crypto_alg *alg)
{
if (ret && ret != -EINPROGRESS && ret != -EBUSY) {
atomic64_inc(&alg->stats.cipher.err_cnt);
} else {
atomic64_inc(&alg->stats.cipher.encrypt_cnt);
atomic64_add(nbytes, &alg->stats.cipher.encrypt_tlen);
}
crypto_alg_put(alg);
}
EXPORT_SYMBOL_GPL(crypto_stats_ablkcipher_encrypt);
void crypto_stats_ablkcipher_decrypt(unsigned int nbytes, int ret,
struct crypto_alg *alg)
{
if (ret && ret != -EINPROGRESS && ret != -EBUSY) {
atomic64_inc(&alg->stats.cipher.err_cnt);
} else {
atomic64_inc(&alg->stats.cipher.decrypt_cnt);
atomic64_add(nbytes, &alg->stats.cipher.decrypt_tlen);
}
crypto_alg_put(alg);
}
EXPORT_SYMBOL_GPL(crypto_stats_ablkcipher_decrypt);
void crypto_stats_aead_encrypt(unsigned int cryptlen, struct crypto_alg *alg,
int ret)
{
if (ret && ret != -EINPROGRESS && ret != -EBUSY) {
atomic64_inc(&alg->stats.aead.err_cnt);
} else {
atomic64_inc(&alg->stats.aead.encrypt_cnt);
atomic64_add(cryptlen, &alg->stats.aead.encrypt_tlen);
}
crypto_alg_put(alg);
}
EXPORT_SYMBOL_GPL(crypto_stats_aead_encrypt);
void crypto_stats_aead_decrypt(unsigned int cryptlen, struct crypto_alg *alg,
int ret)
{
if (ret && ret != -EINPROGRESS && ret != -EBUSY) {
atomic64_inc(&alg->stats.aead.err_cnt);
} else {
atomic64_inc(&alg->stats.aead.decrypt_cnt);
atomic64_add(cryptlen, &alg->stats.aead.decrypt_tlen);
}
crypto_alg_put(alg);
}
EXPORT_SYMBOL_GPL(crypto_stats_aead_decrypt);
void crypto_stats_akcipher_encrypt(unsigned int src_len, int ret,
struct crypto_alg *alg)
{
if (ret && ret != -EINPROGRESS && ret != -EBUSY) {
atomic64_inc(&alg->stats.akcipher.err_cnt);
} else {
atomic64_inc(&alg->stats.akcipher.encrypt_cnt);
atomic64_add(src_len, &alg->stats.akcipher.encrypt_tlen);
}
crypto_alg_put(alg);
}
EXPORT_SYMBOL_GPL(crypto_stats_akcipher_encrypt);
void crypto_stats_akcipher_decrypt(unsigned int src_len, int ret,
struct crypto_alg *alg)
{
if (ret && ret != -EINPROGRESS && ret != -EBUSY) {
atomic64_inc(&alg->stats.akcipher.err_cnt);
} else {
atomic64_inc(&alg->stats.akcipher.decrypt_cnt);
atomic64_add(src_len, &alg->stats.akcipher.decrypt_tlen);
}
crypto_alg_put(alg);
}
EXPORT_SYMBOL_GPL(crypto_stats_akcipher_decrypt);
void crypto_stats_akcipher_sign(int ret, struct crypto_alg *alg)
{
if (ret && ret != -EINPROGRESS && ret != -EBUSY)
atomic64_inc(&alg->stats.akcipher.err_cnt);
else
atomic64_inc(&alg->stats.akcipher.sign_cnt);
crypto_alg_put(alg);
}
EXPORT_SYMBOL_GPL(crypto_stats_akcipher_sign);
void crypto_stats_akcipher_verify(int ret, struct crypto_alg *alg)
{
if (ret && ret != -EINPROGRESS && ret != -EBUSY)
atomic64_inc(&alg->stats.akcipher.err_cnt);
else
atomic64_inc(&alg->stats.akcipher.verify_cnt);
crypto_alg_put(alg);
}
EXPORT_SYMBOL_GPL(crypto_stats_akcipher_verify);
void crypto_stats_compress(unsigned int slen, int ret, struct crypto_alg *alg)
{
if (ret && ret != -EINPROGRESS && ret != -EBUSY) {
atomic64_inc(&alg->stats.compress.err_cnt);
} else {
atomic64_inc(&alg->stats.compress.compress_cnt);
atomic64_add(slen, &alg->stats.compress.compress_tlen);
}
crypto_alg_put(alg);
}
EXPORT_SYMBOL_GPL(crypto_stats_compress);
void crypto_stats_decompress(unsigned int slen, int ret, struct crypto_alg *alg)
{
if (ret && ret != -EINPROGRESS && ret != -EBUSY) {
atomic64_inc(&alg->stats.compress.err_cnt);
} else {
atomic64_inc(&alg->stats.compress.decompress_cnt);
atomic64_add(slen, &alg->stats.compress.decompress_tlen);
}
crypto_alg_put(alg);
}
EXPORT_SYMBOL_GPL(crypto_stats_decompress);
void crypto_stats_ahash_update(unsigned int nbytes, int ret,
struct crypto_alg *alg)
{
if (ret && ret != -EINPROGRESS && ret != -EBUSY)
atomic64_inc(&alg->stats.hash.err_cnt);
else
atomic64_add(nbytes, &alg->stats.hash.hash_tlen);
crypto_alg_put(alg);
}
EXPORT_SYMBOL_GPL(crypto_stats_ahash_update);
void crypto_stats_ahash_final(unsigned int nbytes, int ret,
struct crypto_alg *alg)
{
if (ret && ret != -EINPROGRESS && ret != -EBUSY) {
atomic64_inc(&alg->stats.hash.err_cnt);
} else {
atomic64_inc(&alg->stats.hash.hash_cnt);
atomic64_add(nbytes, &alg->stats.hash.hash_tlen);
}
crypto_alg_put(alg);
}
EXPORT_SYMBOL_GPL(crypto_stats_ahash_final);
void crypto_stats_kpp_set_secret(struct crypto_alg *alg, int ret)
{
if (ret)
atomic64_inc(&alg->stats.kpp.err_cnt);
else
atomic64_inc(&alg->stats.kpp.setsecret_cnt);
crypto_alg_put(alg);
}
EXPORT_SYMBOL_GPL(crypto_stats_kpp_set_secret);
void crypto_stats_kpp_generate_public_key(struct crypto_alg *alg, int ret)
{
if (ret)
atomic64_inc(&alg->stats.kpp.err_cnt);
else
atomic64_inc(&alg->stats.kpp.generate_public_key_cnt);
crypto_alg_put(alg);
}
EXPORT_SYMBOL_GPL(crypto_stats_kpp_generate_public_key);
void crypto_stats_kpp_compute_shared_secret(struct crypto_alg *alg, int ret)
{
if (ret)
atomic64_inc(&alg->stats.kpp.err_cnt);
else
atomic64_inc(&alg->stats.kpp.compute_shared_secret_cnt);
crypto_alg_put(alg);
}
EXPORT_SYMBOL_GPL(crypto_stats_kpp_compute_shared_secret);
void crypto_stats_rng_seed(struct crypto_alg *alg, int ret)
{
if (ret && ret != -EINPROGRESS && ret != -EBUSY)
atomic64_inc(&alg->stats.rng.err_cnt);
else
atomic64_inc(&alg->stats.rng.seed_cnt);
crypto_alg_put(alg);
}
EXPORT_SYMBOL_GPL(crypto_stats_rng_seed);
void crypto_stats_rng_generate(struct crypto_alg *alg, unsigned int dlen,
int ret)
{
if (ret && ret != -EINPROGRESS && ret != -EBUSY) {
atomic64_inc(&alg->stats.rng.err_cnt);
} else {
atomic64_inc(&alg->stats.rng.generate_cnt);
atomic64_add(dlen, &alg->stats.rng.generate_tlen);
}
crypto_alg_put(alg);
}
EXPORT_SYMBOL_GPL(crypto_stats_rng_generate);
void crypto_stats_skcipher_encrypt(unsigned int cryptlen, int ret,
struct crypto_alg *alg)
{
if (ret && ret != -EINPROGRESS && ret != -EBUSY) {
atomic64_inc(&alg->stats.cipher.err_cnt);
} else {
atomic64_inc(&alg->stats.cipher.encrypt_cnt);
atomic64_add(cryptlen, &alg->stats.cipher.encrypt_tlen);
}
crypto_alg_put(alg);
}
EXPORT_SYMBOL_GPL(crypto_stats_skcipher_encrypt);
void crypto_stats_skcipher_decrypt(unsigned int cryptlen, int ret,
struct crypto_alg *alg)
{
if (ret && ret != -EINPROGRESS && ret != -EBUSY) {
atomic64_inc(&alg->stats.cipher.err_cnt);
} else {
atomic64_inc(&alg->stats.cipher.decrypt_cnt);
atomic64_add(cryptlen, &alg->stats.cipher.decrypt_tlen);
}
crypto_alg_put(alg);
}
EXPORT_SYMBOL_GPL(crypto_stats_skcipher_decrypt);
#endif
static int __init crypto_algapi_init(void)
{
crypto_init_proc();
return 0;
}
static void __exit crypto_algapi_exit(void)
{
crypto_exit_proc();
}
module_init(crypto_algapi_init);
module_exit(crypto_algapi_exit);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Cryptographic algorithms API");