/* SPDX-License-Identifier: GPL-2.0 */
#ifndef BLK_INTERNAL_H
#define BLK_INTERNAL_H
#include <linux/idr.h>
#include <linux/blk-mq.h>
#include <linux/part_stat.h>
#include <linux/blk-crypto.h>
#include <linux/memblock.h> /* for max_pfn/max_low_pfn */
#include <xen/xen.h>
#include "blk-crypto-internal.h"
#include "blk-mq.h"
#include "blk-mq-sched.h"
/* Max future timer expiry for timeouts */
#define BLK_MAX_TIMEOUT (5 * HZ)
extern struct dentry *blk_debugfs_root;
struct blk_flush_queue {
unsigned int flush_pending_idx:1;
unsigned int flush_running_idx:1;
blk_status_t rq_status;
unsigned long flush_pending_since;
struct list_head flush_queue[2];
struct list_head flush_data_in_flight;
struct request *flush_rq;
spinlock_t mq_flush_lock;
};
extern struct kmem_cache *blk_requestq_cachep;
extern struct kobj_type blk_queue_ktype;
extern struct ida blk_queue_ida;
static inline struct blk_flush_queue *
blk_get_flush_queue(struct request_queue *q, struct blk_mq_ctx *ctx)
{
return blk_mq_map_queue(q, REQ_OP_FLUSH, ctx)->fq;
}
static inline void __blk_get_queue(struct request_queue *q)
{
kobject_get(&q->kobj);
}
bool is_flush_rq(struct request *req);
struct blk_flush_queue *blk_alloc_flush_queue(int node, int cmd_size,
gfp_t flags);
void blk_free_flush_queue(struct blk_flush_queue *q);
void blk_freeze_queue(struct request_queue *q);
#define BIO_INLINE_VECS 4
struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs,
gfp_t gfp_mask);
void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs);
static inline bool biovec_phys_mergeable(struct request_queue *q,
struct bio_vec *vec1, struct bio_vec *vec2)
{
unsigned long mask = queue_segment_boundary(q);
phys_addr_t addr1 = page_to_phys(vec1->bv_page) + vec1->bv_offset;
phys_addr_t addr2 = page_to_phys(vec2->bv_page) + vec2->bv_offset;
if (addr1 + vec1->bv_len != addr2)
return false;
if (xen_domain() && !xen_biovec_phys_mergeable(vec1, vec2->bv_page))
return false;
if ((addr1 | mask) != ((addr2 + vec2->bv_len - 1) | mask))
return false;
return true;
}
static inline bool __bvec_gap_to_prev(struct request_queue *q,
struct bio_vec *bprv, unsigned int offset)
{
return (offset & queue_virt_boundary(q)) ||
((bprv->bv_offset + bprv->bv_len) & queue_virt_boundary(q));
}
/*
* Check if adding a bio_vec after bprv with offset would create a gap in
* the SG list. Most drivers don't care about this, but some do.
*/
static inline bool bvec_gap_to_prev(struct request_queue *q,
struct bio_vec *bprv, unsigned int offset)
{
if (!queue_virt_boundary(q))
return false;
return __bvec_gap_to_prev(q, bprv, offset);
}
#ifdef CONFIG_BLK_DEV_INTEGRITY
void blk_flush_integrity(void);
bool __bio_integrity_endio(struct bio *);
void bio_integrity_free(struct bio *bio);
static inline bool bio_integrity_endio(struct bio *bio)
{
if (bio_integrity(bio))
return __bio_integrity_endio(bio);
return true;
}
bool blk_integrity_merge_rq(struct request_queue *, struct request *,
struct request *);
bool blk_integrity_merge_bio(struct request_queue *, struct request *,
struct bio *);
static inline bool integrity_req_gap_back_merge(struct request *req,
struct bio *next)
{
struct bio_integrity_payload *bip = bio_integrity(req->bio);
struct bio_integrity_payload *bip_next = bio_integrity(next);
return bvec_gap_to_prev(req->q, &bip->bip_vec[bip->bip_vcnt - 1],
bip_next->bip_vec[0].bv_offset);
}
static inline bool integrity_req_gap_front_merge(struct request *req,
struct bio *bio)
{
struct bio_integrity_payload *bip = bio_integrity(bio);
struct bio_integrity_payload *bip_next = bio_integrity(req->bio);
return bvec_gap_to_prev(req->q, &bip->bip_vec[bip->bip_vcnt - 1],
bip_next->bip_vec[0].bv_offset);
}
int blk_integrity_add(struct gendisk *disk);
void blk_integrity_del(struct gendisk *);
#else /* CONFIG_BLK_DEV_INTEGRITY */
static inline bool blk_integrity_merge_rq(struct request_queue *rq,
struct request *r1, struct request *r2)
{
return true;
}
static inline bool blk_integrity_merge_bio(struct request_queue *rq,
struct request *r, struct bio *b)
{
return true;
}
static inline bool integrity_req_gap_back_merge(struct request *req,
struct bio *next)
{
return false;
}
static inline bool integrity_req_gap_front_merge(struct request *req,
struct bio *bio)
{
return false;
}
static inline void blk_flush_integrity(void)
{
}
static inline bool bio_integrity_endio(struct bio *bio)
{
return true;
}
static inline void bio_integrity_free(struct bio *bio)
{
}
static inline int blk_integrity_add(struct gendisk *disk)
{
return 0;
}
static inline void blk_integrity_del(struct gendisk *disk)
{
}
#endif /* CONFIG_BLK_DEV_INTEGRITY */
unsigned long blk_rq_timeout(unsigned long timeout);
void blk_add_timer(struct request *req);
bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
unsigned int nr_segs, struct request **same_queue_rq);
bool blk_bio_list_merge(struct request_queue *q, struct list_head *list,
struct bio *bio, unsigned int nr_segs);
void blk_account_io_start(struct request *req);
void blk_account_io_done(struct request *req, u64 now);
/*
* Internal elevator interface
*/
#define ELV_ON_HASH(rq) ((rq)->rq_flags & RQF_HASHED)
void blk_insert_flush(struct request *rq);
int elevator_switch_mq(struct request_queue *q,
struct elevator_type *new_e);
void __elevator_exit(struct request_queue *, struct elevator_queue *);
int elv_register_queue(struct request_queue *q, bool uevent);
void elv_unregister_queue(struct request_queue *q);
static inline void elevator_exit(struct request_queue *q,
struct elevator_queue *e)
{
lockdep_assert_held(&q->sysfs_lock);
blk_mq_sched_free_requests(q);
__elevator_exit(q, e);
}
ssize_t part_size_show(struct device *dev, struct device_attribute *attr,
char *buf);
ssize_t part_stat_show(struct device *dev, struct device_attribute *attr,
char *buf);
ssize_t part_inflight_show(struct device *dev, struct device_attribute *attr,
char *buf);
ssize_t part_fail_show(struct device *dev, struct device_attribute *attr,
char *buf);
ssize_t part_fail_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count);
ssize_t part_timeout_show(struct device *, struct device_attribute *, char *);
ssize_t part_timeout_store(struct device *, struct device_attribute *,
const char *, size_t);
void __blk_queue_split(struct bio **bio, unsigned int *nr_segs);
int ll_back_merge_fn(struct request *req, struct bio *bio,
unsigned int nr_segs);
bool blk_attempt_req_merge(struct request_queue *q, struct request *rq,
struct request *next);
unsigned int blk_recalc_rq_segments(struct request *rq);
void blk_rq_set_mixed_merge(struct request *rq);
bool blk_rq_merge_ok(struct request *rq, struct bio *bio);
enum elv_merge blk_try_merge(struct request *rq, struct bio *bio);
int blk_dev_init(void);
/*
* Contribute to IO statistics IFF:
*
* a) it's attached to a gendisk, and
* b) the queue had IO stats enabled when this request was started
*/
static inline bool blk_do_io_stat(struct request *rq)
{
return rq->rq_disk && (rq->rq_flags & RQF_IO_STAT);
}
static inline void req_set_nomerge(struct request_queue *q, struct request *req)
{
req->cmd_flags |= REQ_NOMERGE;
if (req == q->last_merge)
q->last_merge = NULL;
}
/*
* The max size one bio can handle is UINT_MAX becasue bvec_iter.bi_size
* is defined as 'unsigned int', meantime it has to aligned to with logical
* block size which is the minimum accepted unit by hardware.
*/
static inline unsigned int bio_allowed_max_sectors(struct request_queue *q)
{
return round_down(UINT_MAX, queue_logical_block_size(q)) >> 9;
}
/*
* The max bio size which is aligned to q->limits.discard_granularity. This
* is a hint to split large discard bio in generic block layer, then if device
* driver needs to split the discard bio into smaller ones, their bi_size can
* be very probably and easily aligned to discard_granularity of the device's
* queue.
*/
static inline unsigned int bio_aligned_discard_max_sectors(
struct request_queue *q)
{
return round_down(UINT_MAX, q->limits.discard_granularity) >>
SECTOR_SHIFT;
}
/*
* Internal io_context interface
*/
void get_io_context(struct io_context *ioc);
struct io_cq *ioc_lookup_icq(struct io_context *ioc, struct request_queue *q);
struct io_cq *ioc_create_icq(struct io_context *ioc, struct request_queue *q,
gfp_t gfp_mask);
void ioc_clear_queue(struct request_queue *q);
int create_task_io_context(struct task_struct *task, gfp_t gfp_mask, int node);
/*
* Internal throttling interface
*/
#ifdef CONFIG_BLK_DEV_THROTTLING
extern int blk_throtl_init(struct request_queue *q);
extern void blk_throtl_exit(struct request_queue *q);
extern void blk_throtl_register_queue(struct request_queue *q);
extern void blk_throtl_charge_bio_split(struct bio *bio);
bool blk_throtl_bio(struct bio *bio);
#else /* CONFIG_BLK_DEV_THROTTLING */
static inline int blk_throtl_init(struct request_queue *q) { return 0; }
static inline void blk_throtl_exit(struct request_queue *q) { }
static inline void blk_throtl_register_queue(struct request_queue *q) { }
static inline void blk_throtl_charge_bio_split(struct bio *bio) { }
static inline bool blk_throtl_bio(struct bio *bio) { return false; }
#endif /* CONFIG_BLK_DEV_THROTTLING */
#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
extern ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page);
extern ssize_t blk_throtl_sample_time_store(struct request_queue *q,
const char *page, size_t count);
extern void blk_throtl_bio_endio(struct bio *bio);
extern void blk_throtl_stat_add(struct request *rq, u64 time);
#else
static inline void blk_throtl_bio_endio(struct bio *bio) { }
static inline void blk_throtl_stat_add(struct request *rq, u64 time) { }
#endif
void __blk_queue_bounce(struct request_queue *q, struct bio **bio);
static inline bool blk_queue_may_bounce(struct request_queue *q)
{
return IS_ENABLED(CONFIG_BOUNCE) &&
q->limits.bounce == BLK_BOUNCE_HIGH &&
max_low_pfn >= max_pfn;
}
static inline void blk_queue_bounce(struct request_queue *q, struct bio **bio)
{
if (unlikely(blk_queue_may_bounce(q) && bio_has_data(*bio)))
__blk_queue_bounce(q, bio);
}
#ifdef CONFIG_BLK_CGROUP_IOLATENCY
extern int blk_iolatency_init(struct request_queue *q);
#else
static inline int blk_iolatency_init(struct request_queue *q) { return 0; }
#endif
struct bio *blk_next_bio(struct bio *bio, unsigned int nr_pages, gfp_t gfp);
#ifdef CONFIG_BLK_DEV_ZONED
void blk_queue_free_zone_bitmaps(struct request_queue *q);
void blk_queue_clear_zone_settings(struct request_queue *q);
#else
static inline void blk_queue_free_zone_bitmaps(struct request_queue *q) {}
static inline void blk_queue_clear_zone_settings(struct request_queue *q) {}
#endif
int blk_alloc_ext_minor(void);
void blk_free_ext_minor(unsigned int minor);
#define ADDPART_FLAG_NONE 0
#define ADDPART_FLAG_RAID 1
#define ADDPART_FLAG_WHOLEDISK 2
int bdev_add_partition(struct gendisk *disk, int partno, sector_t start,
sector_t length);
int bdev_del_partition(struct gendisk *disk, int partno);
int bdev_resize_partition(struct gendisk *disk, int partno, sector_t start,
sector_t length);
int bio_add_hw_page(struct request_queue *q, struct bio *bio,
struct page *page, unsigned int len, unsigned int offset,
unsigned int max_sectors, bool *same_page);
struct request_queue *blk_alloc_queue(int node_id);
int disk_alloc_events(struct gendisk *disk);
void disk_add_events(struct gendisk *disk);
void disk_del_events(struct gendisk *disk);
void disk_release_events(struct gendisk *disk);
extern struct device_attribute dev_attr_events;
extern struct device_attribute dev_attr_events_async;
extern struct device_attribute dev_attr_events_poll_msecs;
static inline void bio_clear_hipri(struct bio *bio)
{
/* can't support alloc cache if we turn off polling */
bio_clear_flag(bio, BIO_PERCPU_CACHE);
bio->bi_opf &= ~REQ_HIPRI;
}
extern const struct address_space_operations def_blk_aops;
#endif /* BLK_INTERNAL_H */