/*
* Budget Fair Queueing (BFQ) I/O scheduler.
*
* Based on ideas and code from CFQ:
* Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
*
* Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
* Paolo Valente <paolo.valente@unimore.it>
*
* Copyright (C) 2010 Paolo Valente <paolo.valente@unimore.it>
* Arianna Avanzini <avanzini@google.com>
*
* Copyright (C) 2017 Paolo Valente <paolo.valente@linaro.org>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of the
* License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* BFQ is a proportional-share I/O scheduler, with some extra
* low-latency capabilities. BFQ also supports full hierarchical
* scheduling through cgroups. Next paragraphs provide an introduction
* on BFQ inner workings. Details on BFQ benefits, usage and
* limitations can be found in Documentation/block/bfq-iosched.txt.
*
* BFQ is a proportional-share storage-I/O scheduling algorithm based
* on the slice-by-slice service scheme of CFQ. But BFQ assigns
* budgets, measured in number of sectors, to processes instead of
* time slices. The device is not granted to the in-service process
* for a given time slice, but until it has exhausted its assigned
* budget. This change from the time to the service domain enables BFQ
* to distribute the device throughput among processes as desired,
* without any distortion due to throughput fluctuations, or to device
* internal queueing. BFQ uses an ad hoc internal scheduler, called
* B-WF2Q+, to schedule processes according to their budgets. More
* precisely, BFQ schedules queues associated with processes. Each
* process/queue is assigned a user-configurable weight, and B-WF2Q+
* guarantees that each queue receives a fraction of the throughput
* proportional to its weight. Thanks to the accurate policy of
* B-WF2Q+, BFQ can afford to assign high budgets to I/O-bound
* processes issuing sequential requests (to boost the throughput),
* and yet guarantee a low latency to interactive and soft real-time
* applications.
*
* In particular, to provide these low-latency guarantees, BFQ
* explicitly privileges the I/O of two classes of time-sensitive
* applications: interactive and soft real-time. This feature enables
* BFQ to provide applications in these classes with a very low
* latency. Finally, BFQ also features additional heuristics for
* preserving both a low latency and a high throughput on NCQ-capable,
* rotational or flash-based devices, and to get the job done quickly
* for applications consisting in many I/O-bound processes.
*
* BFQ is described in [1], where also a reference to the initial, more
* theoretical paper on BFQ can be found. The interested reader can find
* in the latter paper full details on the main algorithm, as well as
* formulas of the guarantees and formal proofs of all the properties.
* With respect to the version of BFQ presented in these papers, this
* implementation adds a few more heuristics, such as the one that
* guarantees a low latency to soft real-time applications, and a
* hierarchical extension based on H-WF2Q+.
*
* B-WF2Q+ is based on WF2Q+, which is described in [2], together with
* H-WF2Q+, while the augmented tree used here to implement B-WF2Q+
* with O(log N) complexity derives from the one introduced with EEVDF
* in [3].
*
* [1] P. Valente, A. Avanzini, "Evolution of the BFQ Storage I/O
* Scheduler", Proceedings of the First Workshop on Mobile System
* Technologies (MST-2015), May 2015.
* http://algogroup.unimore.it/people/paolo/disk_sched/mst-2015.pdf
*
* [2] Jon C.R. Bennett and H. Zhang, "Hierarchical Packet Fair Queueing
* Algorithms", IEEE/ACM Transactions on Networking, 5(5):675-689,
* Oct 1997.
*
* http://www.cs.cmu.edu/~hzhang/papers/TON-97-Oct.ps.gz
*
* [3] I. Stoica and H. Abdel-Wahab, "Earliest Eligible Virtual Deadline
* First: A Flexible and Accurate Mechanism for Proportional Share
* Resource Allocation", technical report.
*
* http://www.cs.berkeley.edu/~istoica/papers/eevdf-tr-95.pdf
*/
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/blkdev.h>
#include <linux/elevator.h>
#include <linux/ktime.h>
#include <linux/rbtree.h>
#include <linux/ioprio.h>
#include <linux/sbitmap.h>
#include <linux/delay.h>
#include "blk.h"
#include "blk-mq.h"
#include "blk-mq-tag.h"
#include "blk-mq-sched.h"
#include <linux/blktrace_api.h>
#include <linux/hrtimer.h>
#include <linux/blk-cgroup.h>
#define BFQ_IOPRIO_CLASSES 3
#define BFQ_CL_IDLE_TIMEOUT (HZ/5)
#define BFQ_MIN_WEIGHT 1
#define BFQ_MAX_WEIGHT 1000
#define BFQ_WEIGHT_CONVERSION_COEFF 10
#define BFQ_DEFAULT_QUEUE_IOPRIO 4
#define BFQ_DEFAULT_GRP_WEIGHT 10
#define BFQ_DEFAULT_GRP_IOPRIO 0
#define BFQ_DEFAULT_GRP_CLASS IOPRIO_CLASS_BE
struct bfq_entity;
/**
* struct bfq_service_tree - per ioprio_class service tree.
*
* Each service tree represents a B-WF2Q+ scheduler on its own. Each
* ioprio_class has its own independent scheduler, and so its own
* bfq_service_tree. All the fields are protected by the queue lock
* of the containing bfqd.
*/
struct bfq_service_tree {
/* tree for active entities (i.e., those backlogged) */
struct rb_root active;
/* tree for idle entities (i.e., not backlogged, with V <= F_i)*/
struct rb_root idle;
/* idle entity with minimum F_i */
struct bfq_entity *first_idle;
/* idle entity with maximum F_i */
struct bfq_entity *last_idle;
/* scheduler virtual time */
u64 vtime;
/* scheduler weight sum; active and idle entities contribute to it */
unsigned long wsum;
};
/**
* struct bfq_sched_data - multi-class scheduler.
*
* bfq_sched_data is the basic scheduler queue. It supports three
* ioprio_classes, and can be used either as a toplevel queue or as
* an intermediate queue on a hierarchical setup.
* @next_in_service points to the active entity of the sched_data
* service trees that will be scheduled next.
*
* The supported ioprio_classes are the same as in CFQ, in descending
* priority order, IOPRIO_CLASS_RT, IOPRIO_CLASS_BE, IOPRIO_CLASS_IDLE.
* Requests from higher priority queues are served before all the
* requests from lower priority queues; among requests of the same
* queue requests are served according to B-WF2Q+.
* All the fields are protected by the queue lock of the containing bfqd.
*/
struct bfq_sched_data {
/* entity in service */
struct bfq_entity *in_service_entity;
/* head-of-the-line entity in the scheduler */
struct bfq_entity *next_in_service;
/* array of service trees, one per ioprio_class */
struct bfq_service_tree service_tree[BFQ_IOPRIO_CLASSES];
};
/**
* struct bfq_entity - schedulable entity.
*
* A bfq_entity is used to represent a bfq_queue (leaf node in the upper
* level scheduler). Each entity belongs to the sched_data of the parent
* group hierarchy. Non-leaf entities have also their own sched_data,
* stored in @my_sched_data.
*
* Each entity stores independently its priority values; this would
* allow different weights on different devices, but this
* functionality is not exported to userspace by now. Priorities and
* weights are updated lazily, first storing the new values into the
* new_* fields, then setting the @prio_changed flag. As soon as
* there is a transition in the entity state that allows the priority
* update to take place the effective and the requested priority
* values are synchronized.
*
* The weight value is calculated from the ioprio to export the same
* interface as CFQ. When dealing with ``well-behaved'' queues (i.e.,
* queues that do not spend too much time to consume their budget
* and have true sequential behavior, and when there are no external
* factors breaking anticipation) the relative weights at each level
* of the hierarchy should be guaranteed. All the fields are
* protected by the queue lock of the containing bfqd.
*/
struct bfq_entity {
/* service_tree member */
struct rb_node rb_node;
/*
* flag, true if the entity is on a tree (either the active or
* the idle one of its service_tree).
*/
int on_st;
/* B-WF2Q+ start and finish timestamps [sectors/weight] */
u64 start, finish;
/* tree the entity is enqueued into; %NULL if not on a tree */
struct rb_root *tree;
/*
* minimum start time of the (active) subtree rooted at this
* entity; used for O(log N) lookups into active trees
*/
u64 min_start;
/* amount of service received during the last service slot */
int service;
/* budget, used also to calculate F_i: F_i = S_i + @budget / @weight */
int budget;
/* weight of the queue */
int weight;
/* next weight if a change is in progress */
int new_weight;
/* original weight, used to implement weight boosting */
int orig_weight;
/* parent entity, for hierarchical scheduling */
struct bfq_entity *parent;
/*
* For non-leaf nodes in the hierarchy, the associated
* scheduler queue, %NULL on leaf nodes.
*/
struct bfq_sched_data *my_sched_data;
/* the scheduler queue this entity belongs to */
struct bfq_sched_data *sched_data;
/* flag, set to request a weight, ioprio or ioprio_class change */
int prio_changed;
};
/**
* struct bfq_ttime - per process thinktime stats.
*/
struct bfq_ttime {
/* completion time of the last request */
u64 last_end_request;
/* total process thinktime */
u64 ttime_total;
/* number of thinktime samples */
unsigned long ttime_samples;
/* average process thinktime */
u64 ttime_mean;
};
/**
* struct bfq_queue - leaf schedulable entity.
*
* A bfq_queue is a leaf request queue; it can be associated with an
* io_context or more, if it is async.
*/
struct bfq_queue {
/* reference counter */
int ref;
/* parent bfq_data */
struct bfq_data *bfqd;
/* current ioprio and ioprio class */
unsigned short ioprio, ioprio_class;
/* next ioprio and ioprio class if a change is in progress */
unsigned short new_ioprio, new_ioprio_class;
/* sorted list of pending requests */
struct rb_root sort_list;
/* if fifo isn't expired, next request to serve */
struct request *next_rq;
/* number of sync and async requests queued */
int queued[2];
/* number of requests currently allocated */
int allocated;
/* number of pending metadata requests */
int meta_pending;
/* fifo list of requests in sort_list */
struct list_head fifo;
/* entity representing this queue in the scheduler */
struct bfq_entity entity;
/* maximum budget allowed from the feedback mechanism */
int max_budget;
/* budget expiration (in jiffies) */
unsigned long budget_timeout;
/* number of requests on the dispatch list or inside driver */
int dispatched;
/* status flags */
unsigned long flags;
/* node for active/idle bfqq list inside parent bfqd */
struct list_head bfqq_list;
/* associated @bfq_ttime struct */
struct bfq_ttime ttime;
/* bit vector: a 1 for each seeky requests in history */
u32 seek_history;
/* position of the last request enqueued */
sector_t last_request_pos;
/* Number of consecutive pairs of request completion and
* arrival, such that the queue becomes idle after the
* completion, but the next request arrives within an idle
* time slice; used only if the queue's IO_bound flag has been
* cleared.
*/
unsigned int requests_within_timer;
/* pid of the process owning the queue, used for logging purposes */
pid_t pid;
};
/**
* struct bfq_io_cq - per (request_queue, io_context) structure.
*/
struct bfq_io_cq {
/* associated io_cq structure */
struct io_cq icq; /* must be the first member */
/* array of two process queues, the sync and the async */
struct bfq_queue *bfqq[2];
/* per (request_queue, blkcg) ioprio */
int ioprio;
};
/**
* struct bfq_data - per-device data structure.
*
* All the fields are protected by @lock.
*/
struct bfq_data {
/* device request queue */
struct request_queue *queue;
/* dispatch queue */
struct list_head dispatch;
/* root @bfq_sched_data for the device */
struct bfq_sched_data sched_data;
/*
* Number of bfq_queues containing requests (including the
* queue in service, even if it is idling).
*/
int busy_queues;
/* number of queued requests */
int queued;
/* number of requests dispatched and waiting for completion */
int rq_in_driver;
/*
* Maximum number of requests in driver in the last
* @hw_tag_samples completed requests.
*/
int max_rq_in_driver;
/* number of samples used to calculate hw_tag */
int hw_tag_samples;
/* flag set to one if the driver is showing a queueing behavior */
int hw_tag;
/* number of budgets assigned */
int budgets_assigned;
/*
* Timer set when idling (waiting) for the next request from
* the queue in service.
*/
struct hrtimer idle_slice_timer;
/* bfq_queue in service */
struct bfq_queue *in_service_queue;
/* bfq_io_cq (bic) associated with the @in_service_queue */
struct bfq_io_cq *in_service_bic;
/* on-disk position of the last served request */
sector_t last_position;
/* beginning of the last budget */
ktime_t last_budget_start;
/* beginning of the last idle slice */
ktime_t last_idling_start;
/* number of samples used to calculate @peak_rate */
int peak_rate_samples;
/*
* Peak read/write rate, observed during the service of a
* budget [BFQ_RATE_SHIFT * sectors/usec]. The value is
* left-shifted by BFQ_RATE_SHIFT to increase precision in
* fixed-point calculations.
*/
u64 peak_rate;
/* maximum budget allotted to a bfq_queue before rescheduling */
int bfq_max_budget;
/* list of all the bfq_queues active on the device */
struct list_head active_list;
/* list of all the bfq_queues idle on the device */
struct list_head idle_list;
/*
* Timeout for async/sync requests; when it fires, requests
* are served in fifo order.
*/
u64 bfq_fifo_expire[2];
/* weight of backward seeks wrt forward ones */
unsigned int bfq_back_penalty;
/* maximum allowed backward seek */
unsigned int bfq_back_max;
/* maximum idling time */
u32 bfq_slice_idle;
/* last time CLASS_IDLE was served */
u64 bfq_class_idle_last_service;
/* user-configured max budget value (0 for auto-tuning) */
int bfq_user_max_budget;
/*
* Timeout for bfq_queues to consume their budget; used to
* prevent seeky queues from imposing long latencies to
* sequential or quasi-sequential ones (this also implies that
* seeky queues cannot receive guarantees in the service
* domain; after a timeout they are charged for the time they
* have been in service, to preserve fairness among them, but
* without service-domain guarantees).
*/
unsigned int bfq_timeout;
/*
* Number of consecutive requests that must be issued within
* the idle time slice to set again idling to a queue which
* was marked as non-I/O-bound (see the definition of the
* IO_bound flag for further details).
*/
unsigned int bfq_requests_within_timer;
/*
* Force device idling whenever needed to provide accurate
* service guarantees, without caring about throughput
* issues. CAVEAT: this may even increase latencies, in case
* of useless idling for processes that did stop doing I/O.
*/
bool strict_guarantees;
/* fallback dummy bfqq for extreme OOM conditions */
struct bfq_queue oom_bfqq;
spinlock_t lock;
/*
* bic associated with the task issuing current bio for
* merging. This and the next field are used as a support to
* be able to perform the bic lookup, needed by bio-merge
* functions, before the scheduler lock is taken, and thus
* avoid taking the request-queue lock while the scheduler
* lock is being held.
*/
struct bfq_io_cq *bio_bic;
/* bfqq associated with the task issuing current bio for merging */
struct bfq_queue *bio_bfqq;
};
enum bfqq_state_flags {
BFQQF_busy = 0, /* has requests or is in service */
BFQQF_wait_request, /* waiting for a request */
BFQQF_non_blocking_wait_rq, /*
* waiting for a request
* without idling the device
*/
BFQQF_fifo_expire, /* FIFO checked in this slice */
BFQQF_idle_window, /* slice idling enabled */
BFQQF_sync, /* synchronous queue */
BFQQF_budget_new, /* no completion with this budget */
BFQQF_IO_bound, /*
* bfqq has timed-out at least once
* having consumed at most 2/10 of
* its budget
*/
};
#define BFQ_BFQQ_FNS(name) \
static void bfq_mark_bfqq_##name(struct bfq_queue *bfqq) \
{ \
__set_bit(BFQQF_##name, &(bfqq)->flags); \
} \
static void bfq_clear_bfqq_##name(struct bfq_queue *bfqq) \
{ \
__clear_bit(BFQQF_##name, &(bfqq)->flags); \
} \
static int bfq_bfqq_##name(const struct bfq_queue *bfqq) \
{ \
return test_bit(BFQQF_##name, &(bfqq)->flags); \
}
BFQ_BFQQ_FNS(busy);
BFQ_BFQQ_FNS(wait_request);
BFQ_BFQQ_FNS(non_blocking_wait_rq);
BFQ_BFQQ_FNS(fifo_expire);
BFQ_BFQQ_FNS(idle_window);
BFQ_BFQQ_FNS(sync);
BFQ_BFQQ_FNS(budget_new);
BFQ_BFQQ_FNS(IO_bound);
#undef BFQ_BFQQ_FNS
/* Logging facilities. */
#define bfq_log_bfqq(bfqd, bfqq, fmt, args...) \
blk_add_trace_msg((bfqd)->queue, "bfq%d " fmt, (bfqq)->pid, ##args)
#define bfq_log(bfqd, fmt, args...) \
blk_add_trace_msg((bfqd)->queue, "bfq " fmt, ##args)
/* Expiration reasons. */
enum bfqq_expiration {
BFQQE_TOO_IDLE = 0, /*
* queue has been idling for
* too long
*/
BFQQE_BUDGET_TIMEOUT, /* budget took too long to be used */
BFQQE_BUDGET_EXHAUSTED, /* budget consumed */
BFQQE_NO_MORE_REQUESTS, /* the queue has no more requests */
BFQQE_PREEMPTED /* preemption in progress */
};
static struct bfq_queue *bfq_entity_to_bfqq(struct bfq_entity *entity);
static struct bfq_service_tree *
bfq_entity_service_tree(struct bfq_entity *entity)
{
struct bfq_sched_data *sched_data = entity->sched_data;
struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
unsigned int idx = bfqq ? bfqq->ioprio_class - 1 :
BFQ_DEFAULT_GRP_CLASS - 1;
return sched_data->service_tree + idx;
}
static struct bfq_queue *bic_to_bfqq(struct bfq_io_cq *bic, bool is_sync)
{
return bic->bfqq[is_sync];
}
static void bic_set_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq,
bool is_sync)
{
bic->bfqq[is_sync] = bfqq;
}
static struct bfq_data *bic_to_bfqd(struct bfq_io_cq *bic)
{
return bic->icq.q->elevator->elevator_data;
}
static void bfq_check_ioprio_change(struct bfq_io_cq *bic, struct bio *bio);
static void bfq_put_queue(struct bfq_queue *bfqq);
static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
struct bio *bio, bool is_sync,
struct bfq_io_cq *bic);
static void bfq_exit_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq);
/*
* Array of async queues for all the processes, one queue
* per ioprio value per ioprio_class.
*/
struct bfq_queue *async_bfqq[2][IOPRIO_BE_NR];
/* Async queue for the idle class (ioprio is ignored) */
struct bfq_queue *async_idle_bfqq;
/* Expiration time of sync (0) and async (1) requests, in ns. */
static const u64 bfq_fifo_expire[2] = { NSEC_PER_SEC / 4, NSEC_PER_SEC / 8 };
/* Maximum backwards seek (magic number lifted from CFQ), in KiB. */
static const int bfq_back_max = 16 * 1024;
/* Penalty of a backwards seek, in number of sectors. */
static const int bfq_back_penalty = 2;
/* Idling period duration, in ns. */
static u64 bfq_slice_idle = NSEC_PER_SEC / 125;
/* Minimum number of assigned budgets for which stats are safe to compute. */
static const int bfq_stats_min_budgets = 194;
/* Default maximum budget values, in sectors and number of requests. */
static const int bfq_default_max_budget = 16 * 1024;
/* Default timeout values, in jiffies, approximating CFQ defaults. */
static const int bfq_timeout = HZ / 8;
static struct kmem_cache *bfq_pool;
/* Below this threshold (in ms), we consider thinktime immediate. */
#define BFQ_MIN_TT (2 * NSEC_PER_MSEC)
/* hw_tag detection: parallel requests threshold and min samples needed. */
#define BFQ_HW_QUEUE_THRESHOLD 4
#define BFQ_HW_QUEUE_SAMPLES 32
#define BFQQ_SEEK_THR (sector_t)(8 * 100)
#define BFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
#define BFQQ_CLOSE_THR (sector_t)(8 * 1024)
#define BFQQ_SEEKY(bfqq) (hweight32(bfqq->seek_history) > 32/8)
/* Budget feedback step. */
#define BFQ_BUDGET_STEP 128
/* Min samples used for peak rate estimation (for autotuning). */
#define BFQ_PEAK_RATE_SAMPLES 32
/* Shift used for peak rate fixed precision calculations. */
#define BFQ_RATE_SHIFT 16
#define BFQ_SERVICE_TREE_INIT ((struct bfq_service_tree) \
{ RB_ROOT, RB_ROOT, NULL, NULL, 0, 0 })
#define RQ_BIC(rq) ((struct bfq_io_cq *) (rq)->elv.priv[0])
#define RQ_BFQQ(rq) ((rq)->elv.priv[1])
/**
* icq_to_bic - convert iocontext queue structure to bfq_io_cq.
* @icq: the iocontext queue.
*/
static struct bfq_io_cq *icq_to_bic(struct io_cq *icq)
{
/* bic->icq is the first member, %NULL will convert to %NULL */
return container_of(icq, struct bfq_io_cq, icq);
}
/**
* bfq_bic_lookup - search into @ioc a bic associated to @bfqd.
* @bfqd: the lookup key.
* @ioc: the io_context of the process doing I/O.
* @q: the request queue.
*/
static struct bfq_io_cq *bfq_bic_lookup(struct bfq_data *bfqd,
struct io_context *ioc,
struct request_queue *q)
{
if (ioc) {
unsigned long flags;
struct bfq_io_cq *icq;
spin_lock_irqsave(q->queue_lock, flags);
icq = icq_to_bic(ioc_lookup_icq(ioc, q));
spin_unlock_irqrestore(q->queue_lock, flags);
return icq;
}
return NULL;
}
/*
* Next two macros are just fake loops for the moment. They will
* become true loops in the cgroups-enabled variant of the code. Such
* a variant, in its turn, will be introduced by next commit.
*/
#define for_each_entity(entity) \
for (; entity ; entity = NULL)
#define for_each_entity_safe(entity, parent) \
for (parent = NULL; entity ; entity = parent)
static int bfq_update_next_in_service(struct bfq_sched_data *sd)
{
return 0;
}
static void bfq_check_next_in_service(struct bfq_sched_data *sd,
struct bfq_entity *entity)
{
}
static void bfq_update_budget(struct bfq_entity *next_in_service)
{
}
/*
* Shift for timestamp calculations. This actually limits the maximum
* service allowed in one timestamp delta (small shift values increase it),
* the maximum total weight that can be used for the queues in the system
* (big shift values increase it), and the period of virtual time
* wraparounds.
*/
#define WFQ_SERVICE_SHIFT 22
/**
* bfq_gt - compare two timestamps.
* @a: first ts.
* @b: second ts.
*
* Return @a > @b, dealing with wrapping correctly.
*/
static int bfq_gt(u64 a, u64 b)
{
return (s64)(a - b) > 0;
}
static struct bfq_queue *bfq_entity_to_bfqq(struct bfq_entity *entity)
{
struct bfq_queue *bfqq = NULL;
if (!entity->my_sched_data)
bfqq = container_of(entity, struct bfq_queue, entity);
return bfqq;
}
/**
* bfq_delta - map service into the virtual time domain.
* @service: amount of service.
* @weight: scale factor (weight of an entity or weight sum).
*/
static u64 bfq_delta(unsigned long service, unsigned long weight)
{
u64 d = (u64)service << WFQ_SERVICE_SHIFT;
do_div(d, weight);
return d;
}
/**
* bfq_calc_finish - assign the finish time to an entity.
* @entity: the entity to act upon.
* @service: the service to be charged to the entity.
*/
static void bfq_calc_finish(struct bfq_entity *entity, unsigned long service)
{
struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
entity->finish = entity->start +
bfq_delta(service, entity->weight);
if (bfqq) {
bfq_log_bfqq(bfqq->bfqd, bfqq,
"calc_finish: serv %lu, w %d",
service, entity->weight);
bfq_log_bfqq(bfqq->bfqd, bfqq,
"calc_finish: start %llu, finish %llu, delta %llu",
entity->start, entity->finish,
bfq_delta(service, entity->weight));
}
}
/**
* bfq_entity_of - get an entity from a node.
* @node: the node field of the entity.
*
* Convert a node pointer to the relative entity. This is used only
* to simplify the logic of some functions and not as the generic
* conversion mechanism because, e.g., in the tree walking functions,
* the check for a %NULL value would be redundant.
*/
static struct bfq_entity *bfq_entity_of(struct rb_node *node)
{
struct bfq_entity *entity = NULL;
if (node)
entity = rb_entry(node, struct bfq_entity, rb_node);
return entity;
}
/**
* bfq_extract - remove an entity from a tree.
* @root: the tree root.
* @entity: the entity to remove.
*/
static void bfq_extract(struct rb_root *root, struct bfq_entity *entity)
{
entity->tree = NULL;
rb_erase(&entity->rb_node, root);
}
/**
* bfq_idle_extract - extract an entity from the idle tree.
* @st: the service tree of the owning @entity.
* @entity: the entity being removed.
*/
static void bfq_idle_extract(struct bfq_service_tree *st,
struct bfq_entity *entity)
{
struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
struct rb_node *next;
if (entity == st->first_idle) {
next = rb_next(&entity->rb_node);
st->first_idle = bfq_entity_of(next);
}
if (entity == st->last_idle) {
next = rb_prev(&entity->rb_node);
st->last_idle = bfq_entity_of(next);
}
bfq_extract(&st->idle, entity);
if (bfqq)
list_del(&bfqq->bfqq_list);
}
/**
* bfq_insert - generic tree insertion.
* @root: tree root.
* @entity: entity to insert.
*
* This is used for the idle and the active tree, since they are both
* ordered by finish time.
*/
static void bfq_insert(struct rb_root *root, struct bfq_entity *entity)
{
struct bfq_entity *entry;
struct rb_node **node = &root->rb_node;
struct rb_node *parent = NULL;
while (*node) {
parent = *node;
entry = rb_entry(parent, struct bfq_entity, rb_node);
if (bfq_gt(entry->finish, entity->finish))
node = &parent->rb_left;
else
node = &parent->rb_right;
}
rb_link_node(&entity->rb_node, parent, node);
rb_insert_color(&entity->rb_node, root);
entity->tree = root;
}
/**
* bfq_update_min - update the min_start field of a entity.
* @entity: the entity to update.
* @node: one of its children.
*
* This function is called when @entity may store an invalid value for
* min_start due to updates to the active tree. The function assumes
* that the subtree rooted at @node (which may be its left or its right
* child) has a valid min_start value.
*/
static void bfq_update_min(struct bfq_entity *entity, struct rb_node *node)
{
struct bfq_entity *child;
if (node) {
child = rb_entry(node, struct bfq_entity, rb_node);
if (bfq_gt(entity->min_start, child->min_start))
entity->min_start = child->min_start;
}
}
/**
* bfq_update_active_node - recalculate min_start.
* @node: the node to update.
*
* @node may have changed position or one of its children may have moved,
* this function updates its min_start value. The left and right subtrees
* are assumed to hold a correct min_start value.
*/
static void bfq_update_active_node(struct rb_node *node)
{
struct bfq_entity *entity = rb_entry(node, struct bfq_entity, rb_node);
entity->min_start = entity->start;
bfq_update_min(entity, node->rb_right);
bfq_update_min(entity, node->rb_left);
}
/**
* bfq_update_active_tree - update min_start for the whole active tree.
* @node: the starting node.
*
* @node must be the deepest modified node after an update. This function
* updates its min_start using the values held by its children, assuming
* that they did not change, and then updates all the nodes that may have
* changed in the path to the root. The only nodes that may have changed
* are the ones in the path or their siblings.
*/
static void bfq_update_active_tree(struct rb_node *node)
{
struct rb_node *parent;
up:
bfq_update_active_node(node);
parent = rb_parent(node);
if (!parent)
return;
if (node == parent->rb_left && parent->rb_right)
bfq_update_active_node(parent->rb_right);
else if (parent->rb_left)
bfq_update_active_node(parent->rb_left);
node = parent;
goto up;
}
/**
* bfq_active_insert - insert an entity in the active tree of its
* group/device.
* @st: the service tree of the entity.
* @entity: the entity being inserted.
*
* The active tree is ordered by finish time, but an extra key is kept
* per each node, containing the minimum value for the start times of
* its children (and the node itself), so it's possible to search for
* the eligible node with the lowest finish time in logarithmic time.
*/
static void bfq_active_insert(struct bfq_service_tree *st,
struct bfq_entity *entity)
{
struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
struct rb_node *node = &entity->rb_node;
bfq_insert(&st->active, entity);
if (node->rb_left)
node = node->rb_left;
else if (node->rb_right)
node = node->rb_right;
bfq_update_active_tree(node);
if (bfqq)
list_add(&bfqq->bfqq_list, &bfqq->bfqd->active_list);
}
/**
* bfq_ioprio_to_weight - calc a weight from an ioprio.
* @ioprio: the ioprio value to convert.
*/
static unsigned short bfq_ioprio_to_weight(int ioprio)
{
return (IOPRIO_BE_NR - ioprio) * BFQ_WEIGHT_CONVERSION_COEFF;
}
/**
* bfq_weight_to_ioprio - calc an ioprio from a weight.
* @weight: the weight value to convert.
*
* To preserve as much as possible the old only-ioprio user interface,
* 0 is used as an escape ioprio value for weights (numerically) equal or
* larger than IOPRIO_BE_NR * BFQ_WEIGHT_CONVERSION_COEFF.
*/
static unsigned short bfq_weight_to_ioprio(int weight)
{
return max_t(int, 0,
IOPRIO_BE_NR * BFQ_WEIGHT_CONVERSION_COEFF - weight);
}
static void bfq_get_entity(struct bfq_entity *entity)
{
struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
if (bfqq) {
bfqq->ref++;
bfq_log_bfqq(bfqq->bfqd, bfqq, "get_entity: %p %d",
bfqq, bfqq->ref);
}
}
/**
* bfq_find_deepest - find the deepest node that an extraction can modify.
* @node: the node being removed.
*
* Do the first step of an extraction in an rb tree, looking for the
* node that will replace @node, and returning the deepest node that
* the following modifications to the tree can touch. If @node is the
* last node in the tree return %NULL.
*/
static struct rb_node *bfq_find_deepest(struct rb_node *node)
{
struct rb_node *deepest;
if (!node->rb_right && !node->rb_left)
deepest = rb_parent(node);
else if (!node->rb_right)
deepest = node->rb_left;
else if (!node->rb_left)
deepest = node->rb_right;
else {
deepest = rb_next(node);
if (deepest->rb_right)
deepest = deepest->rb_right;
else if (rb_parent(deepest) != node)
deepest = rb_parent(deepest);
}
return deepest;
}
/**
* bfq_active_extract - remove an entity from the active tree.
* @st: the service_tree containing the tree.
* @entity: the entity being removed.
*/
static void bfq_active_extract(struct bfq_service_tree *st,
struct bfq_entity *entity)
{
struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
struct rb_node *node;
node = bfq_find_deepest(&entity->rb_node);
bfq_extract(&st->active, entity);
if (node)
bfq_update_active_tree(node);
if (bfqq)
list_del(&bfqq->bfqq_list);
}
/**
* bfq_idle_insert - insert an entity into the idle tree.
* @st: the service tree containing the tree.
* @entity: the entity to insert.
*/
static void bfq_idle_insert(struct bfq_service_tree *st,
struct bfq_entity *entity)
{
struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
struct bfq_entity *first_idle = st->first_idle;
struct bfq_entity *last_idle = st->last_idle;
if (!first_idle || bfq_gt(first_idle->finish, entity->finish))
st->first_idle = entity;
if (!last_idle || bfq_gt(entity->finish, last_idle->finish))
st->last_idle = entity;
bfq_insert(&st->idle, entity);
if (bfqq)
list_add(&bfqq->bfqq_list, &bfqq->bfqd->idle_list);
}
/**
* bfq_forget_entity - do not consider entity any longer for scheduling
* @st: the service tree.
* @entity: the entity being removed.
* @is_in_service: true if entity is currently the in-service entity.
*
* Forget everything about @entity. In addition, if entity represents
* a queue, and the latter is not in service, then release the service
* reference to the queue (the one taken through bfq_get_entity). In
* fact, in this case, there is really no more service reference to
* the queue, as the latter is also outside any service tree. If,
* instead, the queue is in service, then __bfq_bfqd_reset_in_service
* will take care of putting the reference when the queue finally
* stops being served.
*/
static void bfq_forget_entity(struct bfq_service_tree *st,
struct bfq_entity *entity,
bool is_in_service)
{
struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
entity->on_st = 0;
st->wsum -= entity->weight;
if (bfqq && !is_in_service)
bfq_put_queue(bfqq);
}
/**
* bfq_put_idle_entity - release the idle tree ref of an entity.
* @st: service tree for the entity.
* @entity: the entity being released.
*/
static void bfq_put_idle_entity(struct bfq_service_tree *st,
struct bfq_entity *entity)
{
bfq_idle_extract(st, entity);
bfq_forget_entity(st, entity,
entity == entity->sched_data->in_service_entity);
}
/**
* bfq_forget_idle - update the idle tree if necessary.
* @st: the service tree to act upon.
*
* To preserve the global O(log N) complexity we only remove one entry here;
* as the idle tree will not grow indefinitely this can be done safely.
*/
static void bfq_forget_idle(struct bfq_service_tree *st)
{
struct bfq_entity *first_idle = st->first_idle;
struct bfq_entity *last_idle = st->last_idle;
if (RB_EMPTY_ROOT(&st->active) && last_idle &&
!bfq_gt(last_idle->finish, st->vtime)) {
/*
* Forget the whole idle tree, increasing the vtime past
* the last finish time of idle entities.
*/
st->vtime = last_idle->finish;
}
if (first_idle && !bfq_gt(first_idle->finish, st->vtime))
bfq_put_idle_entity(st, first_idle);
}
static struct bfq_service_tree *
__bfq_entity_update_weight_prio(struct bfq_service_tree *old_st,
struct bfq_entity *entity)
{
struct bfq_service_tree *new_st = old_st;
if (entity->prio_changed) {
struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
unsigned short prev_weight, new_weight;
struct bfq_data *bfqd = NULL;
if (bfqq)
bfqd = bfqq->bfqd;
old_st->wsum -= entity->weight;
if (entity->new_weight != entity->orig_weight) {
if (entity->new_weight < BFQ_MIN_WEIGHT ||
entity->new_weight > BFQ_MAX_WEIGHT) {
pr_crit("update_weight_prio: new_weight %d\n",
entity->new_weight);
if (entity->new_weight < BFQ_MIN_WEIGHT)
entity->new_weight = BFQ_MIN_WEIGHT;
else
entity->new_weight = BFQ_MAX_WEIGHT;
}
entity->orig_weight = entity->new_weight;
if (bfqq)
bfqq->ioprio =
bfq_weight_to_ioprio(entity->orig_weight);
}
if (bfqq)
bfqq->ioprio_class = bfqq->new_ioprio_class;
entity->prio_changed = 0;
/*
* NOTE: here we may be changing the weight too early,
* this will cause unfairness. The correct approach
* would have required additional complexity to defer
* weight changes to the proper time instants (i.e.,
* when entity->finish <= old_st->vtime).
*/
new_st = bfq_entity_service_tree(entity);
prev_weight = entity->weight;
new_weight = entity->orig_weight;
entity->weight = new_weight;
new_st->wsum += entity->weight;
if (new_st != old_st)
entity->start = new_st->vtime;
}
return new_st;
}
/**
* bfq_bfqq_served - update the scheduler status after selection for
* service.
* @bfqq: the queue being served.
* @served: bytes to transfer.
*
* NOTE: this can be optimized, as the timestamps of upper level entities
* are synchronized every time a new bfqq is selected for service. By now,
* we keep it to better check consistency.
*/
static void bfq_bfqq_served(struct bfq_queue *bfqq, int served)
{
struct bfq_entity *entity = &bfqq->entity;
struct bfq_service_tree *st;
for_each_entity(entity) {
st = bfq_entity_service_tree(entity);
entity->service += served;
st->vtime += bfq_delta(served, st->wsum);
bfq_forget_idle(st);
}
bfq_log_bfqq(bfqq->bfqd, bfqq, "bfqq_served %d secs", served);
}
/**
* bfq_bfqq_charge_full_budget - set the service to the entity budget.
* @bfqq: the queue that needs a service update.
*
* When it's not possible to be fair in the service domain, because
* a queue is not consuming its budget fast enough (the meaning of
* fast depends on the timeout parameter), we charge it a full
* budget. In this way we should obtain a sort of time-domain
* fairness among all the seeky/slow queues.
*/
static void bfq_bfqq_charge_full_budget(struct bfq_queue *bfqq)
{
struct bfq_entity *entity = &bfqq->entity;
bfq_log_bfqq(bfqq->bfqd, bfqq, "charge_full_budget");
bfq_bfqq_served(bfqq, entity->budget - entity->service);
}
/**
* __bfq_activate_entity - activate an entity.
* @entity: the entity being activated.
* @non_blocking_wait_rq: true if this entity was waiting for a request
*
* Called whenever an entity is activated, i.e., it is not active and one
* of its children receives a new request, or has to be reactivated due to
* budget exhaustion. It uses the current budget of the entity (and the
* service received if @entity is active) of the queue to calculate its
* timestamps.
*/
static void __bfq_activate_entity(struct bfq_entity *entity,
bool non_blocking_wait_rq)
{
struct bfq_sched_data *sd = entity->sched_data;
struct bfq_service_tree *st = bfq_entity_service_tree(entity);
bool backshifted = false;
if (entity == sd->in_service_entity) {
/*
* If we are requeueing the current entity we have
* to take care of not charging to it service it has
* not received.
*/
bfq_calc_finish(entity, entity->service);
entity->start = entity->finish;
sd->in_service_entity = NULL;
} else if (entity->tree == &st->active) {
/*
* Requeueing an entity due to a change of some
* next_in_service entity below it. We reuse the
* old start time.
*/
bfq_active_extract(st, entity);
} else {
unsigned long long min_vstart;
/* See comments on bfq_fqq_update_budg_for_activation */
if (non_blocking_wait_rq && bfq_gt(st->vtime, entity->finish)) {
backshifted = true;
min_vstart = entity->finish;
} else
min_vstart = st->vtime;
if (entity->tree == &st->idle) {
/*
* Must be on the idle tree, bfq_idle_extract() will
* check for that.
*/
bfq_idle_extract(st, entity);
entity->start = bfq_gt(min_vstart, entity->finish) ?
min_vstart : entity->finish;
} else {
/*
* The finish time of the entity may be invalid, and
* it is in the past for sure, otherwise the queue
* would have been on the idle tree.
*/
entity->start = min_vstart;
st->wsum += entity->weight;
/*
* entity is about to be inserted into a service tree,
* and then set in service: get a reference to make
* sure entity does not disappear until it is no
* longer in service or scheduled for service.
*/
bfq_get_entity(entity);
entity->on_st = 1;
}
}
st = __bfq_entity_update_weight_prio(st, entity);
bfq_calc_finish(entity, entity->budget);
/*
* If some queues enjoy backshifting for a while, then their
* (virtual) finish timestamps may happen to become lower and
* lower than the system virtual time. In particular, if
* these queues often happen to be idle for short time
* periods, and during such time periods other queues with
* higher timestamps happen to be busy, then the backshifted
* timestamps of the former queues can become much lower than
* the system virtual time. In fact, to serve the queues with
* higher timestamps while the ones with lower timestamps are
* idle, the system virtual time may be pushed-up to much
* higher values than the finish timestamps of the idle
* queues. As a consequence, the finish timestamps of all new
* or newly activated queues may end up being much larger than
* those of lucky queues with backshifted timestamps. The
* latter queues may then monopolize the device for a lot of
* time. This would simply break service guarantees.
*
* To reduce this problem, push up a little bit the
* backshifted timestamps of the queue associated with this
* entity (only a queue can happen to have the backshifted
* flag set): just enough to let the finish timestamp of the
* queue be equal to the current value of the system virtual
* time. This may introduce a little unfairness among queues
* with backshifted timestamps, but it does not break
* worst-case fairness guarantees.
*/
if (backshifted && bfq_gt(st->vtime, entity->finish)) {
unsigned long delta = st->vtime - entity->finish;
entity->start += delta;
entity->finish += delta;
}
bfq_active_insert(st, entity);
}
/**
* bfq_activate_entity - activate an entity and its ancestors if necessary.
* @entity: the entity to activate.
* @non_blocking_wait_rq: true if this entity was waiting for a request
*
* Activate @entity and all the entities on the path from it to the root.
*/
static void bfq_activate_entity(struct bfq_entity *entity,
bool non_blocking_wait_rq)
{
struct bfq_sched_data *sd;
for_each_entity(entity) {
__bfq_activate_entity(entity, non_blocking_wait_rq);
sd = entity->sched_data;
if (!bfq_update_next_in_service(sd))
/*
* No need to propagate the activation to the
* upper entities, as they will be updated when
* the in-service entity is rescheduled.
*/
break;
}
}
/**
* __bfq_deactivate_entity - deactivate an entity from its service tree.
* @entity: the entity to deactivate.
* @requeue: if false, the entity will not be put into the idle tree.
*
* Deactivate an entity, independently from its previous state. If the
* entity was not on a service tree just return, otherwise if it is on
* any scheduler tree, extract it from that tree, and if necessary
* and if the caller did not specify @requeue, put it on the idle tree.
*
* Return %1 if the caller should update the entity hierarchy, i.e.,
* if the entity was in service or if it was the next_in_service for
* its sched_data; return %0 otherwise.
*/
static int __bfq_deactivate_entity(struct bfq_entity *entity, int requeue)
{
struct bfq_sched_data *sd = entity->sched_data;
struct bfq_service_tree *st = bfq_entity_service_tree(entity);
int is_in_service = entity == sd->in_service_entity;
int ret = 0;
if (!entity->on_st)
return 0;
if (is_in_service) {
bfq_calc_finish(entity, entity->service);
sd->in_service_entity = NULL;
} else if (entity->tree == &st->active)
bfq_active_extract(st, entity);
else if (entity->tree == &st->idle)
bfq_idle_extract(st, entity);
if (is_in_service || sd->next_in_service == entity)
ret = bfq_update_next_in_service(sd);
if (!requeue || !bfq_gt(entity->finish, st->vtime))
bfq_forget_entity(st, entity, is_in_service);
else
bfq_idle_insert(st, entity);
return ret;
}
/**
* bfq_deactivate_entity - deactivate an entity.
* @entity: the entity to deactivate.
* @requeue: true if the entity can be put on the idle tree
*/
static void bfq_deactivate_entity(struct bfq_entity *entity, int requeue)
{
struct bfq_sched_data *sd;
struct bfq_entity *parent = NULL;
for_each_entity_safe(entity, parent) {
sd = entity->sched_data;
if (!__bfq_deactivate_entity(entity, requeue))
/*
* The parent entity is still backlogged, and
* we don't need to update it as it is still
* in service.
*/
break;
if (sd->next_in_service)
/*
* The parent entity is still backlogged and
* the budgets on the path towards the root
* need to be updated.
*/
goto update;
/*
* If we get here, then the parent is no more backlogged and
* we want to propagate the deactivation upwards.
*/
requeue = 1;
}
return;
update:
entity = parent;
for_each_entity(entity) {
__bfq_activate_entity(entity, false);
sd = entity->sched_data;
if (!bfq_update_next_in_service(sd))
break;
}
}
/**
* bfq_update_vtime - update vtime if necessary.
* @st: the service tree to act upon.
*
* If necessary update the service tree vtime to have at least one
* eligible entity, skipping to its start time. Assumes that the
* active tree of the device is not empty.
*
* NOTE: this hierarchical implementation updates vtimes quite often,
* we may end up with reactivated processes getting timestamps after a
* vtime skip done because we needed a ->first_active entity on some
* intermediate node.
*/
static void bfq_update_vtime(struct bfq_service_tree *st)
{
struct bfq_entity *entry;
struct rb_node *node = st->active.rb_node;
entry = rb_entry(node, struct bfq_entity, rb_node);
if (bfq_gt(entry->min_start, st->vtime)) {
st->vtime = entry->min_start;
bfq_forget_idle(st);
}
}
/**
* bfq_first_active_entity - find the eligible entity with
* the smallest finish time
* @st: the service tree to select from.
*
* This function searches the first schedulable entity, starting from the
* root of the tree and going on the left every time on this side there is
* a subtree with at least one eligible (start >= vtime) entity. The path on
* the right is followed only if a) the left subtree contains no eligible
* entities and b) no eligible entity has been found yet.
*/
static struct bfq_entity *bfq_first_active_entity(struct bfq_service_tree *st)
{
struct bfq_entity *entry, *first = NULL;
struct rb_node *node = st->active.rb_node;
while (node) {
entry = rb_entry(node, struct bfq_entity, rb_node);
left:
if (!bfq_gt(entry->start, st->vtime))
first = entry;
if (node->rb_left) {
entry = rb_entry(node->rb_left,
struct bfq_entity, rb_node);
if (!bfq_gt(entry->min_start, st->vtime)) {
node = node->rb_left;
goto left;
}
}
if (first)
break;
node = node->rb_right;
}
return first;
}
/**
* __bfq_lookup_next_entity - return the first eligible entity in @st.
* @st: the service tree.
*
* Update the virtual time in @st and return the first eligible entity
* it contains.
*/
static struct bfq_entity *__bfq_lookup_next_entity(struct bfq_service_tree *st,
bool force)
{
struct bfq_entity *entity, *new_next_in_service = NULL;
if (RB_EMPTY_ROOT(&st->active))
return NULL;
bfq_update_vtime(st);
entity = bfq_first_active_entity(st);
/*
* If the chosen entity does not match with the sched_data's
* next_in_service and we are forcedly serving the IDLE priority
* class tree, bubble up budget update.
*/
if (unlikely(force && entity != entity->sched_data->next_in_service)) {
new_next_in_service = entity;
for_each_entity(new_next_in_service)
bfq_update_budget(new_next_in_service);
}
return entity;
}
/**
* bfq_lookup_next_entity - return the first eligible entity in @sd.
* @sd: the sched_data.
* @extract: if true the returned entity will be also extracted from @sd.
*
* NOTE: since we cache the next_in_service entity at each level of the
* hierarchy, the complexity of the lookup can be decreased with
* absolutely no effort just returning the cached next_in_service value;
* we prefer to do full lookups to test the consistency of the data
* structures.
*/
static struct bfq_entity *bfq_lookup_next_entity(struct bfq_sched_data *sd,
int extract,
struct bfq_data *bfqd)
{
struct bfq_service_tree *st = sd->service_tree;
struct bfq_entity *entity;
int i = 0;
/*
* Choose from idle class, if needed to guarantee a minimum
* bandwidth to this class. This should also mitigate
* priority-inversion problems in case a low priority task is
* holding file system resources.
*/
if (bfqd &&
jiffies - bfqd->bfq_class_idle_last_service >
BFQ_CL_IDLE_TIMEOUT) {
entity = __bfq_lookup_next_entity(st + BFQ_IOPRIO_CLASSES - 1,
true);
if (entity) {
i = BFQ_IOPRIO_CLASSES - 1;
bfqd->bfq_class_idle_last_service = jiffies;
sd->next_in_service = entity;
}
}
for (; i < BFQ_IOPRIO_CLASSES; i++) {
entity = __bfq_lookup_next_entity(st + i, false);
if (entity) {
if (extract) {
bfq_check_next_in_service(sd, entity);
bfq_active_extract(st + i, entity);
sd->in_service_entity = entity;
sd->next_in_service = NULL;
}
break;
}
}
return entity;
}
static bool next_queue_may_preempt(struct bfq_data *bfqd)
{
struct bfq_sched_data *sd = &bfqd->sched_data;
return sd->next_in_service != sd->in_service_entity;
}
/*
* Get next queue for service.
*/
static struct bfq_queue *bfq_get_next_queue(struct bfq_data *bfqd)
{
struct bfq_entity *entity = NULL;
struct bfq_sched_data *sd;
struct bfq_queue *bfqq;
if (bfqd->busy_queues == 0)
return NULL;
sd = &bfqd->sched_data;
for (; sd ; sd = entity->my_sched_data) {
entity = bfq_lookup_next_entity(sd, 1, bfqd);
entity->service = 0;
}
bfqq = bfq_entity_to_bfqq(entity);
return bfqq;
}
static void __bfq_bfqd_reset_in_service(struct bfq_data *bfqd)
{
struct bfq_queue *in_serv_bfqq = bfqd->in_service_queue;
struct bfq_entity *in_serv_entity = &in_serv_bfqq->entity;
if (bfqd->in_service_bic) {
put_io_context(bfqd->in_service_bic->icq.ioc);
bfqd->in_service_bic = NULL;
}
bfq_clear_bfqq_wait_request(in_serv_bfqq);
hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
bfqd->in_service_queue = NULL;
/*
* in_serv_entity is no longer in service, so, if it is in no
* service tree either, then release the service reference to
* the queue it represents (taken with bfq_get_entity).
*/
if (!in_serv_entity->on_st)
bfq_put_queue(in_serv_bfqq);
}
static void bfq_deactivate_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
int requeue)
{
struct bfq_entity *entity = &bfqq->entity;
bfq_deactivate_entity(entity, requeue);
}
static void bfq_activate_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq)
{
struct bfq_entity *entity = &bfqq->entity;
bfq_activate_entity(entity, bfq_bfqq_non_blocking_wait_rq(bfqq));
bfq_clear_bfqq_non_blocking_wait_rq(bfqq);
}
/*
* Called when the bfqq no longer has requests pending, remove it from
* the service tree.
*/
static void bfq_del_bfqq_busy(struct bfq_data *bfqd, struct bfq_queue *bfqq,
int requeue)
{
bfq_log_bfqq(bfqd, bfqq, "del from busy");
bfq_clear_bfqq_busy(bfqq);
bfqd->busy_queues--;
bfq_deactivate_bfqq(bfqd, bfqq, requeue);
}
/*
* Called when an inactive queue receives a new request.
*/
static void bfq_add_bfqq_busy(struct bfq_data *bfqd, struct bfq_queue *bfqq)
{
bfq_log_bfqq(bfqd, bfqq, "add to busy");
bfq_activate_bfqq(bfqd, bfqq);
bfq_mark_bfqq_busy(bfqq);
bfqd->busy_queues++;
}
static void bfq_init_entity(struct bfq_entity *entity)
{
struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
entity->weight = entity->new_weight;
entity->orig_weight = entity->new_weight;
bfqq->ioprio = bfqq->new_ioprio;
bfqq->ioprio_class = bfqq->new_ioprio_class;
entity->sched_data = &bfqq->bfqd->sched_data;
}
#define bfq_class_idle(bfqq) ((bfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
#define bfq_class_rt(bfqq) ((bfqq)->ioprio_class == IOPRIO_CLASS_RT)
#define bfq_sample_valid(samples) ((samples) > 80)
/*
* Scheduler run of queue, if there are requests pending and no one in the
* driver that will restart queueing.
*/
static void bfq_schedule_dispatch(struct bfq_data *bfqd)
{
if (bfqd->queued != 0) {
bfq_log(bfqd, "schedule dispatch");
blk_mq_run_hw_queues(bfqd->queue, true);
}
}
/*
* Lifted from AS - choose which of rq1 and rq2 that is best served now.
* We choose the request that is closesr to the head right now. Distance
* behind the head is penalized and only allowed to a certain extent.
*/
static struct request *bfq_choose_req(struct bfq_data *bfqd,
struct request *rq1,
struct request *rq2,
sector_t last)
{
sector_t s1, s2, d1 = 0, d2 = 0;
unsigned long back_max;
#define BFQ_RQ1_WRAP 0x01 /* request 1 wraps */
#define BFQ_RQ2_WRAP 0x02 /* request 2 wraps */
unsigned int wrap = 0; /* bit mask: requests behind the disk head? */
if (!rq1 || rq1 == rq2)
return rq2;
if (!rq2)
return rq1;
if (rq_is_sync(rq1) && !rq_is_sync(rq2))
return rq1;
else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
return rq2;
if ((rq1->cmd_flags & REQ_META) && !(rq2->cmd_flags & REQ_META))
return rq1;
else if ((rq2->cmd_flags & REQ_META) && !(rq1->cmd_flags & REQ_META))
return rq2;
s1 = blk_rq_pos(rq1);
s2 = blk_rq_pos(rq2);
/*
* By definition, 1KiB is 2 sectors.
*/
back_max = bfqd->bfq_back_max * 2;
/*
* Strict one way elevator _except_ in the case where we allow
* short backward seeks which are biased as twice the cost of a
* similar forward seek.
*/
if (s1 >= last)
d1 = s1 - last;
else if (s1 + back_max >= last)
d1 = (last - s1) * bfqd->bfq_back_penalty;
else
wrap |= BFQ_RQ1_WRAP;
if (s2 >= last)
d2 = s2 - last;
else if (s2 + back_max >= last)
d2 = (last - s2) * bfqd->bfq_back_penalty;
else
wrap |= BFQ_RQ2_WRAP;
/* Found required data */
/*
* By doing switch() on the bit mask "wrap" we avoid having to
* check two variables for all permutations: --> faster!
*/
switch (wrap) {
case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
if (d1 < d2)
return rq1;
else if (d2 < d1)
return rq2;
if (s1 >= s2)
return rq1;
else
return rq2;
case BFQ_RQ2_WRAP:
return rq1;
case BFQ_RQ1_WRAP:
return rq2;
case BFQ_RQ1_WRAP|BFQ_RQ2_WRAP: /* both rqs wrapped */
default:
/*
* Since both rqs are wrapped,
* start with the one that's further behind head
* (--> only *one* back seek required),
* since back seek takes more time than forward.
*/
if (s1 <= s2)
return rq1;
else
return rq2;
}
}
/*
* Return expired entry, or NULL to just start from scratch in rbtree.
*/
static struct request *bfq_check_fifo(struct bfq_queue *bfqq,
struct request *last)
{
struct request *rq;
if (bfq_bfqq_fifo_expire(bfqq))
return NULL;
bfq_mark_bfqq_fifo_expire(bfqq);
rq = rq_entry_fifo(bfqq->fifo.next);
if (rq == last || ktime_get_ns() < rq->fifo_time)
return NULL;
bfq_log_bfqq(bfqq->bfqd, bfqq, "check_fifo: returned %p", rq);
return rq;
}
static struct request *bfq_find_next_rq(struct bfq_data *bfqd,
struct bfq_queue *bfqq,
struct request *last)
{
struct rb_node *rbnext = rb_next(&last->rb_node);
struct rb_node *rbprev = rb_prev(&last->rb_node);
struct request *next, *prev = NULL;
/* Follow expired path, else get first next available. */
next = bfq_check_fifo(bfqq, last);
if (next)
return next;
if (rbprev)
prev = rb_entry_rq(rbprev);
if (rbnext)
next = rb_entry_rq(rbnext);
else {
rbnext = rb_first(&bfqq->sort_list);
if (rbnext && rbnext != &last->rb_node)
next = rb_entry_rq(rbnext);
}
return bfq_choose_req(bfqd, next, prev, blk_rq_pos(last));
}
static unsigned long bfq_serv_to_charge(struct request *rq,
struct bfq_queue *bfqq)
{
return blk_rq_sectors(rq);
}
/**
* bfq_updated_next_req - update the queue after a new next_rq selection.
* @bfqd: the device data the queue belongs to.
* @bfqq: the queue to update.
*
* If the first request of a queue changes we make sure that the queue
* has enough budget to serve at least its first request (if the
* request has grown). We do this because if the queue has not enough
* budget for its first request, it has to go through two dispatch
* rounds to actually get it dispatched.
*/
static void bfq_updated_next_req(struct bfq_data *bfqd,
struct bfq_queue *bfqq)
{
struct bfq_entity *entity = &bfqq->entity;
struct request *next_rq = bfqq->next_rq;
unsigned long new_budget;
if (!next_rq)
return;
if (bfqq == bfqd->in_service_queue)
/*
* In order not to break guarantees, budgets cannot be
* changed after an entity has been selected.
*/
return;
new_budget = max_t(unsigned long, bfqq->max_budget,
bfq_serv_to_charge(next_rq, bfqq));
if (entity->budget != new_budget) {
entity->budget = new_budget;
bfq_log_bfqq(bfqd, bfqq, "updated next rq: new budget %lu",
new_budget);
bfq_activate_bfqq(bfqd, bfqq);
}
}
static int bfq_bfqq_budget_left(struct bfq_queue *bfqq)
{
struct bfq_entity *entity = &bfqq->entity;
return entity->budget - entity->service;
}
/*
* If enough samples have been computed, return the current max budget
* stored in bfqd, which is dynamically updated according to the
* estimated disk peak rate; otherwise return the default max budget
*/
static int bfq_max_budget(struct bfq_data *bfqd)
{
if (bfqd->budgets_assigned < bfq_stats_min_budgets)
return bfq_default_max_budget;
else
return bfqd->bfq_max_budget;
}
/*
* Return min budget, which is a fraction of the current or default
* max budget (trying with 1/32)
*/
static int bfq_min_budget(struct bfq_data *bfqd)
{
if (bfqd->budgets_assigned < bfq_stats_min_budgets)
return bfq_default_max_budget / 32;
else
return bfqd->bfq_max_budget / 32;
}
static void bfq_bfqq_expire(struct bfq_data *bfqd,
struct bfq_queue *bfqq,
bool compensate,
enum bfqq_expiration reason);
/*
* The next function, invoked after the input queue bfqq switches from
* idle to busy, updates the budget of bfqq. The function also tells
* whether the in-service queue should be expired, by returning
* true. The purpose of expiring the in-service queue is to give bfqq
* the chance to possibly preempt the in-service queue, and the reason
* for preempting the in-service queue is to achieve the following
* goal: guarantee to bfqq its reserved bandwidth even if bfqq has
* expired because it has remained idle.
*
* In particular, bfqq may have expired for one of the following two
* reasons:
*
* - BFQQE_NO_MORE_REQUESTS bfqq did not enjoy any device idling
* and did not make it to issue a new request before its last
* request was served;
*
* - BFQQE_TOO_IDLE bfqq did enjoy device idling, but did not issue
* a new request before the expiration of the idling-time.
*
* Even if bfqq has expired for one of the above reasons, the process
* associated with the queue may be however issuing requests greedily,
* and thus be sensitive to the bandwidth it receives (bfqq may have
* remained idle for other reasons: CPU high load, bfqq not enjoying
* idling, I/O throttling somewhere in the path from the process to
* the I/O scheduler, ...). But if, after every expiration for one of
* the above two reasons, bfqq has to wait for the service of at least
* one full budget of another queue before being served again, then
* bfqq is likely to get a much lower bandwidth or resource time than
* its reserved ones. To address this issue, two countermeasures need
* to be taken.
*
* First, the budget and the timestamps of bfqq need to be updated in
* a special way on bfqq reactivation: they need to be updated as if
* bfqq did not remain idle and did not expire. In fact, if they are
* computed as if bfqq expired and remained idle until reactivation,
* then the process associated with bfqq is treated as if, instead of
* being greedy, it stopped issuing requests when bfqq remained idle,
* and restarts issuing requests only on this reactivation. In other
* words, the scheduler does not help the process recover the "service
* hole" between bfqq expiration and reactivation. As a consequence,
* the process receives a lower bandwidth than its reserved one. In
* contrast, to recover this hole, the budget must be updated as if
* bfqq was not expired at all before this reactivation, i.e., it must
* be set to the value of the remaining budget when bfqq was
* expired. Along the same line, timestamps need to be assigned the
* value they had the last time bfqq was selected for service, i.e.,
* before last expiration. Thus timestamps need to be back-shifted
* with respect to their normal computation (see [1] for more details
* on this tricky aspect).
*
* Secondly, to allow the process to recover the hole, the in-service
* queue must be expired too, to give bfqq the chance to preempt it
* immediately. In fact, if bfqq has to wait for a full budget of the
* in-service queue to be completed, then it may become impossible to
* let the process recover the hole, even if the back-shifted
* timestamps of bfqq are lower than those of the in-service queue. If
* this happens for most or all of the holes, then the process may not
* receive its reserved bandwidth. In this respect, it is worth noting
* that, being the service of outstanding requests unpreemptible, a
* little fraction of the holes may however be unrecoverable, thereby
* causing a little loss of bandwidth.
*
* The last important point is detecting whether bfqq does need this
* bandwidth recovery. In this respect, the next function deems the
* process associated with bfqq greedy, and thus allows it to recover
* the hole, if: 1) the process is waiting for the arrival of a new
* request (which implies that bfqq expired for one of the above two
* reasons), and 2) such a request has arrived soon. The first
* condition is controlled through the flag non_blocking_wait_rq,
* while the second through the flag arrived_in_time. If both
* conditions hold, then the function computes the budget in the
* above-described special way, and signals that the in-service queue
* should be expired. Timestamp back-shifting is done later in
* __bfq_activate_entity.
*/
static bool bfq_bfqq_update_budg_for_activation(struct bfq_data *bfqd,
struct bfq_queue *bfqq,
bool arrived_in_time)
{
struct bfq_entity *entity = &bfqq->entity;
if (bfq_bfqq_non_blocking_wait_rq(bfqq) && arrived_in_time) {
/*
* We do not clear the flag non_blocking_wait_rq here, as
* the latter is used in bfq_activate_bfqq to signal
* that timestamps need to be back-shifted (and is
* cleared right after).
*/
/*
* In next assignment we rely on that either
* entity->service or entity->budget are not updated
* on expiration if bfqq is empty (see
* __bfq_bfqq_recalc_budget). Thus both quantities
* remain unchanged after such an expiration, and the
* following statement therefore assigns to
* entity->budget the remaining budget on such an
* expiration. For clarity, entity->service is not
* updated on expiration in any case, and, in normal
* operation, is reset only when bfqq is selected for
* service (see bfq_get_next_queue).
*/
entity->budget = min_t(unsigned long,
bfq_bfqq_budget_left(bfqq),
bfqq->max_budget);
return true;
}
entity->budget = max_t(unsigned long, bfqq->max_budget,
bfq_serv_to_charge(bfqq->next_rq, bfqq));
bfq_clear_bfqq_non_blocking_wait_rq(bfqq);
return false;
}
static void bfq_bfqq_handle_idle_busy_switch(struct bfq_data *bfqd,
struct bfq_queue *bfqq,
struct request *rq)
{
bool bfqq_wants_to_preempt,
/*
* See the comments on
* bfq_bfqq_update_budg_for_activation for
* details on the usage of the next variable.
*/
arrived_in_time = ktime_get_ns() <=
bfqq->ttime.last_end_request +
bfqd->bfq_slice_idle * 3;
/*
* Update budget and check whether bfqq may want to preempt
* the in-service queue.
*/
bfqq_wants_to_preempt =
bfq_bfqq_update_budg_for_activation(bfqd, bfqq,
arrived_in_time);
if (!bfq_bfqq_IO_bound(bfqq)) {
if (arrived_in_time) {
bfqq->requests_within_timer++;
if (bfqq->requests_within_timer >=
bfqd->bfq_requests_within_timer)
bfq_mark_bfqq_IO_bound(bfqq);
} else
bfqq->requests_within_timer = 0;
}
bfq_add_bfqq_busy(bfqd, bfqq);
/*
* Expire in-service queue only if preemption may be needed
* for guarantees. In this respect, the function
* next_queue_may_preempt just checks a simple, necessary
* condition, and not a sufficient condition based on
* timestamps. In fact, for the latter condition to be
* evaluated, timestamps would need first to be updated, and
* this operation is quite costly (see the comments on the
* function bfq_bfqq_update_budg_for_activation).
*/
if (bfqd->in_service_queue && bfqq_wants_to_preempt &&
next_queue_may_preempt(bfqd))
bfq_bfqq_expire(bfqd, bfqd->in_service_queue,
false, BFQQE_PREEMPTED);
}
static void bfq_add_request(struct request *rq)
{
struct bfq_queue *bfqq = RQ_BFQQ(rq);
struct bfq_data *bfqd = bfqq->bfqd;
struct request *next_rq, *prev;
bfq_log_bfqq(bfqd, bfqq, "add_request %d", rq_is_sync(rq));
bfqq->queued[rq_is_sync(rq)]++;
bfqd->queued++;
elv_rb_add(&bfqq->sort_list, rq);
/*
* Check if this request is a better next-serve candidate.
*/
prev = bfqq->next_rq;
next_rq = bfq_choose_req(bfqd, bfqq->next_rq, rq, bfqd->last_position);
bfqq->next_rq = next_rq;
if (!bfq_bfqq_busy(bfqq)) /* switching to busy ... */
bfq_bfqq_handle_idle_busy_switch(bfqd, bfqq, rq);
else if (prev != bfqq->next_rq)
bfq_updated_next_req(bfqd, bfqq);
}
static struct request *bfq_find_rq_fmerge(struct bfq_data *bfqd,
struct bio *bio,
struct request_queue *q)
{
struct bfq_queue *bfqq = bfqd->bio_bfqq;
if (bfqq)
return elv_rb_find(&bfqq->sort_list, bio_end_sector(bio));
return NULL;
}
#if 0 /* Still not clear if we can do without next two functions */
static void bfq_activate_request(struct request_queue *q, struct request *rq)
{
struct bfq_data *bfqd = q->elevator->elevator_data;
bfqd->rq_in_driver++;
bfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
bfq_log(bfqd, "activate_request: new bfqd->last_position %llu",
(unsigned long long)bfqd->last_position);
}
static void bfq_deactivate_request(struct request_queue *q, struct request *rq)
{
struct bfq_data *bfqd = q->elevator->elevator_data;
bfqd->rq_in_driver--;
}
#endif
static void bfq_remove_request(struct request_queue *q,
struct request *rq)
{
struct bfq_queue *bfqq = RQ_BFQQ(rq);
struct bfq_data *bfqd = bfqq->bfqd;
const int sync = rq_is_sync(rq);
if (bfqq->next_rq == rq) {
bfqq->next_rq = bfq_find_next_rq(bfqd, bfqq, rq);
bfq_updated_next_req(bfqd, bfqq);
}
if (rq->queuelist.prev != &rq->queuelist)
list_del_init(&rq->queuelist);
bfqq->queued[sync]--;
bfqd->queued--;
elv_rb_del(&bfqq->sort_list, rq);
elv_rqhash_del(q, rq);
if (q->last_merge == rq)
q->last_merge = NULL;
if (RB_EMPTY_ROOT(&bfqq->sort_list)) {
bfqq->next_rq = NULL;
if (bfq_bfqq_busy(bfqq) && bfqq != bfqd->in_service_queue) {
bfq_del_bfqq_busy(bfqd, bfqq, 1);
/*
* bfqq emptied. In normal operation, when
* bfqq is empty, bfqq->entity.service and
* bfqq->entity.budget must contain,
* respectively, the service received and the
* budget used last time bfqq emptied. These
* facts do not hold in this case, as at least
* this last removal occurred while bfqq is
* not in service. To avoid inconsistencies,
* reset both bfqq->entity.service and
* bfqq->entity.budget, if bfqq has still a
* process that may issue I/O requests to it.
*/
bfqq->entity.budget = bfqq->entity.service = 0;
}
}
if (rq->cmd_flags & REQ_META)
bfqq->meta_pending--;
}
static bool bfq_bio_merge(struct blk_mq_hw_ctx *hctx, struct bio *bio)
{
struct request_queue *q = hctx->queue;
struct bfq_data *bfqd = q->elevator->elevator_data;
struct request *free = NULL;
/*
* bfq_bic_lookup grabs the queue_lock: invoke it now and
* store its return value for later use, to avoid nesting
* queue_lock inside the bfqd->lock. We assume that the bic
* returned by bfq_bic_lookup does not go away before
* bfqd->lock is taken.
*/
struct bfq_io_cq *bic = bfq_bic_lookup(bfqd, current->io_context, q);
bool ret;
spin_lock_irq(&bfqd->lock);
if (bic)
bfqd->bio_bfqq = bic_to_bfqq(bic, op_is_sync(bio->bi_opf));
else
bfqd->bio_bfqq = NULL;
bfqd->bio_bic = bic;
ret = blk_mq_sched_try_merge(q, bio, &free);
if (free)
blk_mq_free_request(free);
spin_unlock_irq(&bfqd->lock);
return ret;
}
static int bfq_request_merge(struct request_queue *q, struct request **req,
struct bio *bio)
{
struct bfq_data *bfqd = q->elevator->elevator_data;
struct request *__rq;
__rq = bfq_find_rq_fmerge(bfqd, bio, q);
if (__rq && elv_bio_merge_ok(__rq, bio)) {
*req = __rq;
return ELEVATOR_FRONT_MERGE;
}
return ELEVATOR_NO_MERGE;
}
static void bfq_request_merged(struct request_queue *q, struct request *req,
enum elv_merge type)
{
if (type == ELEVATOR_FRONT_MERGE &&
rb_prev(&req->rb_node) &&
blk_rq_pos(req) <
blk_rq_pos(container_of(rb_prev(&req->rb_node),
struct request, rb_node))) {
struct bfq_queue *bfqq = RQ_BFQQ(req);
struct bfq_data *bfqd = bfqq->bfqd;
struct request *prev, *next_rq;
/* Reposition request in its sort_list */
elv_rb_del(&bfqq->sort_list, req);
elv_rb_add(&bfqq->sort_list, req);
/* Choose next request to be served for bfqq */
prev = bfqq->next_rq;
next_rq = bfq_choose_req(bfqd, bfqq->next_rq, req,
bfqd->last_position);
bfqq->next_rq = next_rq;
/*
* If next_rq changes, update the queue's budget to fit
* the new request.
*/
if (prev != bfqq->next_rq)
bfq_updated_next_req(bfqd, bfqq);
}
}
static void bfq_requests_merged(struct request_queue *q, struct request *rq,
struct request *next)
{
struct bfq_queue *bfqq = RQ_BFQQ(rq), *next_bfqq = RQ_BFQQ(next);
if (!RB_EMPTY_NODE(&rq->rb_node))
return;
spin_lock_irq(&bfqq->bfqd->lock);
/*
* If next and rq belong to the same bfq_queue and next is older
* than rq, then reposition rq in the fifo (by substituting next
* with rq). Otherwise, if next and rq belong to different
* bfq_queues, never reposition rq: in fact, we would have to
* reposition it with respect to next's position in its own fifo,
* which would most certainly be too expensive with respect to
* the benefits.
*/
if (bfqq == next_bfqq &&
!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
next->fifo_time < rq->fifo_time) {
list_del_init(&rq->queuelist);
list_replace_init(&next->queuelist, &rq->queuelist);
rq->fifo_time = next->fifo_time;
}
if (bfqq->next_rq == next)
bfqq->next_rq = rq;
bfq_remove_request(q, next);
spin_unlock_irq(&bfqq->bfqd->lock);
}
static bool bfq_allow_bio_merge(struct request_queue *q, struct request *rq,
struct bio *bio)
{
struct bfq_data *bfqd = q->elevator->elevator_data;
bool is_sync = op_is_sync(bio->bi_opf);
struct bfq_queue *bfqq = bfqd->bio_bfqq;
/*
* Disallow merge of a sync bio into an async request.
*/
if (is_sync && !rq_is_sync(rq))
return false;
/*
* Lookup the bfqq that this bio will be queued with. Allow
* merge only if rq is queued there.
*/
if (!bfqq)
return false;
return bfqq == RQ_BFQQ(rq);
}
static void __bfq_set_in_service_queue(struct bfq_data *bfqd,
struct bfq_queue *bfqq)
{
if (bfqq) {
bfq_mark_bfqq_budget_new(bfqq);
bfq_clear_bfqq_fifo_expire(bfqq);
bfqd->budgets_assigned = (bfqd->budgets_assigned * 7 + 256) / 8;
bfq_log_bfqq(bfqd, bfqq,
"set_in_service_queue, cur-budget = %d",
bfqq->entity.budget);
}
bfqd->in_service_queue = bfqq;
}
/*
* Get and set a new queue for service.
*/
static struct bfq_queue *bfq_set_in_service_queue(struct bfq_data *bfqd)
{
struct bfq_queue *bfqq = bfq_get_next_queue(bfqd);
__bfq_set_in_service_queue(bfqd, bfqq);
return bfqq;
}
/*
* bfq_default_budget - return the default budget for @bfqq on @bfqd.
* @bfqd: the device descriptor.
* @bfqq: the queue to consider.
*
* We use 3/4 of the @bfqd maximum budget as the default value
* for the max_budget field of the queues. This lets the feedback
* mechanism to start from some middle ground, then the behavior
* of the process will drive the heuristics towards high values, if
* it behaves as a greedy sequential reader, or towards small values
* if it shows a more intermittent behavior.
*/
static unsigned long bfq_default_budget(struct bfq_data *bfqd,
struct bfq_queue *bfqq)
{
unsigned long budget;
/*
* When we need an estimate of the peak rate we need to avoid
* to give budgets that are too short due to previous
* measurements. So, in the first 10 assignments use a
* ``safe'' budget value. For such first assignment the value
* of bfqd->budgets_assigned happens to be lower than 194.
* See __bfq_set_in_service_queue for the formula by which
* this field is computed.
*/
if (bfqd->budgets_assigned < 194 && bfqd->bfq_user_max_budget == 0)
budget = bfq_default_max_budget;
else
budget = bfqd->bfq_max_budget;
return budget - budget / 4;
}
static void bfq_arm_slice_timer(struct bfq_data *bfqd)
{
struct bfq_queue *bfqq = bfqd->in_service_queue;
struct bfq_io_cq *bic;
u32 sl;
/* Processes have exited, don't wait. */
bic = bfqd->in_service_bic;
if (!bic || atomic_read(&bic->icq.ioc->active_ref) == 0)
return;
bfq_mark_bfqq_wait_request(bfqq);
/*
* We don't want to idle for seeks, but we do want to allow
* fair distribution of slice time for a process doing back-to-back
* seeks. So allow a little bit of time for him to submit a new rq.
*/
sl = bfqd->bfq_slice_idle;
/*
* Grant only minimum idle time if the queue is seeky.
*/
if (BFQQ_SEEKY(bfqq))
sl = min_t(u64, sl, BFQ_MIN_TT);
bfqd->last_idling_start = ktime_get();
hrtimer_start(&bfqd->idle_slice_timer, ns_to_ktime(sl),
HRTIMER_MODE_REL);
}
/*
* Set the maximum time for the in-service queue to consume its
* budget. This prevents seeky processes from lowering the disk
* throughput (always guaranteed with a time slice scheme as in CFQ).
*/
static void bfq_set_budget_timeout(struct bfq_data *bfqd)
{
struct bfq_queue *bfqq = bfqd->in_service_queue;
unsigned int timeout_coeff = bfqq->entity.weight /
bfqq->entity.orig_weight;
bfqd->last_budget_start = ktime_get();
bfq_clear_bfqq_budget_new(bfqq);
bfqq->budget_timeout = jiffies +
bfqd->bfq_timeout * timeout_coeff;
bfq_log_bfqq(bfqd, bfqq, "set budget_timeout %u",
jiffies_to_msecs(bfqd->bfq_timeout * timeout_coeff));
}
/*
* Remove request from internal lists.
*/
static void bfq_dispatch_remove(struct request_queue *q, struct request *rq)
{
struct bfq_queue *bfqq = RQ_BFQQ(rq);
/*
* For consistency, the next instruction should have been
* executed after removing the request from the queue and
* dispatching it. We execute instead this instruction before
* bfq_remove_request() (and hence introduce a temporary
* inconsistency), for efficiency. In fact, should this
* dispatch occur for a non in-service bfqq, this anticipated
* increment prevents two counters related to bfqq->dispatched
* from risking to be, first, uselessly decremented, and then
* incremented again when the (new) value of bfqq->dispatched
* happens to be taken into account.
*/
bfqq->dispatched++;
bfq_remove_request(q, rq);
}
static void __bfq_bfqq_expire(struct bfq_data *bfqd, struct bfq_queue *bfqq)
{
__bfq_bfqd_reset_in_service(bfqd);
if (RB_EMPTY_ROOT(&bfqq->sort_list))
bfq_del_bfqq_busy(bfqd, bfqq, 1);
else
bfq_activate_bfqq(bfqd, bfqq);
}
/**
* __bfq_bfqq_recalc_budget - try to adapt the budget to the @bfqq behavior.
* @bfqd: device data.
* @bfqq: queue to update.
* @reason: reason for expiration.
*
* Handle the feedback on @bfqq budget at queue expiration.
* See the body for detailed comments.
*/
static void __bfq_bfqq_recalc_budget(struct bfq_data *bfqd,
struct bfq_queue *bfqq,
enum bfqq_expiration reason)
{
struct request *next_rq;
int budget, min_budget;
budget = bfqq->max_budget;
min_budget = bfq_min_budget(bfqd);
bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last budg %d, budg left %d",
bfqq->entity.budget, bfq_bfqq_budget_left(bfqq));
bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last max_budg %d, min budg %d",
budget, bfq_min_budget(bfqd));
bfq_log_bfqq(bfqd, bfqq, "recalc_budg: sync %d, seeky %d",
bfq_bfqq_sync(bfqq), BFQQ_SEEKY(bfqd->in_service_queue));
if (bfq_bfqq_sync(bfqq)) {
switch (reason) {
/*
* Caveat: in all the following cases we trade latency
* for throughput.
*/
case BFQQE_TOO_IDLE:
if (budget > min_budget + BFQ_BUDGET_STEP)
budget -= BFQ_BUDGET_STEP;
else
budget = min_budget;
break;
case BFQQE_BUDGET_TIMEOUT:
budget = bfq_default_budget(bfqd, bfqq);
break;
case BFQQE_BUDGET_EXHAUSTED:
/*
* The process still has backlog, and did not
* let either the budget timeout or the disk
* idling timeout expire. Hence it is not
* seeky, has a short thinktime and may be
* happy with a higher budget too. So
* definitely increase the budget of this good
* candidate to boost the disk throughput.
*/
budget = min(budget + 8 * BFQ_BUDGET_STEP,
bfqd->bfq_max_budget);
break;
case BFQQE_NO_MORE_REQUESTS:
/*
* For queues that expire for this reason, it
* is particularly important to keep the
* budget close to the actual service they
* need. Doing so reduces the timestamp
* misalignment problem described in the
* comments in the body of
* __bfq_activate_entity. In fact, suppose
* that a queue systematically expires for
* BFQQE_NO_MORE_REQUESTS and presents a
* new request in time to enjoy timestamp
* back-shifting. The larger the budget of the
* queue is with respect to the service the
* queue actually requests in each service
* slot, the more times the queue can be
* reactivated with the same virtual finish
* time. It follows that, even if this finish
* time is pushed to the system virtual time
* to reduce the consequent timestamp
* misalignment, the queue unjustly enjoys for
* many re-activations a lower finish time
* than all newly activated queues.
*
* The service needed by bfqq is measured
* quite precisely by bfqq->entity.service.
* Since bfqq does not enjoy device idling,
* bfqq->entity.service is equal to the number
* of sectors that the process associated with
* bfqq requested to read/write before waiting
* for request completions, or blocking for
* other reasons.
*/
budget = max_t(int, bfqq->entity.service, min_budget);
break;
default:
return;
}
} else {
/*
* Async queues get always the maximum possible
* budget, as for them we do not care about latency
* (in addition, their ability to dispatch is limited
* by the charging factor).
*/
budget = bfqd->bfq_max_budget;
}
bfqq->max_budget = budget;
if (bfqd->budgets_assigned >= bfq_stats_min_budgets &&
!bfqd->bfq_user_max_budget)
bfqq->max_budget = min(bfqq->max_budget, bfqd->bfq_max_budget);
/*
* If there is still backlog, then assign a new budget, making
* sure that it is large enough for the next request. Since
* the finish time of bfqq must be kept in sync with the
* budget, be sure to call __bfq_bfqq_expire() *after* this
* update.
*
* If there is no backlog, then no need to update the budget;
* it will be updated on the arrival of a new request.
*/
next_rq = bfqq->next_rq;
if (next_rq)
bfqq->entity.budget = max_t(unsigned long, bfqq->max_budget,
bfq_serv_to_charge(next_rq, bfqq));
bfq_log_bfqq(bfqd, bfqq, "head sect: %u, new budget %d",
next_rq ? blk_rq_sectors(next_rq) : 0,
bfqq->entity.budget);
}
static unsigned long bfq_calc_max_budget(u64 peak_rate, u64 timeout)
{
unsigned long max_budget;
/*
* The max_budget calculated when autotuning is equal to the
* amount of sectors transferred in timeout at the estimated
* peak rate. To get this value, peak_rate is, first,
* multiplied by 1000, because timeout is measured in ms,
* while peak_rate is measured in sectors/usecs. Then the
* result of this multiplication is right-shifted by
* BFQ_RATE_SHIFT, because peak_rate is equal to the value of
* the peak rate left-shifted by BFQ_RATE_SHIFT.
*/
max_budget = (unsigned long)(peak_rate * 1000 *
timeout >> BFQ_RATE_SHIFT);
return max_budget;
}
/*
* In addition to updating the peak rate, checks whether the process
* is "slow", and returns 1 if so. This slow flag is used, in addition
* to the budget timeout, to reduce the amount of service provided to
* seeky processes, and hence reduce their chances to lower the
* throughput. See the code for more details.
*/
static bool bfq_update_peak_rate(struct bfq_data *bfqd, struct bfq_queue *bfqq,
bool compensate)
{
u64 bw, usecs, expected, timeout;
ktime_t delta;
int update = 0;
if (!bfq_bfqq_sync(bfqq) || bfq_bfqq_budget_new(bfqq))
return false;
if (compensate)
delta = bfqd->last_idling_start;
else
delta = ktime_get();
delta = ktime_sub(delta, bfqd->last_budget_start);
usecs = ktime_to_us(delta);
/* don't use too short time intervals */
if (usecs < 1000)
return false;
/*
* Calculate the bandwidth for the last slice. We use a 64 bit
* value to store the peak rate, in sectors per usec in fixed
* point math. We do so to have enough precision in the estimate
* and to avoid overflows.
*/
bw = (u64)bfqq->entity.service << BFQ_RATE_SHIFT;
do_div(bw, (unsigned long)usecs);
timeout = jiffies_to_msecs(bfqd->bfq_timeout);
/*
* Use only long (> 20ms) intervals to filter out spikes for
* the peak rate estimation.
*/
if (usecs > 20000) {
if (bw > bfqd->peak_rate) {
bfqd->peak_rate = bw;
update = 1;
bfq_log(bfqd, "new peak_rate=%llu", bw);
}
update |= bfqd->peak_rate_samples == BFQ_PEAK_RATE_SAMPLES - 1;
if (bfqd->peak_rate_samples < BFQ_PEAK_RATE_SAMPLES)
bfqd->peak_rate_samples++;
if (bfqd->peak_rate_samples == BFQ_PEAK_RATE_SAMPLES &&
update && bfqd->bfq_user_max_budget == 0) {
bfqd->bfq_max_budget =
bfq_calc_max_budget(bfqd->peak_rate,
timeout);
bfq_log(bfqd, "new max_budget=%d",
bfqd->bfq_max_budget);
}
}
/*
* A process is considered ``slow'' (i.e., seeky, so that we
* cannot treat it fairly in the service domain, as it would
* slow down too much the other processes) if, when a slice
* ends for whatever reason, it has received service at a
* rate that would not be high enough to complete the budget
* before the budget timeout expiration.
*/
expected = bw * 1000 * timeout >> BFQ_RATE_SHIFT;
/*
* Caveat: processes doing IO in the slower disk zones will
* tend to be slow(er) even if not seeky. And the estimated
* peak rate will actually be an average over the disk
* surface. Hence, to not be too harsh with unlucky processes,
* we keep a budget/3 margin of safety before declaring a
* process slow.
*/
return expected > (4 * bfqq->entity.budget) / 3;
}
/*
* Return the farthest past time instant according to jiffies
* macros.
*/
static unsigned long bfq_smallest_from_now(void)
{
return jiffies - MAX_JIFFY_OFFSET;
}
/**
* bfq_bfqq_expire - expire a queue.
* @bfqd: device owning the queue.
* @bfqq: the queue to expire.
* @compensate: if true, compensate for the time spent idling.
* @reason: the reason causing the expiration.
*
*
* If the process associated with the queue is slow (i.e., seeky), or
* in case of budget timeout, or, finally, if it is async, we
* artificially charge it an entire budget (independently of the
* actual service it received). As a consequence, the queue will get
* higher timestamps than the correct ones upon reactivation, and
* hence it will be rescheduled as if it had received more service
* than what it actually received. In the end, this class of processes
* will receive less service in proportion to how slowly they consume
* their budgets (and hence how seriously they tend to lower the
* throughput).
*
* In contrast, when a queue expires because it has been idling for
* too much or because it exhausted its budget, we do not touch the
* amount of service it has received. Hence when the queue will be
* reactivated and its timestamps updated, the latter will be in sync
* with the actual service received by the queue until expiration.
*
* Charging a full budget to the first type of queues and the exact
* service to the others has the effect of using the WF2Q+ policy to
* schedule the former on a timeslice basis, without violating the
* service domain guarantees of the latter.
*/
static void bfq_bfqq_expire(struct bfq_data *bfqd,
struct bfq_queue *bfqq,
bool compensate,
enum bfqq_expiration reason)
{
bool slow;
int ref;
/*
* Update device peak rate for autotuning and check whether the
* process is slow (see bfq_update_peak_rate).
*/
slow = bfq_update_peak_rate(bfqd, bfqq, compensate);
/*
* As above explained, 'punish' slow (i.e., seeky), timed-out
* and async queues, to favor sequential sync workloads.
*/
if (slow || reason == BFQQE_BUDGET_TIMEOUT)
bfq_bfqq_charge_full_budget(bfqq);
if (reason == BFQQE_TOO_IDLE &&
bfqq->entity.service <= 2 * bfqq->entity.budget / 10)
bfq_clear_bfqq_IO_bound(bfqq);
bfq_log_bfqq(bfqd, bfqq,
"expire (%d, slow %d, num_disp %d, idle_win %d)", reason,
slow, bfqq->dispatched, bfq_bfqq_idle_window(bfqq));
/*
* Increase, decrease or leave budget unchanged according to
* reason.
*/
__bfq_bfqq_recalc_budget(bfqd, bfqq, reason);
ref = bfqq->ref;
__bfq_bfqq_expire(bfqd, bfqq);
/* mark bfqq as waiting a request only if a bic still points to it */
if (ref > 1 && !bfq_bfqq_busy(bfqq) &&
reason != BFQQE_BUDGET_TIMEOUT &&
reason != BFQQE_BUDGET_EXHAUSTED)
bfq_mark_bfqq_non_blocking_wait_rq(bfqq);
}
/*
* Budget timeout is not implemented through a dedicated timer, but
* just checked on request arrivals and completions, as well as on
* idle timer expirations.
*/
static bool bfq_bfqq_budget_timeout(struct bfq_queue *bfqq)
{
if (bfq_bfqq_budget_new(bfqq) ||
time_is_after_jiffies(bfqq->budget_timeout))
return false;
return true;
}
/*
* If we expire a queue that is actively waiting (i.e., with the
* device idled) for the arrival of a new request, then we may incur
* the timestamp misalignment problem described in the body of the
* function __bfq_activate_entity. Hence we return true only if this
* condition does not hold, or if the queue is slow enough to deserve
* only to be kicked off for preserving a high throughput.
*/
static bool bfq_may_expire_for_budg_timeout(struct bfq_queue *bfqq)
{
bfq_log_bfqq(bfqq->bfqd, bfqq,
"may_budget_timeout: wait_request %d left %d timeout %d",
bfq_bfqq_wait_request(bfqq),
bfq_bfqq_budget_left(bfqq) >= bfqq->entity.budget / 3,
bfq_bfqq_budget_timeout(bfqq));
return (!bfq_bfqq_wait_request(bfqq) ||
bfq_bfqq_budget_left(bfqq) >= bfqq->entity.budget / 3)
&&
bfq_bfqq_budget_timeout(bfqq);
}
/*
* For a queue that becomes empty, device idling is allowed only if
* this function returns true for the queue. And this function returns
* true only if idling is beneficial for throughput.
*/
static bool bfq_bfqq_may_idle(struct bfq_queue *bfqq)
{
struct bfq_data *bfqd = bfqq->bfqd;
bool idling_boosts_thr;
if (bfqd->strict_guarantees)
return true;
/*
* The value of the next variable is computed considering that
* idling is usually beneficial for the throughput if:
* (a) the device is not NCQ-capable, or
* (b) regardless of the presence of NCQ, the request pattern
* for bfqq is I/O-bound (possible throughput losses
* caused by granting idling to seeky queues are mitigated
* by the fact that, in all scenarios where boosting
* throughput is the best thing to do, i.e., in all
* symmetric scenarios, only a minimal idle time is
* allowed to seeky queues).
*/
idling_boosts_thr = !bfqd->hw_tag || bfq_bfqq_IO_bound(bfqq);
/*
* We have now the components we need to compute the return
* value of the function, which is true only if both the
* following conditions hold:
* 1) bfqq is sync, because idling make sense only for sync queues;
* 2) idling boosts the throughput.
*/
return bfq_bfqq_sync(bfqq) && idling_boosts_thr;
}
/*
* If the in-service queue is empty but the function bfq_bfqq_may_idle
* returns true, then:
* 1) the queue must remain in service and cannot be expired, and
* 2) the device must be idled to wait for the possible arrival of a new
* request for the queue.
* See the comments on the function bfq_bfqq_may_idle for the reasons
* why performing device idling is the best choice to boost the throughput
* and preserve service guarantees when bfq_bfqq_may_idle itself
* returns true.
*/
static bool bfq_bfqq_must_idle(struct bfq_queue *bfqq)
{
struct bfq_data *bfqd = bfqq->bfqd;
return RB_EMPTY_ROOT(&bfqq->sort_list) && bfqd->bfq_slice_idle != 0 &&
bfq_bfqq_may_idle(bfqq);
}
/*
* Select a queue for service. If we have a current queue in service,
* check whether to continue servicing it, or retrieve and set a new one.
*/
static struct bfq_queue *bfq_select_queue(struct bfq_data *bfqd)
{
struct bfq_queue *bfqq;
struct request *next_rq;
enum bfqq_expiration reason = BFQQE_BUDGET_TIMEOUT;
bfqq = bfqd->in_service_queue;
if (!bfqq)
goto new_queue;
bfq_log_bfqq(bfqd, bfqq, "select_queue: already in-service queue");
if (bfq_may_expire_for_budg_timeout(bfqq) &&
!bfq_bfqq_wait_request(bfqq) &&
!bfq_bfqq_must_idle(bfqq))
goto expire;
check_queue:
/*
* This loop is rarely executed more than once. Even when it
* happens, it is much more convenient to re-execute this loop
* than to return NULL and trigger a new dispatch to get a
* request served.
*/
next_rq = bfqq->next_rq;
/*
* If bfqq has requests queued and it has enough budget left to
* serve them, keep the queue, otherwise expire it.
*/
if (next_rq) {
if (bfq_serv_to_charge(next_rq, bfqq) >
bfq_bfqq_budget_left(bfqq)) {
/*
* Expire the queue for budget exhaustion,
* which makes sure that the next budget is
* enough to serve the next request, even if
* it comes from the fifo expired path.
*/
reason = BFQQE_BUDGET_EXHAUSTED;
goto expire;
} else {
/*
* The idle timer may be pending because we may
* not disable disk idling even when a new request
* arrives.
*/
if (bfq_bfqq_wait_request(bfqq)) {
/*
* If we get here: 1) at least a new request
* has arrived but we have not disabled the
* timer because the request was too small,
* 2) then the block layer has unplugged
* the device, causing the dispatch to be
* invoked.
*
* Since the device is unplugged, now the
* requests are probably large enough to
* provide a reasonable throughput.
* So we disable idling.
*/
bfq_clear_bfqq_wait_request(bfqq);
hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
}
goto keep_queue;
}
}
/*
* No requests pending. However, if the in-service queue is idling
* for a new request, or has requests waiting for a completion and
* may idle after their completion, then keep it anyway.
*/
if (bfq_bfqq_wait_request(bfqq) ||
(bfqq->dispatched != 0 && bfq_bfqq_may_idle(bfqq))) {
bfqq = NULL;
goto keep_queue;
}
reason = BFQQE_NO_MORE_REQUESTS;
expire:
bfq_bfqq_expire(bfqd, bfqq, false, reason);
new_queue:
bfqq = bfq_set_in_service_queue(bfqd);
if (bfqq) {
bfq_log_bfqq(bfqd, bfqq, "select_queue: checking new queue");
goto check_queue;
}
keep_queue:
if (bfqq)
bfq_log_bfqq(bfqd, bfqq, "select_queue: returned this queue");
else
bfq_log(bfqd, "select_queue: no queue returned");
return bfqq;
}
/*
* Dispatch next request from bfqq.
*/
static struct request *bfq_dispatch_rq_from_bfqq(struct bfq_data *bfqd,
struct bfq_queue *bfqq)
{
struct request *rq = bfqq->next_rq;
unsigned long service_to_charge;
service_to_charge = bfq_serv_to_charge(rq, bfqq);
bfq_bfqq_served(bfqq, service_to_charge);
bfq_dispatch_remove(bfqd->queue, rq);
if (!bfqd->in_service_bic) {
atomic_long_inc(&RQ_BIC(rq)->icq.ioc->refcount);
bfqd->in_service_bic = RQ_BIC(rq);
}
/*
* Expire bfqq, pretending that its budget expired, if bfqq
* belongs to CLASS_IDLE and other queues are waiting for
* service.
*/
if (bfqd->busy_queues > 1 && bfq_class_idle(bfqq))
goto expire;
return rq;
expire:
bfq_bfqq_expire(bfqd, bfqq, false, BFQQE_BUDGET_EXHAUSTED);
return rq;
}
static bool bfq_has_work(struct blk_mq_hw_ctx *hctx)
{
struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
/*
* Avoiding lock: a race on bfqd->busy_queues should cause at
* most a call to dispatch for nothing
*/
return !list_empty_careful(&bfqd->dispatch) ||
bfqd->busy_queues > 0;
}
static struct request *__bfq_dispatch_request(struct blk_mq_hw_ctx *hctx)
{
struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
struct request *rq = NULL;
struct bfq_queue *bfqq = NULL;
if (!list_empty(&bfqd->dispatch)) {
rq = list_first_entry(&bfqd->dispatch, struct request,
queuelist);
list_del_init(&rq->queuelist);
bfqq = RQ_BFQQ(rq);
if (bfqq) {
/*
* Increment counters here, because this
* dispatch does not follow the standard
* dispatch flow (where counters are
* incremented)
*/
bfqq->dispatched++;
goto inc_in_driver_start_rq;
}
/*
* We exploit the put_rq_private hook to decrement
* rq_in_driver, but put_rq_private will not be
* invoked on this request. So, to avoid unbalance,
* just start this request, without incrementing
* rq_in_driver. As a negative consequence,
* rq_in_driver is deceptively lower than it should be
* while this request is in service. This may cause
* bfq_schedule_dispatch to be invoked uselessly.
*
* As for implementing an exact solution, the
* put_request hook, if defined, is probably invoked
* also on this request. So, by exploiting this hook,
* we could 1) increment rq_in_driver here, and 2)
* decrement it in put_request. Such a solution would
* let the value of the counter be always accurate,
* but it would entail using an extra interface
* function. This cost seems higher than the benefit,
* being the frequency of non-elevator-private
* requests very low.
*/
goto start_rq;
}
bfq_log(bfqd, "dispatch requests: %d busy queues", bfqd->busy_queues);
if (bfqd->busy_queues == 0)
goto exit;
/*
* Force device to serve one request at a time if
* strict_guarantees is true. Forcing this service scheme is
* currently the ONLY way to guarantee that the request
* service order enforced by the scheduler is respected by a
* queueing device. Otherwise the device is free even to make
* some unlucky request wait for as long as the device
* wishes.
*
* Of course, serving one request at at time may cause loss of
* throughput.
*/
if (bfqd->strict_guarantees && bfqd->rq_in_driver > 0)
goto exit;
bfqq = bfq_select_queue(bfqd);
if (!bfqq)
goto exit;
rq = bfq_dispatch_rq_from_bfqq(bfqd, bfqq);
if (rq) {
inc_in_driver_start_rq:
bfqd->rq_in_driver++;
start_rq:
rq->rq_flags |= RQF_STARTED;
}
exit:
return rq;
}
static struct request *bfq_dispatch_request(struct blk_mq_hw_ctx *hctx)
{
struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
struct request *rq;
spin_lock_irq(&bfqd->lock);
rq = __bfq_dispatch_request(hctx);
spin_unlock_irq(&bfqd->lock);
return rq;
}
/*
* Task holds one reference to the queue, dropped when task exits. Each rq
* in-flight on this queue also holds a reference, dropped when rq is freed.
*
* Scheduler lock must be held here. Recall not to use bfqq after calling
* this function on it.
*/
static void bfq_put_queue(struct bfq_queue *bfqq)
{
if (bfqq->bfqd)
bfq_log_bfqq(bfqq->bfqd, bfqq, "put_queue: %p %d",
bfqq, bfqq->ref);
bfqq->ref--;
if (bfqq->ref)
return;
kmem_cache_free(bfq_pool, bfqq);
}
static void bfq_exit_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq)
{
if (bfqq == bfqd->in_service_queue) {
__bfq_bfqq_expire(bfqd, bfqq);
bfq_schedule_dispatch(bfqd);
}
bfq_log_bfqq(bfqd, bfqq, "exit_bfqq: %p, %d", bfqq, bfqq->ref);
bfq_put_queue(bfqq); /* release process reference */
}
static void bfq_exit_icq_bfqq(struct bfq_io_cq *bic, bool is_sync)
{
struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync);
struct bfq_data *bfqd;
if (bfqq)
bfqd = bfqq->bfqd; /* NULL if scheduler already exited */
if (bfqq && bfqd) {
unsigned long flags;
spin_lock_irqsave(&bfqd->lock, flags);
bfq_exit_bfqq(bfqd, bfqq);
bic_set_bfqq(bic, NULL, is_sync);
spin_unlock_irq(&bfqd->lock);
}
}
static void bfq_exit_icq(struct io_cq *icq)
{
struct bfq_io_cq *bic = icq_to_bic(icq);
bfq_exit_icq_bfqq(bic, true);
bfq_exit_icq_bfqq(bic, false);
}
/*
* Update the entity prio values; note that the new values will not
* be used until the next (re)activation.
*/
static void
bfq_set_next_ioprio_data(struct bfq_queue *bfqq, struct bfq_io_cq *bic)
{
struct task_struct *tsk = current;
int ioprio_class;
struct bfq_data *bfqd = bfqq->bfqd;
if (!bfqd)
return;
ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
switch (ioprio_class) {
default:
dev_err(bfqq->bfqd->queue->backing_dev_info->dev,
"bfq: bad prio class %d\n", ioprio_class);
case IOPRIO_CLASS_NONE:
/*
* No prio set, inherit CPU scheduling settings.
*/
bfqq->new_ioprio = task_nice_ioprio(tsk);
bfqq->new_ioprio_class = task_nice_ioclass(tsk);
break;
case IOPRIO_CLASS_RT:
bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
bfqq->new_ioprio_class = IOPRIO_CLASS_RT;
break;
case IOPRIO_CLASS_BE:
bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
bfqq->new_ioprio_class = IOPRIO_CLASS_BE;
break;
case IOPRIO_CLASS_IDLE:
bfqq->new_ioprio_class = IOPRIO_CLASS_IDLE;
bfqq->new_ioprio = 7;
bfq_clear_bfqq_idle_window(bfqq);
break;
}
if (bfqq->new_ioprio >= IOPRIO_BE_NR) {
pr_crit("bfq_set_next_ioprio_data: new_ioprio %d\n",
bfqq->new_ioprio);
bfqq->new_ioprio = IOPRIO_BE_NR;
}
bfqq->entity.new_weight = bfq_ioprio_to_weight(bfqq->new_ioprio);
bfqq->entity.prio_changed = 1;
}
static void bfq_check_ioprio_change(struct bfq_io_cq *bic, struct bio *bio)
{
struct bfq_data *bfqd = bic_to_bfqd(bic);
struct bfq_queue *bfqq;
int ioprio = bic->icq.ioc->ioprio;
/*
* This condition may trigger on a newly created bic, be sure to
* drop the lock before returning.
*/
if (unlikely(!bfqd) || likely(bic->ioprio == ioprio))
return;
bic->ioprio = ioprio;
bfqq = bic_to_bfqq(bic, false);
if (bfqq) {
/* release process reference on this queue */
bfq_put_queue(bfqq);
bfqq = bfq_get_queue(bfqd, bio, BLK_RW_ASYNC, bic);
bic_set_bfqq(bic, bfqq, false);
}
bfqq = bic_to_bfqq(bic, true);
if (bfqq)
bfq_set_next_ioprio_data(bfqq, bic);
}
static void bfq_init_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
struct bfq_io_cq *bic, pid_t pid, int is_sync)
{
RB_CLEAR_NODE(&bfqq->entity.rb_node);
INIT_LIST_HEAD(&bfqq->fifo);
bfqq->ref = 0;
bfqq->bfqd = bfqd;
if (bic)
bfq_set_next_ioprio_data(bfqq, bic);
if (is_sync) {
if (!bfq_class_idle(bfqq))
bfq_mark_bfqq_idle_window(bfqq);
bfq_mark_bfqq_sync(bfqq);
} else
bfq_clear_bfqq_sync(bfqq);
/* set end request to minus infinity from now */
bfqq->ttime.last_end_request = ktime_get_ns() + 1;
bfq_mark_bfqq_IO_bound(bfqq);
bfqq->pid = pid;
/* Tentative initial value to trade off between thr and lat */
bfqq->max_budget = bfq_default_budget(bfqd, bfqq);
bfqq->budget_timeout = bfq_smallest_from_now();
bfqq->pid = pid;
/* first request is almost certainly seeky */
bfqq->seek_history = 1;
}
static struct bfq_queue **bfq_async_queue_prio(struct bfq_data *bfqd,
int ioprio_class, int ioprio)
{
switch (ioprio_class) {
case IOPRIO_CLASS_RT:
return &async_bfqq[0][ioprio];
case IOPRIO_CLASS_NONE:
ioprio = IOPRIO_NORM;
/* fall through */
case IOPRIO_CLASS_BE:
return &async_bfqq[1][ioprio];
case IOPRIO_CLASS_IDLE:
return &async_idle_bfqq;
default:
return NULL;
}
}
static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
struct bio *bio, bool is_sync,
struct bfq_io_cq *bic)
{
const int ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
const int ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
struct bfq_queue **async_bfqq = NULL;
struct bfq_queue *bfqq;
rcu_read_lock();
if (!is_sync) {
async_bfqq = bfq_async_queue_prio(bfqd, ioprio_class,
ioprio);
bfqq = *async_bfqq;
if (bfqq)
goto out;
}
bfqq = kmem_cache_alloc_node(bfq_pool,
GFP_NOWAIT | __GFP_ZERO | __GFP_NOWARN,
bfqd->queue->node);
if (bfqq) {
bfq_init_bfqq(bfqd, bfqq, bic, current->pid,
is_sync);
bfq_init_entity(&bfqq->entity);
bfq_log_bfqq(bfqd, bfqq, "allocated");
} else {
bfqq = &bfqd->oom_bfqq;
bfq_log_bfqq(bfqd, bfqq, "using oom bfqq");
goto out;
}
/*
* Pin the queue now that it's allocated, scheduler exit will
* prune it.
*/
if (async_bfqq) {
bfqq->ref++;
bfq_log_bfqq(bfqd, bfqq,
"get_queue, bfqq not in async: %p, %d",
bfqq, bfqq->ref);
*async_bfqq = bfqq;
}
out:
bfqq->ref++; /* get a process reference to this queue */
bfq_log_bfqq(bfqd, bfqq, "get_queue, at end: %p, %d", bfqq, bfqq->ref);
rcu_read_unlock();
return bfqq;
}
static void bfq_update_io_thinktime(struct bfq_data *bfqd,
struct bfq_queue *bfqq)
{
struct bfq_ttime *ttime = &bfqq->ttime;
u64 elapsed = ktime_get_ns() - bfqq->ttime.last_end_request;
elapsed = min_t(u64, elapsed, 2ULL * bfqd->bfq_slice_idle);
ttime->ttime_samples = (7*bfqq->ttime.ttime_samples + 256) / 8;
ttime->ttime_total = div_u64(7*ttime->ttime_total + 256*elapsed, 8);
ttime->ttime_mean = div64_ul(ttime->ttime_total + 128,
ttime->ttime_samples);
}
static void
bfq_update_io_seektime(struct bfq_data *bfqd, struct bfq_queue *bfqq,
struct request *rq)
{
sector_t sdist = 0;
if (bfqq->last_request_pos) {
if (bfqq->last_request_pos < blk_rq_pos(rq))
sdist = blk_rq_pos(rq) - bfqq->last_request_pos;
else
sdist = bfqq->last_request_pos - blk_rq_pos(rq);
}
bfqq->seek_history <<= 1;
bfqq->seek_history |= sdist > BFQQ_SEEK_THR &&
(!blk_queue_nonrot(bfqd->queue) ||
blk_rq_sectors(rq) < BFQQ_SECT_THR_NONROT);
}
/*
* Disable idle window if the process thinks too long or seeks so much that
* it doesn't matter.
*/
static void bfq_update_idle_window(struct bfq_data *bfqd,
struct bfq_queue *bfqq,
struct bfq_io_cq *bic)
{
int enable_idle;
/* Don't idle for async or idle io prio class. */
if (!bfq_bfqq_sync(bfqq) || bfq_class_idle(bfqq))
return;
enable_idle = bfq_bfqq_idle_window(bfqq);
if (atomic_read(&bic->icq.ioc->active_ref) == 0 ||
bfqd->bfq_slice_idle == 0 ||
(bfqd->hw_tag && BFQQ_SEEKY(bfqq)))
enable_idle = 0;
else if (bfq_sample_valid(bfqq->ttime.ttime_samples)) {
if (bfqq->ttime.ttime_mean > bfqd->bfq_slice_idle)
enable_idle = 0;
else
enable_idle = 1;
}
bfq_log_bfqq(bfqd, bfqq, "update_idle_window: enable_idle %d",
enable_idle);
if (enable_idle)
bfq_mark_bfqq_idle_window(bfqq);
else
bfq_clear_bfqq_idle_window(bfqq);
}
/*
* Called when a new fs request (rq) is added to bfqq. Check if there's
* something we should do about it.
*/
static void bfq_rq_enqueued(struct bfq_data *bfqd, struct bfq_queue *bfqq,
struct request *rq)
{
struct bfq_io_cq *bic = RQ_BIC(rq);
if (rq->cmd_flags & REQ_META)
bfqq->meta_pending++;
bfq_update_io_thinktime(bfqd, bfqq);
bfq_update_io_seektime(bfqd, bfqq, rq);
if (bfqq->entity.service > bfq_max_budget(bfqd) / 8 ||
!BFQQ_SEEKY(bfqq))
bfq_update_idle_window(bfqd, bfqq, bic);
bfq_log_bfqq(bfqd, bfqq,
"rq_enqueued: idle_window=%d (seeky %d)",
bfq_bfqq_idle_window(bfqq), BFQQ_SEEKY(bfqq));
bfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
if (bfqq == bfqd->in_service_queue && bfq_bfqq_wait_request(bfqq)) {
bool small_req = bfqq->queued[rq_is_sync(rq)] == 1 &&
blk_rq_sectors(rq) < 32;
bool budget_timeout = bfq_bfqq_budget_timeout(bfqq);
/*
* There is just this request queued: if the request
* is small and the queue is not to be expired, then
* just exit.
*
* In this way, if the device is being idled to wait
* for a new request from the in-service queue, we
* avoid unplugging the device and committing the
* device to serve just a small request. On the
* contrary, we wait for the block layer to decide
* when to unplug the device: hopefully, new requests
* will be merged to this one quickly, then the device
* will be unplugged and larger requests will be
* dispatched.
*/
if (small_req && !budget_timeout)
return;
/*
* A large enough request arrived, or the queue is to
* be expired: in both cases disk idling is to be
* stopped, so clear wait_request flag and reset
* timer.
*/
bfq_clear_bfqq_wait_request(bfqq);
hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
/*
* The queue is not empty, because a new request just
* arrived. Hence we can safely expire the queue, in
* case of budget timeout, without risking that the
* timestamps of the queue are not updated correctly.
* See [1] for more details.
*/
if (budget_timeout)
bfq_bfqq_expire(bfqd, bfqq, false,
BFQQE_BUDGET_TIMEOUT);
}
}
static void __bfq_insert_request(struct bfq_data *bfqd, struct request *rq)
{
struct bfq_queue *bfqq = RQ_BFQQ(rq);
bfq_add_request(rq);
rq->fifo_time = ktime_get_ns() + bfqd->bfq_fifo_expire[rq_is_sync(rq)];
list_add_tail(&rq->queuelist, &bfqq->fifo);
bfq_rq_enqueued(bfqd, bfqq, rq);
}
static void bfq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
bool at_head)
{
struct request_queue *q = hctx->queue;
struct bfq_data *bfqd = q->elevator->elevator_data;
spin_lock_irq(&bfqd->lock);
if (blk_mq_sched_try_insert_merge(q, rq)) {
spin_unlock_irq(&bfqd->lock);
return;
}
spin_unlock_irq(&bfqd->lock);
blk_mq_sched_request_inserted(rq);
spin_lock_irq(&bfqd->lock);
if (at_head || blk_rq_is_passthrough(rq)) {
if (at_head)
list_add(&rq->queuelist, &bfqd->dispatch);
else
list_add_tail(&rq->queuelist, &bfqd->dispatch);
} else {
__bfq_insert_request(bfqd, rq);
if (rq_mergeable(rq)) {
elv_rqhash_add(q, rq);
if (!q->last_merge)
q->last_merge = rq;
}
}
spin_unlock_irq(&bfqd->lock);
}
static void bfq_insert_requests(struct blk_mq_hw_ctx *hctx,
struct list_head *list, bool at_head)
{
while (!list_empty(list)) {
struct request *rq;
rq = list_first_entry(list, struct request, queuelist);
list_del_init(&rq->queuelist);
bfq_insert_request(hctx, rq, at_head);
}
}
static void bfq_update_hw_tag(struct bfq_data *bfqd)
{
bfqd->max_rq_in_driver = max_t(int, bfqd->max_rq_in_driver,
bfqd->rq_in_driver);
if (bfqd->hw_tag == 1)
return;
/*
* This sample is valid if the number of outstanding requests
* is large enough to allow a queueing behavior. Note that the
* sum is not exact, as it's not taking into account deactivated
* requests.
*/
if (bfqd->rq_in_driver + bfqd->queued < BFQ_HW_QUEUE_THRESHOLD)
return;
if (bfqd->hw_tag_samples++ < BFQ_HW_QUEUE_SAMPLES)
return;
bfqd->hw_tag = bfqd->max_rq_in_driver > BFQ_HW_QUEUE_THRESHOLD;
bfqd->max_rq_in_driver = 0;
bfqd->hw_tag_samples = 0;
}
static void bfq_completed_request(struct bfq_queue *bfqq, struct bfq_data *bfqd)
{
bfq_update_hw_tag(bfqd);
bfqd->rq_in_driver--;
bfqq->dispatched--;
bfqq->ttime.last_end_request = ktime_get_ns();
/*
* If this is the in-service queue, check if it needs to be expired,
* or if we want to idle in case it has no pending requests.
*/
if (bfqd->in_service_queue == bfqq) {
if (bfq_bfqq_budget_new(bfqq))
bfq_set_budget_timeout(bfqd);
if (bfq_bfqq_must_idle(bfqq)) {
bfq_arm_slice_timer(bfqd);
return;
} else if (bfq_may_expire_for_budg_timeout(bfqq))
bfq_bfqq_expire(bfqd, bfqq, false,
BFQQE_BUDGET_TIMEOUT);
else if (RB_EMPTY_ROOT(&bfqq->sort_list) &&
(bfqq->dispatched == 0 ||
!bfq_bfqq_may_idle(bfqq)))
bfq_bfqq_expire(bfqd, bfqq, false,
BFQQE_NO_MORE_REQUESTS);
}
}
static void bfq_put_rq_priv_body(struct bfq_queue *bfqq)
{
bfqq->allocated--;
bfq_put_queue(bfqq);
}
static void bfq_put_rq_private(struct request_queue *q, struct request *rq)
{
struct bfq_queue *bfqq = RQ_BFQQ(rq);
struct bfq_data *bfqd = bfqq->bfqd;
if (likely(rq->rq_flags & RQF_STARTED)) {
unsigned long flags;
spin_lock_irqsave(&bfqd->lock, flags);
bfq_completed_request(bfqq, bfqd);
bfq_put_rq_priv_body(bfqq);
spin_unlock_irqrestore(&bfqd->lock, flags);
} else {
/*
* Request rq may be still/already in the scheduler,
* in which case we need to remove it. And we cannot
* defer such a check and removal, to avoid
* inconsistencies in the time interval from the end
* of this function to the start of the deferred work.
* This situation seems to occur only in process
* context, as a consequence of a merge. In the
* current version of the code, this implies that the
* lock is held.
*/
if (!RB_EMPTY_NODE(&rq->rb_node))
bfq_remove_request(q, rq);
bfq_put_rq_priv_body(bfqq);
}
rq->elv.priv[0] = NULL;
rq->elv.priv[1] = NULL;
}
/*
* Allocate bfq data structures associated with this request.
*/
static int bfq_get_rq_private(struct request_queue *q, struct request *rq,
struct bio *bio)
{
struct bfq_data *bfqd = q->elevator->elevator_data;
struct bfq_io_cq *bic = icq_to_bic(rq->elv.icq);
const int is_sync = rq_is_sync(rq);
struct bfq_queue *bfqq;
spin_lock_irq(&bfqd->lock);
bfq_check_ioprio_change(bic, bio);
if (!bic)
goto queue_fail;
bfqq = bic_to_bfqq(bic, is_sync);
if (!bfqq || bfqq == &bfqd->oom_bfqq) {
if (bfqq)
bfq_put_queue(bfqq);
bfqq = bfq_get_queue(bfqd, bio, is_sync, bic);
bic_set_bfqq(bic, bfqq, is_sync);
}
bfqq->allocated++;
bfqq->ref++;
bfq_log_bfqq(bfqd, bfqq, "get_request %p: bfqq %p, %d",
rq, bfqq, bfqq->ref);
rq->elv.priv[0] = bic;
rq->elv.priv[1] = bfqq;
spin_unlock_irq(&bfqd->lock);
return 0;
queue_fail:
spin_unlock_irq(&bfqd->lock);
return 1;
}
static void bfq_idle_slice_timer_body(struct bfq_queue *bfqq)
{
struct bfq_data *bfqd = bfqq->bfqd;
enum bfqq_expiration reason;
unsigned long flags;
spin_lock_irqsave(&bfqd->lock, flags);
bfq_clear_bfqq_wait_request(bfqq);
if (bfqq != bfqd->in_service_queue) {
spin_unlock_irqrestore(&bfqd->lock, flags);
return;
}
if (bfq_bfqq_budget_timeout(bfqq))
/*
* Also here the queue can be safely expired
* for budget timeout without wasting
* guarantees
*/
reason = BFQQE_BUDGET_TIMEOUT;
else if (bfqq->queued[0] == 0 && bfqq->queued[1] == 0)
/*
* The queue may not be empty upon timer expiration,
* because we may not disable the timer when the
* first request of the in-service queue arrives
* during disk idling.
*/
reason = BFQQE_TOO_IDLE;
else
goto schedule_dispatch;
bfq_bfqq_expire(bfqd, bfqq, true, reason);
schedule_dispatch:
spin_unlock_irqrestore(&bfqd->lock, flags);
bfq_schedule_dispatch(bfqd);
}
/*
* Handler of the expiration of the timer running if the in-service queue
* is idling inside its time slice.
*/
static enum hrtimer_restart bfq_idle_slice_timer(struct hrtimer *timer)
{
struct bfq_data *bfqd = container_of(timer, struct bfq_data,
idle_slice_timer);
struct bfq_queue *bfqq = bfqd->in_service_queue;
/*
* Theoretical race here: the in-service queue can be NULL or
* different from the queue that was idling if a new request
* arrives for the current queue and there is a full dispatch
* cycle that changes the in-service queue. This can hardly
* happen, but in the worst case we just expire a queue too
* early.
*/
if (bfqq)
bfq_idle_slice_timer_body(bfqq);
return HRTIMER_NORESTART;
}
static void __bfq_put_async_bfqq(struct bfq_data *bfqd,
struct bfq_queue **bfqq_ptr)
{
struct bfq_queue *bfqq = *bfqq_ptr;
bfq_log(bfqd, "put_async_bfqq: %p", bfqq);
if (bfqq) {
bfq_log_bfqq(bfqd, bfqq, "put_async_bfqq: putting %p, %d",
bfqq, bfqq->ref);
bfq_put_queue(bfqq);
*bfqq_ptr = NULL;
}
}
/*
* Release the extra reference of the async queues as the device
* goes away.
*/
static void bfq_put_async_queues(struct bfq_data *bfqd)
{
int i, j;
for (i = 0; i < 2; i++)
for (j = 0; j < IOPRIO_BE_NR; j++)
__bfq_put_async_bfqq(bfqd, &async_bfqq[i][j]);
__bfq_put_async_bfqq(bfqd, &async_idle_bfqq);
}
static void bfq_exit_queue(struct elevator_queue *e)
{
struct bfq_data *bfqd = e->elevator_data;
struct bfq_queue *bfqq, *n;
hrtimer_cancel(&bfqd->idle_slice_timer);
spin_lock_irq(&bfqd->lock);
list_for_each_entry_safe(bfqq, n, &bfqd->idle_list, bfqq_list)
bfq_deactivate_bfqq(bfqd, bfqq, false);
bfq_put_async_queues(bfqd);
spin_unlock_irq(&bfqd->lock);
hrtimer_cancel(&bfqd->idle_slice_timer);
kfree(bfqd);
}
static int bfq_init_queue(struct request_queue *q, struct elevator_type *e)
{
struct bfq_data *bfqd;
struct elevator_queue *eq;
int i;
eq = elevator_alloc(q, e);
if (!eq)
return -ENOMEM;
bfqd = kzalloc_node(sizeof(*bfqd), GFP_KERNEL, q->node);
if (!bfqd) {
kobject_put(&eq->kobj);
return -ENOMEM;
}
eq->elevator_data = bfqd;
/*
* Our fallback bfqq if bfq_find_alloc_queue() runs into OOM issues.
* Grab a permanent reference to it, so that the normal code flow
* will not attempt to free it.
*/
bfq_init_bfqq(bfqd, &bfqd->oom_bfqq, NULL, 1, 0);
bfqd->oom_bfqq.ref++;
bfqd->oom_bfqq.new_ioprio = BFQ_DEFAULT_QUEUE_IOPRIO;
bfqd->oom_bfqq.new_ioprio_class = IOPRIO_CLASS_BE;
bfqd->oom_bfqq.entity.new_weight =
bfq_ioprio_to_weight(bfqd->oom_bfqq.new_ioprio);
/*
* Trigger weight initialization, according to ioprio, at the
* oom_bfqq's first activation. The oom_bfqq's ioprio and ioprio
* class won't be changed any more.
*/
bfqd->oom_bfqq.entity.prio_changed = 1;
bfqd->queue = q;
for (i = 0; i < BFQ_IOPRIO_CLASSES; i++)
bfqd->sched_data.service_tree[i] = BFQ_SERVICE_TREE_INIT;
hrtimer_init(&bfqd->idle_slice_timer, CLOCK_MONOTONIC,
HRTIMER_MODE_REL);
bfqd->idle_slice_timer.function = bfq_idle_slice_timer;
INIT_LIST_HEAD(&bfqd->active_list);
INIT_LIST_HEAD(&bfqd->idle_list);
bfqd->hw_tag = -1;
bfqd->bfq_max_budget = bfq_default_max_budget;
bfqd->bfq_fifo_expire[0] = bfq_fifo_expire[0];
bfqd->bfq_fifo_expire[1] = bfq_fifo_expire[1];
bfqd->bfq_back_max = bfq_back_max;
bfqd->bfq_back_penalty = bfq_back_penalty;
bfqd->bfq_slice_idle = bfq_slice_idle;
bfqd->bfq_class_idle_last_service = 0;
bfqd->bfq_timeout = bfq_timeout;
bfqd->bfq_requests_within_timer = 120;
spin_lock_init(&bfqd->lock);
INIT_LIST_HEAD(&bfqd->dispatch);
q->elevator = eq;
return 0;
}
static void bfq_slab_kill(void)
{
kmem_cache_destroy(bfq_pool);
}
static int __init bfq_slab_setup(void)
{
bfq_pool = KMEM_CACHE(bfq_queue, 0);
if (!bfq_pool)
return -ENOMEM;
return 0;
}
static ssize_t bfq_var_show(unsigned int var, char *page)
{
return sprintf(page, "%u\n", var);
}
static ssize_t bfq_var_store(unsigned long *var, const char *page,
size_t count)
{
unsigned long new_val;
int ret = kstrtoul(page, 10, &new_val);
if (ret == 0)
*var = new_val;
return count;
}
#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
static ssize_t __FUNC(struct elevator_queue *e, char *page) \
{ \
struct bfq_data *bfqd = e->elevator_data; \
u64 __data = __VAR; \
if (__CONV == 1) \
__data = jiffies_to_msecs(__data); \
else if (__CONV == 2) \
__data = div_u64(__data, NSEC_PER_MSEC); \
return bfq_var_show(__data, (page)); \
}
SHOW_FUNCTION(bfq_fifo_expire_sync_show, bfqd->bfq_fifo_expire[1], 2);
SHOW_FUNCTION(bfq_fifo_expire_async_show, bfqd->bfq_fifo_expire[0], 2);
SHOW_FUNCTION(bfq_back_seek_max_show, bfqd->bfq_back_max, 0);
SHOW_FUNCTION(bfq_back_seek_penalty_show, bfqd->bfq_back_penalty, 0);
SHOW_FUNCTION(bfq_slice_idle_show, bfqd->bfq_slice_idle, 2);
SHOW_FUNCTION(bfq_max_budget_show, bfqd->bfq_user_max_budget, 0);
SHOW_FUNCTION(bfq_timeout_sync_show, bfqd->bfq_timeout, 1);
SHOW_FUNCTION(bfq_strict_guarantees_show, bfqd->strict_guarantees, 0);
#undef SHOW_FUNCTION
#define USEC_SHOW_FUNCTION(__FUNC, __VAR) \
static ssize_t __FUNC(struct elevator_queue *e, char *page) \
{ \
struct bfq_data *bfqd = e->elevator_data; \
u64 __data = __VAR; \
__data = div_u64(__data, NSEC_PER_USEC); \
return bfq_var_show(__data, (page)); \
}
USEC_SHOW_FUNCTION(bfq_slice_idle_us_show, bfqd->bfq_slice_idle);
#undef USEC_SHOW_FUNCTION
#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
static ssize_t \
__FUNC(struct elevator_queue *e, const char *page, size_t count) \
{ \
struct bfq_data *bfqd = e->elevator_data; \
unsigned long uninitialized_var(__data); \
int ret = bfq_var_store(&__data, (page), count); \
if (__data < (MIN)) \
__data = (MIN); \
else if (__data > (MAX)) \
__data = (MAX); \
if (__CONV == 1) \
*(__PTR) = msecs_to_jiffies(__data); \
else if (__CONV == 2) \
*(__PTR) = (u64)__data * NSEC_PER_MSEC; \
else \
*(__PTR) = __data; \
return ret; \
}
STORE_FUNCTION(bfq_fifo_expire_sync_store, &bfqd->bfq_fifo_expire[1], 1,
INT_MAX, 2);
STORE_FUNCTION(bfq_fifo_expire_async_store, &bfqd->bfq_fifo_expire[0], 1,
INT_MAX, 2);
STORE_FUNCTION(bfq_back_seek_max_store, &bfqd->bfq_back_max, 0, INT_MAX, 0);
STORE_FUNCTION(bfq_back_seek_penalty_store, &bfqd->bfq_back_penalty, 1,
INT_MAX, 0);
STORE_FUNCTION(bfq_slice_idle_store, &bfqd->bfq_slice_idle, 0, INT_MAX, 2);
#undef STORE_FUNCTION
#define USEC_STORE_FUNCTION(__FUNC, __PTR, MIN, MAX) \
static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)\
{ \
struct bfq_data *bfqd = e->elevator_data; \
unsigned long uninitialized_var(__data); \
int ret = bfq_var_store(&__data, (page), count); \
if (__data < (MIN)) \
__data = (MIN); \
else if (__data > (MAX)) \
__data = (MAX); \
*(__PTR) = (u64)__data * NSEC_PER_USEC; \
return ret; \
}
USEC_STORE_FUNCTION(bfq_slice_idle_us_store, &bfqd->bfq_slice_idle, 0,
UINT_MAX);
#undef USEC_STORE_FUNCTION
static unsigned long bfq_estimated_max_budget(struct bfq_data *bfqd)
{
u64 timeout = jiffies_to_msecs(bfqd->bfq_timeout);
if (bfqd->peak_rate_samples >= BFQ_PEAK_RATE_SAMPLES)
return bfq_calc_max_budget(bfqd->peak_rate, timeout);
else
return bfq_default_max_budget;
}
static ssize_t bfq_max_budget_store(struct elevator_queue *e,
const char *page, size_t count)
{
struct bfq_data *bfqd = e->elevator_data;
unsigned long uninitialized_var(__data);
int ret = bfq_var_store(&__data, (page), count);
if (__data == 0)
bfqd->bfq_max_budget = bfq_estimated_max_budget(bfqd);
else {
if (__data > INT_MAX)
__data = INT_MAX;
bfqd->bfq_max_budget = __data;
}
bfqd->bfq_user_max_budget = __data;
return ret;
}
/*
* Leaving this name to preserve name compatibility with cfq
* parameters, but this timeout is used for both sync and async.
*/
static ssize_t bfq_timeout_sync_store(struct elevator_queue *e,
const char *page, size_t count)
{
struct bfq_data *bfqd = e->elevator_data;
unsigned long uninitialized_var(__data);
int ret = bfq_var_store(&__data, (page), count);
if (__data < 1)
__data = 1;
else if (__data > INT_MAX)
__data = INT_MAX;
bfqd->bfq_timeout = msecs_to_jiffies(__data);
if (bfqd->bfq_user_max_budget == 0)
bfqd->bfq_max_budget = bfq_estimated_max_budget(bfqd);
return ret;
}
static ssize_t bfq_strict_guarantees_store(struct elevator_queue *e,
const char *page, size_t count)
{
struct bfq_data *bfqd = e->elevator_data;
unsigned long uninitialized_var(__data);
int ret = bfq_var_store(&__data, (page), count);
if (__data > 1)
__data = 1;
if (!bfqd->strict_guarantees && __data == 1
&& bfqd->bfq_slice_idle < 8 * NSEC_PER_MSEC)
bfqd->bfq_slice_idle = 8 * NSEC_PER_MSEC;
bfqd->strict_guarantees = __data;
return ret;
}
#define BFQ_ATTR(name) \
__ATTR(name, 0644, bfq_##name##_show, bfq_##name##_store)
static struct elv_fs_entry bfq_attrs[] = {
BFQ_ATTR(fifo_expire_sync),
BFQ_ATTR(fifo_expire_async),
BFQ_ATTR(back_seek_max),
BFQ_ATTR(back_seek_penalty),
BFQ_ATTR(slice_idle),
BFQ_ATTR(slice_idle_us),
BFQ_ATTR(max_budget),
BFQ_ATTR(timeout_sync),
BFQ_ATTR(strict_guarantees),
__ATTR_NULL
};
static struct elevator_type iosched_bfq_mq = {
.ops.mq = {
.get_rq_priv = bfq_get_rq_private,
.put_rq_priv = bfq_put_rq_private,
.exit_icq = bfq_exit_icq,
.insert_requests = bfq_insert_requests,
.dispatch_request = bfq_dispatch_request,
.next_request = elv_rb_latter_request,
.former_request = elv_rb_former_request,
.allow_merge = bfq_allow_bio_merge,
.bio_merge = bfq_bio_merge,
.request_merge = bfq_request_merge,
.requests_merged = bfq_requests_merged,
.request_merged = bfq_request_merged,
.has_work = bfq_has_work,
.init_sched = bfq_init_queue,
.exit_sched = bfq_exit_queue,
},
.uses_mq = true,
.icq_size = sizeof(struct bfq_io_cq),
.icq_align = __alignof__(struct bfq_io_cq),
.elevator_attrs = bfq_attrs,
.elevator_name = "bfq",
.elevator_owner = THIS_MODULE,
};
static int __init bfq_init(void)
{
int ret;
ret = -ENOMEM;
if (bfq_slab_setup())
goto err_pol_unreg;
ret = elv_register(&iosched_bfq_mq);
if (ret)
goto err_pol_unreg;
return 0;
err_pol_unreg:
return ret;
}
static void __exit bfq_exit(void)
{
elv_unregister(&iosched_bfq_mq);
bfq_slab_kill();
}
module_init(bfq_init);
module_exit(bfq_exit);
MODULE_AUTHOR("Paolo Valente");
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("MQ Budget Fair Queueing I/O Scheduler");