/*
* Copyright (C) 1995 Linus Torvalds
* Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
* Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
*/
#include <linux/magic.h> /* STACK_END_MAGIC */
#include <linux/sched.h> /* test_thread_flag(), ... */
#include <linux/kdebug.h> /* oops_begin/end, ... */
#include <linux/module.h> /* search_exception_table */
#include <linux/bootmem.h> /* max_low_pfn */
#include <linux/kprobes.h> /* __kprobes, ... */
#include <linux/mmiotrace.h> /* kmmio_handler, ... */
#include <linux/perf_event.h> /* perf_sw_event */
#include <linux/hugetlb.h> /* hstate_index_to_shift */
#include <asm/traps.h> /* dotraplinkage, ... */
#include <asm/pgalloc.h> /* pgd_*(), ... */
#include <asm/kmemcheck.h> /* kmemcheck_*(), ... */
/*
* Page fault error code bits:
*
* bit 0 == 0: no page found 1: protection fault
* bit 1 == 0: read access 1: write access
* bit 2 == 0: kernel-mode access 1: user-mode access
* bit 3 == 1: use of reserved bit detected
* bit 4 == 1: fault was an instruction fetch
*/
enum x86_pf_error_code {
PF_PROT = 1 << 0,
PF_WRITE = 1 << 1,
PF_USER = 1 << 2,
PF_RSVD = 1 << 3,
PF_INSTR = 1 << 4,
};
/*
* Returns 0 if mmiotrace is disabled, or if the fault is not
* handled by mmiotrace:
*/
static inline int __kprobes
kmmio_fault(struct pt_regs *regs, unsigned long addr)
{
if (unlikely(is_kmmio_active()))
if (kmmio_handler(regs, addr) == 1)
return -1;
return 0;
}
static inline int __kprobes notify_page_fault(struct pt_regs *regs)
{
int ret = 0;
/* kprobe_running() needs smp_processor_id() */
if (kprobes_built_in() && !user_mode_vm(regs)) {
preempt_disable();
if (kprobe_running() && kprobe_fault_handler(regs, 14))
ret = 1;
preempt_enable();
}
return ret;
}
/*
* Prefetch quirks:
*
* 32-bit mode:
*
* Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
* Check that here and ignore it.
*
* 64-bit mode:
*
* Sometimes the CPU reports invalid exceptions on prefetch.
* Check that here and ignore it.
*
* Opcode checker based on code by Richard Brunner.
*/
static inline int
check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
unsigned char opcode, int *prefetch)
{
unsigned char instr_hi = opcode & 0xf0;
unsigned char instr_lo = opcode & 0x0f;
switch (instr_hi) {
case 0x20:
case 0x30:
/*
* Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
* In X86_64 long mode, the CPU will signal invalid
* opcode if some of these prefixes are present so
* X86_64 will never get here anyway
*/
return ((instr_lo & 7) == 0x6);
#ifdef CONFIG_X86_64
case 0x40:
/*
* In AMD64 long mode 0x40..0x4F are valid REX prefixes
* Need to figure out under what instruction mode the
* instruction was issued. Could check the LDT for lm,
* but for now it's good enough to assume that long
* mode only uses well known segments or kernel.
*/
return (!user_mode(regs)) || (regs->cs == __USER_CS);
#endif
case 0x60:
/* 0x64 thru 0x67 are valid prefixes in all modes. */
return (instr_lo & 0xC) == 0x4;
case 0xF0:
/* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
return !instr_lo || (instr_lo>>1) == 1;
case 0x00:
/* Prefetch instruction is 0x0F0D or 0x0F18 */
if (probe_kernel_address(instr, opcode))
return 0;
*prefetch = (instr_lo == 0xF) &&
(opcode == 0x0D || opcode == 0x18);
return 0;
default:
return 0;
}
}
static int
is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
{
unsigned char *max_instr;
unsigned char *instr;
int prefetch = 0;
/*
* If it was a exec (instruction fetch) fault on NX page, then
* do not ignore the fault:
*/
if (error_code & PF_INSTR)
return 0;
instr = (void *)convert_ip_to_linear(current, regs);
max_instr = instr + 15;
if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE)
return 0;
while (instr < max_instr) {
unsigned char opcode;
if (probe_kernel_address(instr, opcode))
break;
instr++;
if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
break;
}
return prefetch;
}
static void
force_sig_info_fault(int si_signo, int si_code, unsigned long address,
struct task_struct *tsk, int fault)
{
unsigned lsb = 0;
siginfo_t info;
info.si_signo = si_signo;
info.si_errno = 0;
info.si_code = si_code;
info.si_addr = (void __user *)address;
if (fault & VM_FAULT_HWPOISON_LARGE)
lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
if (fault & VM_FAULT_HWPOISON)
lsb = PAGE_SHIFT;
info.si_addr_lsb = lsb;
force_sig_info(si_signo, &info, tsk);
}
DEFINE_SPINLOCK(pgd_lock);
LIST_HEAD(pgd_list);
#ifdef CONFIG_X86_32
static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
{
unsigned index = pgd_index(address);
pgd_t *pgd_k;
pud_t *pud, *pud_k;
pmd_t *pmd, *pmd_k;
pgd += index;
pgd_k = init_mm.pgd + index;
if (!pgd_present(*pgd_k))
return NULL;
/*
* set_pgd(pgd, *pgd_k); here would be useless on PAE
* and redundant with the set_pmd() on non-PAE. As would
* set_pud.
*/
pud = pud_offset(pgd, address);
pud_k = pud_offset(pgd_k, address);
if (!pud_present(*pud_k))
return NULL;
pmd = pmd_offset(pud, address);
pmd_k = pmd_offset(pud_k, address);
if (!pmd_present(*pmd_k))
return NULL;
if (!pmd_present(*pmd))
set_pmd(pmd, *pmd_k);
else
BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
return pmd_k;
}
void vmalloc_sync_all(void)
{
unsigned long address;
if (SHARED_KERNEL_PMD)
return;
for (address = VMALLOC_START & PMD_MASK;
address >= TASK_SIZE && address < FIXADDR_TOP;
address += PMD_SIZE) {
struct page *page;
spin_lock(&pgd_lock);
list_for_each_entry(page, &pgd_list, lru) {
spinlock_t *pgt_lock;
pmd_t *ret;
/* the pgt_lock only for Xen */
pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
spin_lock(pgt_lock);
ret = vmalloc_sync_one(page_address(page), address);
spin_unlock(pgt_lock);
if (!ret)
break;
}
spin_unlock(&pgd_lock);
}
}
/*
* 32-bit:
*
* Handle a fault on the vmalloc or module mapping area
*/
static noinline __kprobes int vmalloc_fault(unsigned long address)
{
unsigned long pgd_paddr;
pmd_t *pmd_k;
pte_t *pte_k;
/* Make sure we are in vmalloc area: */
if (!(address >= VMALLOC_START && address < VMALLOC_END))
return -1;
WARN_ON_ONCE(in_nmi());
/*
* Synchronize this task's top level page-table
* with the 'reference' page table.
*
* Do _not_ use "current" here. We might be inside
* an interrupt in the middle of a task switch..
*/
pgd_paddr = read_cr3();
pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
if (!pmd_k)
return -1;
pte_k = pte_offset_kernel(pmd_k, address);
if (!pte_present(*pte_k))
return -1;
return 0;
}
/*
* Did it hit the DOS screen memory VA from vm86 mode?
*/
static inline void
check_v8086_mode(struct pt_regs *regs, unsigned long address,
struct task_struct *tsk)
{
unsigned long bit;
if (!v8086_mode(regs))
return;
bit = (address - 0xA0000) >> PAGE_SHIFT;
if (bit < 32)
tsk->thread.screen_bitmap |= 1 << bit;
}
static bool low_pfn(unsigned long pfn)
{
return pfn < max_low_pfn;
}
static void dump_pagetable(unsigned long address)
{
pgd_t *base = __va(read_cr3());
pgd_t *pgd = &base[pgd_index(address)];
pmd_t *pmd;
pte_t *pte;
#ifdef CONFIG_X86_PAE
printk("*pdpt = %016Lx ", pgd_val(*pgd));
if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
goto out;
#endif
pmd = pmd_offset(pud_offset(pgd, address), address);
printk(KERN_CONT "*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
/*
* We must not directly access the pte in the highpte
* case if the page table is located in highmem.
* And let's rather not kmap-atomic the pte, just in case
* it's allocated already:
*/
if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
goto out;
pte = pte_offset_kernel(pmd, address);
printk("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
out:
printk("\n");
}
#else /* CONFIG_X86_64: */
void vmalloc_sync_all(void)
{
sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END);
}
/*
* 64-bit:
*
* Handle a fault on the vmalloc area
*
* This assumes no large pages in there.
*/
static noinline __kprobes int vmalloc_fault(unsigned long address)
{
pgd_t *pgd, *pgd_ref;
pud_t *pud, *pud_ref;
pmd_t *pmd, *pmd_ref;
pte_t *pte, *pte_ref;
/* Make sure we are in vmalloc area: */
if (!(address >= VMALLOC_START && address < VMALLOC_END))
return -1;
WARN_ON_ONCE(in_nmi());
/*
* Copy kernel mappings over when needed. This can also
* happen within a race in page table update. In the later
* case just flush:
*/
pgd = pgd_offset(current->active_mm, address);
pgd_ref = pgd_offset_k(address);
if (pgd_none(*pgd_ref))
return -1;
if (pgd_none(*pgd))
set_pgd(pgd, *pgd_ref);
else
BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
/*
* Below here mismatches are bugs because these lower tables
* are shared:
*/
pud = pud_offset(pgd, address);
pud_ref = pud_offset(pgd_ref, address);
if (pud_none(*pud_ref))
return -1;
if (pud_none(*pud) || pud_page_vaddr(*pud) != pud_page_vaddr(*pud_ref))
BUG();
pmd = pmd_offset(pud, address);
pmd_ref = pmd_offset(pud_ref, address);
if (pmd_none(*pmd_ref))
return -1;
if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref))
BUG();
pte_ref = pte_offset_kernel(pmd_ref, address);
if (!pte_present(*pte_ref))
return -1;
pte = pte_offset_kernel(pmd, address);
/*
* Don't use pte_page here, because the mappings can point
* outside mem_map, and the NUMA hash lookup cannot handle
* that:
*/
if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
BUG();
return 0;
}
static const char errata93_warning[] =
KERN_ERR
"******* Your BIOS seems to not contain a fix for K8 errata #93\n"
"******* Working around it, but it may cause SEGVs or burn power.\n"
"******* Please consider a BIOS update.\n"
"******* Disabling USB legacy in the BIOS may also help.\n";
/*
* No vm86 mode in 64-bit mode:
*/
static inline void
check_v8086_mode(struct pt_regs *regs, unsigned long address,
struct task_struct *tsk)
{
}
static int bad_address(void *p)
{
unsigned long dummy;
return probe_kernel_address((unsigned long *)p, dummy);
}
static void dump_pagetable(unsigned long address)
{
pgd_t *base = __va(read_cr3() & PHYSICAL_PAGE_MASK);
pgd_t *pgd = base + pgd_index(address);
pud_t *pud;
pmd_t *pmd;
pte_t *pte;
if (bad_address(pgd))
goto bad;
printk("PGD %lx ", pgd_val(*pgd));
if (!pgd_present(*pgd))
goto out;
pud = pud_offset(pgd, address);
if (bad_address(pud))
goto bad;
printk("PUD %lx ", pud_val(*pud));
if (!pud_present(*pud) || pud_large(*pud))
goto out;
pmd = pmd_offset(pud, address);
if (bad_address(pmd))
goto bad;
printk("PMD %lx ", pmd_val(*pmd));
if (!pmd_present(*pmd) || pmd_large(*pmd))
goto out;
pte = pte_offset_kernel(pmd, address);
if (bad_address(pte))
goto bad;
printk("PTE %lx", pte_val(*pte));
out:
printk("\n");
return;
bad:
printk("BAD\n");
}
#endif /* CONFIG_X86_64 */
/*
* Workaround for K8 erratum #93 & buggy BIOS.
*
* BIOS SMM functions are required to use a specific workaround
* to avoid corruption of the 64bit RIP register on C stepping K8.
*
* A lot of BIOS that didn't get tested properly miss this.
*
* The OS sees this as a page fault with the upper 32bits of RIP cleared.
* Try to work around it here.
*
* Note we only handle faults in kernel here.
* Does nothing on 32-bit.
*/
static int is_errata93(struct pt_regs *regs, unsigned long address)
{
#ifdef CONFIG_X86_64
if (address != regs->ip)
return 0;
if ((address >> 32) != 0)
return 0;
address |= 0xffffffffUL << 32;
if ((address >= (u64)_stext && address <= (u64)_etext) ||
(address >= MODULES_VADDR && address <= MODULES_END)) {
printk_once(errata93_warning);
regs->ip = address;
return 1;
}
#endif
return 0;
}
/*
* Work around K8 erratum #100 K8 in compat mode occasionally jumps
* to illegal addresses >4GB.
*
* We catch this in the page fault handler because these addresses
* are not reachable. Just detect this case and return. Any code
* segment in LDT is compatibility mode.
*/
static int is_errata100(struct pt_regs *regs, unsigned long address)
{
#ifdef CONFIG_X86_64
if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
return 1;
#endif
return 0;
}
static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
{
#ifdef CONFIG_X86_F00F_BUG
unsigned long nr;
/*
* Pentium F0 0F C7 C8 bug workaround:
*/
if (boot_cpu_data.f00f_bug) {
nr = (address - idt_descr.address) >> 3;
if (nr == 6) {
do_invalid_op(regs, 0);
return 1;
}
}
#endif
return 0;
}
static const char nx_warning[] = KERN_CRIT
"kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n";
static void
show_fault_oops(struct pt_regs *regs, unsigned long error_code,
unsigned long address)
{
if (!oops_may_print())
return;
if (error_code & PF_INSTR) {
unsigned int level;
pte_t *pte = lookup_address(address, &level);
if (pte && pte_present(*pte) && !pte_exec(*pte))
printk(nx_warning, current_uid());
}
printk(KERN_ALERT "BUG: unable to handle kernel ");
if (address < PAGE_SIZE)
printk(KERN_CONT "NULL pointer dereference");
else
printk(KERN_CONT "paging request");
printk(KERN_CONT " at %p\n", (void *) address);
printk(KERN_ALERT "IP:");
printk_address(regs->ip, 1);
dump_pagetable(address);
}
static noinline void
pgtable_bad(struct pt_regs *regs, unsigned long error_code,
unsigned long address)
{
struct task_struct *tsk;
unsigned long flags;
int sig;
flags = oops_begin();
tsk = current;
sig = SIGKILL;
printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
tsk->comm, address);
dump_pagetable(address);
tsk->thread.cr2 = address;
tsk->thread.trap_no = 14;
tsk->thread.error_code = error_code;
if (__die("Bad pagetable", regs, error_code))
sig = 0;
oops_end(flags, regs, sig);
}
static noinline void
no_context(struct pt_regs *regs, unsigned long error_code,
unsigned long address)
{
struct task_struct *tsk = current;
unsigned long *stackend;
unsigned long flags;
int sig;
/* Are we prepared to handle this kernel fault? */
if (fixup_exception(regs))
return;
/*
* 32-bit:
*
* Valid to do another page fault here, because if this fault
* had been triggered by is_prefetch fixup_exception would have
* handled it.
*
* 64-bit:
*
* Hall of shame of CPU/BIOS bugs.
*/
if (is_prefetch(regs, error_code, address))
return;
if (is_errata93(regs, address))
return;
/*
* Oops. The kernel tried to access some bad page. We'll have to
* terminate things with extreme prejudice:
*/
flags = oops_begin();
show_fault_oops(regs, error_code, address);
stackend = end_of_stack(tsk);
if (tsk != &init_task && *stackend != STACK_END_MAGIC)
printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
tsk->thread.cr2 = address;
tsk->thread.trap_no = 14;
tsk->thread.error_code = error_code;
sig = SIGKILL;
if (__die("Oops", regs, error_code))
sig = 0;
/* Executive summary in case the body of the oops scrolled away */
printk(KERN_EMERG "CR2: %016lx\n", address);
oops_end(flags, regs, sig);
}
/*
* Print out info about fatal segfaults, if the show_unhandled_signals
* sysctl is set:
*/
static inline void
show_signal_msg(struct pt_regs *regs, unsigned long error_code,
unsigned long address, struct task_struct *tsk)
{
if (!unhandled_signal(tsk, SIGSEGV))
return;
if (!printk_ratelimit())
return;
printk("%s%s[%d]: segfault at %lx ip %p sp %p error %lx",
task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
tsk->comm, task_pid_nr(tsk), address,
(void *)regs->ip, (void *)regs->sp, error_code);
print_vma_addr(KERN_CONT " in ", regs->ip);
printk(KERN_CONT "\n");
}
static void
__bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
unsigned long address, int si_code)
{
struct task_struct *tsk = current;
/* User mode accesses just cause a SIGSEGV */
if (error_code & PF_USER) {
/*
* It's possible to have interrupts off here:
*/
local_irq_enable();
/*
* Valid to do another page fault here because this one came
* from user space:
*/
if (is_prefetch(regs, error_code, address))
return;
if (is_errata100(regs, address))
return;
if (unlikely(show_unhandled_signals))
show_signal_msg(regs, error_code, address, tsk);
/* Kernel addresses are always protection faults: */
tsk->thread.cr2 = address;
tsk->thread.error_code = error_code | (address >= TASK_SIZE);
tsk->thread.trap_no = 14;
force_sig_info_fault(SIGSEGV, si_code, address, tsk, 0);
return;
}
if (is_f00f_bug(regs, address))
return;
no_context(regs, error_code, address);
}
static noinline void
bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
unsigned long address)
{
__bad_area_nosemaphore(regs, error_code, address, SEGV_MAPERR);
}
static void
__bad_area(struct pt_regs *regs, unsigned long error_code,
unsigned long address, int si_code)
{
struct mm_struct *mm = current->mm;
/*
* Something tried to access memory that isn't in our memory map..
* Fix it, but check if it's kernel or user first..
*/
up_read(&mm->mmap_sem);
__bad_area_nosemaphore(regs, error_code, address, si_code);
}
static noinline void
bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
{
__bad_area(regs, error_code, address, SEGV_MAPERR);
}
static noinline void
bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
unsigned long address)
{
__bad_area(regs, error_code, address, SEGV_ACCERR);
}
/* TODO: fixup for "mm-invoke-oom-killer-from-page-fault.patch" */
static void
out_of_memory(struct pt_regs *regs, unsigned long error_code,
unsigned long address)
{
/*
* We ran out of memory, call the OOM killer, and return the userspace
* (which will retry the fault, or kill us if we got oom-killed):
*/
up_read(¤t->mm->mmap_sem);
pagefault_out_of_memory();
}
static void
do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
unsigned int fault)
{
struct task_struct *tsk = current;
struct mm_struct *mm = tsk->mm;
int code = BUS_ADRERR;
up_read(&mm->mmap_sem);
/* Kernel mode? Handle exceptions or die: */
if (!(error_code & PF_USER)) {
no_context(regs, error_code, address);
return;
}
/* User-space => ok to do another page fault: */
if (is_prefetch(regs, error_code, address))
return;
tsk->thread.cr2 = address;
tsk->thread.error_code = error_code;
tsk->thread.trap_no = 14;
#ifdef CONFIG_MEMORY_FAILURE
if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
printk(KERN_ERR
"MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
tsk->comm, tsk->pid, address);
code = BUS_MCEERR_AR;
}
#endif
force_sig_info_fault(SIGBUS, code, address, tsk, fault);
}
static noinline void
mm_fault_error(struct pt_regs *regs, unsigned long error_code,
unsigned long address, unsigned int fault)
{
if (fault & VM_FAULT_OOM) {
/* Kernel mode? Handle exceptions or die: */
if (!(error_code & PF_USER)) {
up_read(¤t->mm->mmap_sem);
no_context(regs, error_code, address);
return;
}
out_of_memory(regs, error_code, address);
} else {
if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
VM_FAULT_HWPOISON_LARGE))
do_sigbus(regs, error_code, address, fault);
else
BUG();
}
}
static int spurious_fault_check(unsigned long error_code, pte_t *pte)
{
if ((error_code & PF_WRITE) && !pte_write(*pte))
return 0;
if ((error_code & PF_INSTR) && !pte_exec(*pte))
return 0;
return 1;
}
/*
* Handle a spurious fault caused by a stale TLB entry.
*
* This allows us to lazily refresh the TLB when increasing the
* permissions of a kernel page (RO -> RW or NX -> X). Doing it
* eagerly is very expensive since that implies doing a full
* cross-processor TLB flush, even if no stale TLB entries exist
* on other processors.
*
* There are no security implications to leaving a stale TLB when
* increasing the permissions on a page.
*/
static noinline __kprobes int
spurious_fault(unsigned long error_code, unsigned long address)
{
pgd_t *pgd;
pud_t *pud;
pmd_t *pmd;
pte_t *pte;
int ret;
/* Reserved-bit violation or user access to kernel space? */
if (error_code & (PF_USER | PF_RSVD))
return 0;
pgd = init_mm.pgd + pgd_index(address);
if (!pgd_present(*pgd))
return 0;
pud = pud_offset(pgd, address);
if (!pud_present(*pud))
return 0;
if (pud_large(*pud))
return spurious_fault_check(error_code, (pte_t *) pud);
pmd = pmd_offset(pud, address);
if (!pmd_present(*pmd))
return 0;
if (pmd_large(*pmd))
return spurious_fault_check(error_code, (pte_t *) pmd);
/*
* Note: don't use pte_present() here, since it returns true
* if the _PAGE_PROTNONE bit is set. However, this aliases the
* _PAGE_GLOBAL bit, which for kernel pages give false positives
* when CONFIG_DEBUG_PAGEALLOC is used.
*/
pte = pte_offset_kernel(pmd, address);
if (!(pte_flags(*pte) & _PAGE_PRESENT))
return 0;
ret = spurious_fault_check(error_code, pte);
if (!ret)
return 0;
/*
* Make sure we have permissions in PMD.
* If not, then there's a bug in the page tables:
*/
ret = spurious_fault_check(error_code, (pte_t *) pmd);
WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
return ret;
}
int show_unhandled_signals = 1;
static inline int
access_error(unsigned long error_code, struct vm_area_struct *vma)
{
if (error_code & PF_WRITE) {
/* write, present and write, not present: */
if (unlikely(!(vma->vm_flags & VM_WRITE)))
return 1;
return 0;
}
/* read, present: */
if (unlikely(error_code & PF_PROT))
return 1;
/* read, not present: */
if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
return 1;
return 0;
}
static int fault_in_kernel_space(unsigned long address)
{
return address >= TASK_SIZE_MAX;
}
/*
* This routine handles page faults. It determines the address,
* and the problem, and then passes it off to one of the appropriate
* routines.
*/
dotraplinkage void __kprobes
do_page_fault(struct pt_regs *regs, unsigned long error_code)
{
struct vm_area_struct *vma;
struct task_struct *tsk;
unsigned long address;
struct mm_struct *mm;
int fault;
int write = error_code & PF_WRITE;
unsigned int flags = FAULT_FLAG_ALLOW_RETRY |
(write ? FAULT_FLAG_WRITE : 0);
tsk = current;
mm = tsk->mm;
/* Get the faulting address: */
address = read_cr2();
/*
* Detect and handle instructions that would cause a page fault for
* both a tracked kernel page and a userspace page.
*/
if (kmemcheck_active(regs))
kmemcheck_hide(regs);
prefetchw(&mm->mmap_sem);
if (unlikely(kmmio_fault(regs, address)))
return;
/*
* We fault-in kernel-space virtual memory on-demand. The
* 'reference' page table is init_mm.pgd.
*
* NOTE! We MUST NOT take any locks for this case. We may
* be in an interrupt or a critical region, and should
* only copy the information from the master page table,
* nothing more.
*
* This verifies that the fault happens in kernel space
* (error_code & 4) == 0, and that the fault was not a
* protection error (error_code & 9) == 0.
*/
if (unlikely(fault_in_kernel_space(address))) {
if (!(error_code & (PF_RSVD | PF_USER | PF_PROT))) {
if (vmalloc_fault(address) >= 0)
return;
if (kmemcheck_fault(regs, address, error_code))
return;
}
/* Can handle a stale RO->RW TLB: */
if (spurious_fault(error_code, address))
return;
/* kprobes don't want to hook the spurious faults: */
if (notify_page_fault(regs))
return;
/*
* Don't take the mm semaphore here. If we fixup a prefetch
* fault we could otherwise deadlock:
*/
bad_area_nosemaphore(regs, error_code, address);
return;
}
/* kprobes don't want to hook the spurious faults: */
if (unlikely(notify_page_fault(regs)))
return;
/*
* It's safe to allow irq's after cr2 has been saved and the
* vmalloc fault has been handled.
*
* User-mode registers count as a user access even for any
* potential system fault or CPU buglet:
*/
if (user_mode_vm(regs)) {
local_irq_enable();
error_code |= PF_USER;
} else {
if (regs->flags & X86_EFLAGS_IF)
local_irq_enable();
}
if (unlikely(error_code & PF_RSVD))
pgtable_bad(regs, error_code, address);
perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, 0, regs, address);
/*
* If we're in an interrupt, have no user context or are running
* in an atomic region then we must not take the fault:
*/
if (unlikely(in_atomic() || !mm)) {
bad_area_nosemaphore(regs, error_code, address);
return;
}
/*
* When running in the kernel we expect faults to occur only to
* addresses in user space. All other faults represent errors in
* the kernel and should generate an OOPS. Unfortunately, in the
* case of an erroneous fault occurring in a code path which already
* holds mmap_sem we will deadlock attempting to validate the fault
* against the address space. Luckily the kernel only validly
* references user space from well defined areas of code, which are
* listed in the exceptions table.
*
* As the vast majority of faults will be valid we will only perform
* the source reference check when there is a possibility of a
* deadlock. Attempt to lock the address space, if we cannot we then
* validate the source. If this is invalid we can skip the address
* space check, thus avoiding the deadlock:
*/
if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
if ((error_code & PF_USER) == 0 &&
!search_exception_tables(regs->ip)) {
bad_area_nosemaphore(regs, error_code, address);
return;
}
retry:
down_read(&mm->mmap_sem);
} else {
/*
* The above down_read_trylock() might have succeeded in
* which case we'll have missed the might_sleep() from
* down_read():
*/
might_sleep();
}
vma = find_vma(mm, address);
if (unlikely(!vma)) {
bad_area(regs, error_code, address);
return;
}
if (likely(vma->vm_start <= address))
goto good_area;
if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
bad_area(regs, error_code, address);
return;
}
if (error_code & PF_USER) {
/*
* Accessing the stack below %sp is always a bug.
* The large cushion allows instructions like enter
* and pusha to work. ("enter $65535, $31" pushes
* 32 pointers and then decrements %sp by 65535.)
*/
if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
bad_area(regs, error_code, address);
return;
}
}
if (unlikely(expand_stack(vma, address))) {
bad_area(regs, error_code, address);
return;
}
/*
* Ok, we have a good vm_area for this memory access, so
* we can handle it..
*/
good_area:
if (unlikely(access_error(error_code, vma))) {
bad_area_access_error(regs, error_code, address);
return;
}
/*
* If for any reason at all we couldn't handle the fault,
* make sure we exit gracefully rather than endlessly redo
* the fault:
*/
fault = handle_mm_fault(mm, vma, address, flags);
if (unlikely(fault & VM_FAULT_ERROR)) {
mm_fault_error(regs, error_code, address, fault);
return;
}
/*
* Major/minor page fault accounting is only done on the
* initial attempt. If we go through a retry, it is extremely
* likely that the page will be found in page cache at that point.
*/
if (flags & FAULT_FLAG_ALLOW_RETRY) {
if (fault & VM_FAULT_MAJOR) {
tsk->maj_flt++;
perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, 0,
regs, address);
} else {
tsk->min_flt++;
perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, 0,
regs, address);
}
if (fault & VM_FAULT_RETRY) {
/* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
* of starvation. */
flags &= ~FAULT_FLAG_ALLOW_RETRY;
goto retry;
}
}
check_v8086_mode(regs, address, tsk);
up_read(&mm->mmap_sem);
}