// SPDX-License-Identifier: GPL-2.0-only
/*
* Kernel-based Virtual Machine driver for Linux
*
* AMD SVM support
*
* Copyright (C) 2006 Qumranet, Inc.
* Copyright 2010 Red Hat, Inc. and/or its affiliates.
*
* Authors:
* Yaniv Kamay <yaniv@qumranet.com>
* Avi Kivity <avi@qumranet.com>
*/
#ifndef __SVM_SVM_H
#define __SVM_SVM_H
#include <linux/kvm_types.h>
#include <linux/kvm_host.h>
#include <linux/bits.h>
#include <asm/svm.h>
#define __sme_page_pa(x) __sme_set(page_to_pfn(x) << PAGE_SHIFT)
static const u32 host_save_user_msrs[] = {
MSR_TSC_AUX,
};
#define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
#define MAX_DIRECT_ACCESS_MSRS 18
#define MSRPM_OFFSETS 16
extern u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
extern bool npt_enabled;
enum {
VMCB_INTERCEPTS, /* Intercept vectors, TSC offset,
pause filter count */
VMCB_PERM_MAP, /* IOPM Base and MSRPM Base */
VMCB_ASID, /* ASID */
VMCB_INTR, /* int_ctl, int_vector */
VMCB_NPT, /* npt_en, nCR3, gPAT */
VMCB_CR, /* CR0, CR3, CR4, EFER */
VMCB_DR, /* DR6, DR7 */
VMCB_DT, /* GDT, IDT */
VMCB_SEG, /* CS, DS, SS, ES, CPL */
VMCB_CR2, /* CR2 only */
VMCB_LBR, /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */
VMCB_AVIC, /* AVIC APIC_BAR, AVIC APIC_BACKING_PAGE,
* AVIC PHYSICAL_TABLE pointer,
* AVIC LOGICAL_TABLE pointer
*/
VMCB_DIRTY_MAX,
};
/* TPR and CR2 are always written before VMRUN */
#define VMCB_ALWAYS_DIRTY_MASK ((1U << VMCB_INTR) | (1U << VMCB_CR2))
struct kvm_sev_info {
bool active; /* SEV enabled guest */
bool es_active; /* SEV-ES enabled guest */
unsigned int asid; /* ASID used for this guest */
unsigned int handle; /* SEV firmware handle */
int fd; /* SEV device fd */
unsigned long pages_locked; /* Number of pages locked */
struct list_head regions_list; /* List of registered regions */
u64 ap_jump_table; /* SEV-ES AP Jump Table address */
};
struct kvm_svm {
struct kvm kvm;
/* Struct members for AVIC */
u32 avic_vm_id;
struct page *avic_logical_id_table_page;
struct page *avic_physical_id_table_page;
struct hlist_node hnode;
struct kvm_sev_info sev_info;
};
struct kvm_vcpu;
struct svm_nested_state {
struct vmcb *hsave;
u64 hsave_msr;
u64 vm_cr_msr;
u64 vmcb12_gpa;
/* These are the merged vectors */
u32 *msrpm;
/* A VMRUN has started but has not yet been performed, so
* we cannot inject a nested vmexit yet. */
bool nested_run_pending;
/* cache for control fields of the guest */
struct vmcb_control_area ctl;
bool initialized;
};
struct vcpu_svm {
struct kvm_vcpu vcpu;
struct vmcb *vmcb;
unsigned long vmcb_pa;
struct svm_cpu_data *svm_data;
u32 asid;
uint64_t asid_generation;
uint64_t sysenter_esp;
uint64_t sysenter_eip;
uint64_t tsc_aux;
u64 msr_decfg;
u64 next_rip;
u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
u64 spec_ctrl;
/*
* Contains guest-controlled bits of VIRT_SPEC_CTRL, which will be
* translated into the appropriate L2_CFG bits on the host to
* perform speculative control.
*/
u64 virt_spec_ctrl;
u32 *msrpm;
ulong nmi_iret_rip;
struct svm_nested_state nested;
bool nmi_singlestep;
u64 nmi_singlestep_guest_rflags;
unsigned int3_injected;
unsigned long int3_rip;
/* cached guest cpuid flags for faster access */
bool nrips_enabled : 1;
u32 ldr_reg;
u32 dfr_reg;
struct page *avic_backing_page;
u64 *avic_physical_id_cache;
bool avic_is_running;
/*
* Per-vcpu list of struct amd_svm_iommu_ir:
* This is used mainly to store interrupt remapping information used
* when update the vcpu affinity. This avoids the need to scan for
* IRTE and try to match ga_tag in the IOMMU driver.
*/
struct list_head ir_list;
spinlock_t ir_list_lock;
/* Save desired MSR intercept (read: pass-through) state */
struct {
DECLARE_BITMAP(read, MAX_DIRECT_ACCESS_MSRS);
DECLARE_BITMAP(write, MAX_DIRECT_ACCESS_MSRS);
} shadow_msr_intercept;
/* SEV-ES support */
struct vmcb_save_area *vmsa;
struct ghcb *ghcb;
struct kvm_host_map ghcb_map;
bool received_first_sipi;
/* SEV-ES scratch area support */
void *ghcb_sa;
u64 ghcb_sa_len;
bool ghcb_sa_sync;
bool ghcb_sa_free;
bool guest_state_loaded;
};
struct svm_cpu_data {
int cpu;
u64 asid_generation;
u32 max_asid;
u32 next_asid;
u32 min_asid;
struct kvm_ldttss_desc *tss_desc;
struct page *save_area;
struct vmcb *current_vmcb;
/* index = sev_asid, value = vmcb pointer */
struct vmcb **sev_vmcbs;
};
DECLARE_PER_CPU(struct svm_cpu_data *, svm_data);
void recalc_intercepts(struct vcpu_svm *svm);
static inline struct kvm_svm *to_kvm_svm(struct kvm *kvm)
{
return container_of(kvm, struct kvm_svm, kvm);
}
static inline bool sev_guest(struct kvm *kvm)
{
#ifdef CONFIG_KVM_AMD_SEV
struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
return sev->active;
#else
return false;
#endif
}
static inline bool sev_es_guest(struct kvm *kvm)
{
#ifdef CONFIG_KVM_AMD_SEV
struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
return sev_guest(kvm) && sev->es_active;
#else
return false;
#endif
}
static inline void vmcb_mark_all_dirty(struct vmcb *vmcb)
{
vmcb->control.clean = 0;
}
static inline void vmcb_mark_all_clean(struct vmcb *vmcb)
{
vmcb->control.clean = ((1 << VMCB_DIRTY_MAX) - 1)
& ~VMCB_ALWAYS_DIRTY_MASK;
}
static inline void vmcb_mark_dirty(struct vmcb *vmcb, int bit)
{
vmcb->control.clean &= ~(1 << bit);
}
static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
{
return container_of(vcpu, struct vcpu_svm, vcpu);
}
static inline struct vmcb *get_host_vmcb(struct vcpu_svm *svm)
{
if (is_guest_mode(&svm->vcpu))
return svm->nested.hsave;
else
return svm->vmcb;
}
static inline void vmcb_set_intercept(struct vmcb_control_area *control, u32 bit)
{
WARN_ON_ONCE(bit >= 32 * MAX_INTERCEPT);
__set_bit(bit, (unsigned long *)&control->intercepts);
}
static inline void vmcb_clr_intercept(struct vmcb_control_area *control, u32 bit)
{
WARN_ON_ONCE(bit >= 32 * MAX_INTERCEPT);
__clear_bit(bit, (unsigned long *)&control->intercepts);
}
static inline bool vmcb_is_intercept(struct vmcb_control_area *control, u32 bit)
{
WARN_ON_ONCE(bit >= 32 * MAX_INTERCEPT);
return test_bit(bit, (unsigned long *)&control->intercepts);
}
static inline void set_dr_intercepts(struct vcpu_svm *svm)
{
struct vmcb *vmcb = get_host_vmcb(svm);
if (!sev_es_guest(svm->vcpu.kvm)) {
vmcb_set_intercept(&vmcb->control, INTERCEPT_DR0_READ);
vmcb_set_intercept(&vmcb->control, INTERCEPT_DR1_READ);
vmcb_set_intercept(&vmcb->control, INTERCEPT_DR2_READ);
vmcb_set_intercept(&vmcb->control, INTERCEPT_DR3_READ);
vmcb_set_intercept(&vmcb->control, INTERCEPT_DR4_READ);
vmcb_set_intercept(&vmcb->control, INTERCEPT_DR5_READ);
vmcb_set_intercept(&vmcb->control, INTERCEPT_DR6_READ);
vmcb_set_intercept(&vmcb->control, INTERCEPT_DR0_WRITE);
vmcb_set_intercept(&vmcb->control, INTERCEPT_DR1_WRITE);
vmcb_set_intercept(&vmcb->control, INTERCEPT_DR2_WRITE);
vmcb_set_intercept(&vmcb->control, INTERCEPT_DR3_WRITE);
vmcb_set_intercept(&vmcb->control, INTERCEPT_DR4_WRITE);
vmcb_set_intercept(&vmcb->control, INTERCEPT_DR5_WRITE);
vmcb_set_intercept(&vmcb->control, INTERCEPT_DR6_WRITE);
}
vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_READ);
vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_WRITE);
recalc_intercepts(svm);
}
static inline void clr_dr_intercepts(struct vcpu_svm *svm)
{
struct vmcb *vmcb = get_host_vmcb(svm);
vmcb->control.intercepts[INTERCEPT_DR] = 0;
/* DR7 access must remain intercepted for an SEV-ES guest */
if (sev_es_guest(svm->vcpu.kvm)) {
vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_READ);
vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_WRITE);
}
recalc_intercepts(svm);
}
static inline void set_exception_intercept(struct vcpu_svm *svm, u32 bit)
{
struct vmcb *vmcb = get_host_vmcb(svm);
WARN_ON_ONCE(bit >= 32);
vmcb_set_intercept(&vmcb->control, INTERCEPT_EXCEPTION_OFFSET + bit);
recalc_intercepts(svm);
}
static inline void clr_exception_intercept(struct vcpu_svm *svm, u32 bit)
{
struct vmcb *vmcb = get_host_vmcb(svm);
WARN_ON_ONCE(bit >= 32);
vmcb_clr_intercept(&vmcb->control, INTERCEPT_EXCEPTION_OFFSET + bit);
recalc_intercepts(svm);
}
static inline void svm_set_intercept(struct vcpu_svm *svm, int bit)
{
struct vmcb *vmcb = get_host_vmcb(svm);
vmcb_set_intercept(&vmcb->control, bit);
recalc_intercepts(svm);
}
static inline void svm_clr_intercept(struct vcpu_svm *svm, int bit)
{
struct vmcb *vmcb = get_host_vmcb(svm);
vmcb_clr_intercept(&vmcb->control, bit);
recalc_intercepts(svm);
}
static inline bool svm_is_intercept(struct vcpu_svm *svm, int bit)
{
return vmcb_is_intercept(&svm->vmcb->control, bit);
}
static inline bool vgif_enabled(struct vcpu_svm *svm)
{
return !!(svm->vmcb->control.int_ctl & V_GIF_ENABLE_MASK);
}
static inline void enable_gif(struct vcpu_svm *svm)
{
if (vgif_enabled(svm))
svm->vmcb->control.int_ctl |= V_GIF_MASK;
else
svm->vcpu.arch.hflags |= HF_GIF_MASK;
}
static inline void disable_gif(struct vcpu_svm *svm)
{
if (vgif_enabled(svm))
svm->vmcb->control.int_ctl &= ~V_GIF_MASK;
else
svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
}
static inline bool gif_set(struct vcpu_svm *svm)
{
if (vgif_enabled(svm))
return !!(svm->vmcb->control.int_ctl & V_GIF_MASK);
else
return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
}
/* svm.c */
#define MSR_INVALID 0xffffffffU
extern int sev;
extern int sev_es;
extern bool dump_invalid_vmcb;
u32 svm_msrpm_offset(u32 msr);
u32 *svm_vcpu_alloc_msrpm(void);
void svm_vcpu_init_msrpm(struct kvm_vcpu *vcpu, u32 *msrpm);
void svm_vcpu_free_msrpm(u32 *msrpm);
int svm_set_efer(struct kvm_vcpu *vcpu, u64 efer);
void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
void svm_flush_tlb(struct kvm_vcpu *vcpu);
void disable_nmi_singlestep(struct vcpu_svm *svm);
bool svm_smi_blocked(struct kvm_vcpu *vcpu);
bool svm_nmi_blocked(struct kvm_vcpu *vcpu);
bool svm_interrupt_blocked(struct kvm_vcpu *vcpu);
void svm_set_gif(struct vcpu_svm *svm, bool value);
int svm_invoke_exit_handler(struct vcpu_svm *svm, u64 exit_code);
void set_msr_interception(struct kvm_vcpu *vcpu, u32 *msrpm, u32 msr,
int read, int write);
/* nested.c */
#define NESTED_EXIT_HOST 0 /* Exit handled on host level */
#define NESTED_EXIT_DONE 1 /* Exit caused nested vmexit */
#define NESTED_EXIT_CONTINUE 2 /* Further checks needed */
static inline bool nested_svm_virtualize_tpr(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
return is_guest_mode(vcpu) && (svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK);
}
static inline bool nested_exit_on_smi(struct vcpu_svm *svm)
{
return vmcb_is_intercept(&svm->nested.ctl, INTERCEPT_SMI);
}
static inline bool nested_exit_on_intr(struct vcpu_svm *svm)
{
return vmcb_is_intercept(&svm->nested.ctl, INTERCEPT_INTR);
}
static inline bool nested_exit_on_nmi(struct vcpu_svm *svm)
{
return vmcb_is_intercept(&svm->nested.ctl, INTERCEPT_NMI);
}
int enter_svm_guest_mode(struct vcpu_svm *svm, u64 vmcb_gpa,
struct vmcb *nested_vmcb);
void svm_leave_nested(struct vcpu_svm *svm);
void svm_free_nested(struct vcpu_svm *svm);
int svm_allocate_nested(struct vcpu_svm *svm);
int nested_svm_vmrun(struct vcpu_svm *svm);
void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb);
int nested_svm_vmexit(struct vcpu_svm *svm);
int nested_svm_exit_handled(struct vcpu_svm *svm);
int nested_svm_check_permissions(struct vcpu_svm *svm);
int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
bool has_error_code, u32 error_code);
int nested_svm_exit_special(struct vcpu_svm *svm);
void sync_nested_vmcb_control(struct vcpu_svm *svm);
extern struct kvm_x86_nested_ops svm_nested_ops;
/* avic.c */
#define AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK (0xFF)
#define AVIC_LOGICAL_ID_ENTRY_VALID_BIT 31
#define AVIC_LOGICAL_ID_ENTRY_VALID_MASK (1 << 31)
#define AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK (0xFFULL)
#define AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK (0xFFFFFFFFFFULL << 12)
#define AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK (1ULL << 62)
#define AVIC_PHYSICAL_ID_ENTRY_VALID_MASK (1ULL << 63)
#define VMCB_AVIC_APIC_BAR_MASK 0xFFFFFFFFFF000ULL
extern int avic;
static inline void avic_update_vapic_bar(struct vcpu_svm *svm, u64 data)
{
svm->vmcb->control.avic_vapic_bar = data & VMCB_AVIC_APIC_BAR_MASK;
vmcb_mark_dirty(svm->vmcb, VMCB_AVIC);
}
static inline bool avic_vcpu_is_running(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
u64 *entry = svm->avic_physical_id_cache;
if (!entry)
return false;
return (READ_ONCE(*entry) & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
}
int avic_ga_log_notifier(u32 ga_tag);
void avic_vm_destroy(struct kvm *kvm);
int avic_vm_init(struct kvm *kvm);
void avic_init_vmcb(struct vcpu_svm *svm);
void svm_toggle_avic_for_irq_window(struct kvm_vcpu *vcpu, bool activate);
int avic_incomplete_ipi_interception(struct vcpu_svm *svm);
int avic_unaccelerated_access_interception(struct vcpu_svm *svm);
int avic_init_vcpu(struct vcpu_svm *svm);
void avic_vcpu_load(struct kvm_vcpu *vcpu, int cpu);
void avic_vcpu_put(struct kvm_vcpu *vcpu);
void avic_post_state_restore(struct kvm_vcpu *vcpu);
void svm_set_virtual_apic_mode(struct kvm_vcpu *vcpu);
void svm_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu);
bool svm_check_apicv_inhibit_reasons(ulong bit);
void svm_pre_update_apicv_exec_ctrl(struct kvm *kvm, bool activate);
void svm_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap);
void svm_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr);
void svm_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr);
int svm_deliver_avic_intr(struct kvm_vcpu *vcpu, int vec);
bool svm_dy_apicv_has_pending_interrupt(struct kvm_vcpu *vcpu);
int svm_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
uint32_t guest_irq, bool set);
void svm_vcpu_blocking(struct kvm_vcpu *vcpu);
void svm_vcpu_unblocking(struct kvm_vcpu *vcpu);
/* sev.c */
#define GHCB_VERSION_MAX 1ULL
#define GHCB_VERSION_MIN 1ULL
#define GHCB_MSR_INFO_POS 0
#define GHCB_MSR_INFO_MASK (BIT_ULL(12) - 1)
#define GHCB_MSR_SEV_INFO_RESP 0x001
#define GHCB_MSR_SEV_INFO_REQ 0x002
#define GHCB_MSR_VER_MAX_POS 48
#define GHCB_MSR_VER_MAX_MASK 0xffff
#define GHCB_MSR_VER_MIN_POS 32
#define GHCB_MSR_VER_MIN_MASK 0xffff
#define GHCB_MSR_CBIT_POS 24
#define GHCB_MSR_CBIT_MASK 0xff
#define GHCB_MSR_SEV_INFO(_max, _min, _cbit) \
((((_max) & GHCB_MSR_VER_MAX_MASK) << GHCB_MSR_VER_MAX_POS) | \
(((_min) & GHCB_MSR_VER_MIN_MASK) << GHCB_MSR_VER_MIN_POS) | \
(((_cbit) & GHCB_MSR_CBIT_MASK) << GHCB_MSR_CBIT_POS) | \
GHCB_MSR_SEV_INFO_RESP)
#define GHCB_MSR_CPUID_REQ 0x004
#define GHCB_MSR_CPUID_RESP 0x005
#define GHCB_MSR_CPUID_FUNC_POS 32
#define GHCB_MSR_CPUID_FUNC_MASK 0xffffffff
#define GHCB_MSR_CPUID_VALUE_POS 32
#define GHCB_MSR_CPUID_VALUE_MASK 0xffffffff
#define GHCB_MSR_CPUID_REG_POS 30
#define GHCB_MSR_CPUID_REG_MASK 0x3
#define GHCB_MSR_TERM_REQ 0x100
#define GHCB_MSR_TERM_REASON_SET_POS 12
#define GHCB_MSR_TERM_REASON_SET_MASK 0xf
#define GHCB_MSR_TERM_REASON_POS 16
#define GHCB_MSR_TERM_REASON_MASK 0xff
extern unsigned int max_sev_asid;
static inline bool svm_sev_enabled(void)
{
return IS_ENABLED(CONFIG_KVM_AMD_SEV) ? max_sev_asid : 0;
}
void sev_vm_destroy(struct kvm *kvm);
int svm_mem_enc_op(struct kvm *kvm, void __user *argp);
int svm_register_enc_region(struct kvm *kvm,
struct kvm_enc_region *range);
int svm_unregister_enc_region(struct kvm *kvm,
struct kvm_enc_region *range);
void pre_sev_run(struct vcpu_svm *svm, int cpu);
void __init sev_hardware_setup(void);
void sev_hardware_teardown(void);
void sev_free_vcpu(struct kvm_vcpu *vcpu);
int sev_handle_vmgexit(struct vcpu_svm *svm);
int sev_es_string_io(struct vcpu_svm *svm, int size, unsigned int port, int in);
void sev_es_init_vmcb(struct vcpu_svm *svm);
void sev_es_create_vcpu(struct vcpu_svm *svm);
void sev_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector);
void sev_es_prepare_guest_switch(struct vcpu_svm *svm, unsigned int cpu);
/* vmenter.S */
void __svm_sev_es_vcpu_run(unsigned long vmcb_pa);
void __svm_vcpu_run(unsigned long vmcb_pa, unsigned long *regs);
#endif