#include <linux/init.h>
#include <linux/smp.h>
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/percpu.h>
#include <linux/bootmem.h>
#include <asm/nmi.h>
#include <asm/irq.h>
#include <asm/smp.h>
#include <asm/cpu.h>
#include <asm/numa.h>
/* Number of siblings per CPU package */
int smp_num_siblings = 1;
EXPORT_SYMBOL(smp_num_siblings);
/* Last level cache ID of each logical CPU */
DEFINE_PER_CPU(u16, cpu_llc_id) = BAD_APICID;
/* bitmap of online cpus */
cpumask_t cpu_online_map __read_mostly;
EXPORT_SYMBOL(cpu_online_map);
cpumask_t cpu_callin_map;
cpumask_t cpu_callout_map;
cpumask_t cpu_possible_map;
EXPORT_SYMBOL(cpu_possible_map);
/* representing HT siblings of each logical CPU */
DEFINE_PER_CPU(cpumask_t, cpu_sibling_map);
EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
/* representing HT and core siblings of each logical CPU */
DEFINE_PER_CPU(cpumask_t, cpu_core_map);
EXPORT_PER_CPU_SYMBOL(cpu_core_map);
/* Per CPU bogomips and other parameters */
DEFINE_PER_CPU_SHARED_ALIGNED(struct cpuinfo_x86, cpu_info);
EXPORT_PER_CPU_SYMBOL(cpu_info);
/* ready for x86_64, no harm for x86, since it will overwrite after alloc */
unsigned char *trampoline_base = __va(SMP_TRAMPOLINE_BASE);
/* representing cpus for which sibling maps can be computed */
static cpumask_t cpu_sibling_setup_map;
void __cpuinit set_cpu_sibling_map(int cpu)
{
int i;
struct cpuinfo_x86 *c = &cpu_data(cpu);
cpu_set(cpu, cpu_sibling_setup_map);
if (smp_num_siblings > 1) {
for_each_cpu_mask(i, cpu_sibling_setup_map) {
if (c->phys_proc_id == cpu_data(i).phys_proc_id &&
c->cpu_core_id == cpu_data(i).cpu_core_id) {
cpu_set(i, per_cpu(cpu_sibling_map, cpu));
cpu_set(cpu, per_cpu(cpu_sibling_map, i));
cpu_set(i, per_cpu(cpu_core_map, cpu));
cpu_set(cpu, per_cpu(cpu_core_map, i));
cpu_set(i, c->llc_shared_map);
cpu_set(cpu, cpu_data(i).llc_shared_map);
}
}
} else {
cpu_set(cpu, per_cpu(cpu_sibling_map, cpu));
}
cpu_set(cpu, c->llc_shared_map);
if (current_cpu_data.x86_max_cores == 1) {
per_cpu(cpu_core_map, cpu) = per_cpu(cpu_sibling_map, cpu);
c->booted_cores = 1;
return;
}
for_each_cpu_mask(i, cpu_sibling_setup_map) {
if (per_cpu(cpu_llc_id, cpu) != BAD_APICID &&
per_cpu(cpu_llc_id, cpu) == per_cpu(cpu_llc_id, i)) {
cpu_set(i, c->llc_shared_map);
cpu_set(cpu, cpu_data(i).llc_shared_map);
}
if (c->phys_proc_id == cpu_data(i).phys_proc_id) {
cpu_set(i, per_cpu(cpu_core_map, cpu));
cpu_set(cpu, per_cpu(cpu_core_map, i));
/*
* Does this new cpu bringup a new core?
*/
if (cpus_weight(per_cpu(cpu_sibling_map, cpu)) == 1) {
/*
* for each core in package, increment
* the booted_cores for this new cpu
*/
if (first_cpu(per_cpu(cpu_sibling_map, i)) == i)
c->booted_cores++;
/*
* increment the core count for all
* the other cpus in this package
*/
if (i != cpu)
cpu_data(i).booted_cores++;
} else if (i != cpu && !c->booted_cores)
c->booted_cores = cpu_data(i).booted_cores;
}
}
}
/* maps the cpu to the sched domain representing multi-core */
cpumask_t cpu_coregroup_map(int cpu)
{
struct cpuinfo_x86 *c = &cpu_data(cpu);
/*
* For perf, we return last level cache shared map.
* And for power savings, we return cpu_core_map
*/
if (sched_mc_power_savings || sched_smt_power_savings)
return per_cpu(cpu_core_map, cpu);
else
return c->llc_shared_map;
}
/*
* Currently trivial. Write the real->protected mode
* bootstrap into the page concerned. The caller
* has made sure it's suitably aligned.
*/
unsigned long __cpuinit setup_trampoline(void)
{
memcpy(trampoline_base, trampoline_data,
trampoline_end - trampoline_data);
return virt_to_phys(trampoline_base);
}
#ifdef CONFIG_X86_32
/*
* We are called very early to get the low memory for the
* SMP bootup trampoline page.
*/
void __init smp_alloc_memory(void)
{
trampoline_base = alloc_bootmem_low_pages(PAGE_SIZE);
/*
* Has to be in very low memory so we can execute
* real-mode AP code.
*/
if (__pa(trampoline_base) >= 0x9F000)
BUG();
}
#endif
#ifdef CONFIG_HOTPLUG_CPU
void remove_siblinginfo(int cpu)
{
int sibling;
struct cpuinfo_x86 *c = &cpu_data(cpu);
for_each_cpu_mask(sibling, per_cpu(cpu_core_map, cpu)) {
cpu_clear(cpu, per_cpu(cpu_core_map, sibling));
/*/
* last thread sibling in this cpu core going down
*/
if (cpus_weight(per_cpu(cpu_sibling_map, cpu)) == 1)
cpu_data(sibling).booted_cores--;
}
for_each_cpu_mask(sibling, per_cpu(cpu_sibling_map, cpu))
cpu_clear(cpu, per_cpu(cpu_sibling_map, sibling));
cpus_clear(per_cpu(cpu_sibling_map, cpu));
cpus_clear(per_cpu(cpu_core_map, cpu));
c->phys_proc_id = 0;
c->cpu_core_id = 0;
cpu_clear(cpu, cpu_sibling_setup_map);
}
int additional_cpus __initdata = -1;
static __init int setup_additional_cpus(char *s)
{
return s && get_option(&s, &additional_cpus) ? 0 : -EINVAL;
}
early_param("additional_cpus", setup_additional_cpus);
/*
* cpu_possible_map should be static, it cannot change as cpu's
* are onlined, or offlined. The reason is per-cpu data-structures
* are allocated by some modules at init time, and dont expect to
* do this dynamically on cpu arrival/departure.
* cpu_present_map on the other hand can change dynamically.
* In case when cpu_hotplug is not compiled, then we resort to current
* behaviour, which is cpu_possible == cpu_present.
* - Ashok Raj
*
* Three ways to find out the number of additional hotplug CPUs:
* - If the BIOS specified disabled CPUs in ACPI/mptables use that.
* - The user can overwrite it with additional_cpus=NUM
* - Otherwise don't reserve additional CPUs.
* We do this because additional CPUs waste a lot of memory.
* -AK
*/
__init void prefill_possible_map(void)
{
int i;
int possible;
if (additional_cpus == -1) {
if (disabled_cpus > 0)
additional_cpus = disabled_cpus;
else
additional_cpus = 0;
}
possible = num_processors + additional_cpus;
if (possible > NR_CPUS)
possible = NR_CPUS;
printk(KERN_INFO "SMP: Allowing %d CPUs, %d hotplug CPUs\n",
possible, max_t(int, possible - num_processors, 0));
for (i = 0; i < possible; i++)
cpu_set(i, cpu_possible_map);
}
static void __ref remove_cpu_from_maps(int cpu)
{
cpu_clear(cpu, cpu_online_map);
#ifdef CONFIG_X86_64
cpu_clear(cpu, cpu_callout_map);
cpu_clear(cpu, cpu_callin_map);
/* was set by cpu_init() */
clear_bit(cpu, (unsigned long *)&cpu_initialized);
clear_node_cpumask(cpu);
#endif
}
int __cpu_disable(void)
{
int cpu = smp_processor_id();
/*
* Perhaps use cpufreq to drop frequency, but that could go
* into generic code.
*
* We won't take down the boot processor on i386 due to some
* interrupts only being able to be serviced by the BSP.
* Especially so if we're not using an IOAPIC -zwane
*/
if (cpu == 0)
return -EBUSY;
if (nmi_watchdog == NMI_LOCAL_APIC)
stop_apic_nmi_watchdog(NULL);
clear_local_APIC();
/*
* HACK:
* Allow any queued timer interrupts to get serviced
* This is only a temporary solution until we cleanup
* fixup_irqs as we do for IA64.
*/
local_irq_enable();
mdelay(1);
local_irq_disable();
remove_siblinginfo(cpu);
/* It's now safe to remove this processor from the online map */
remove_cpu_from_maps(cpu);
fixup_irqs(cpu_online_map);
return 0;
}
void __cpu_die(unsigned int cpu)
{
/* We don't do anything here: idle task is faking death itself. */
unsigned int i;
for (i = 0; i < 10; i++) {
/* They ack this in play_dead by setting CPU_DEAD */
if (per_cpu(cpu_state, cpu) == CPU_DEAD) {
printk(KERN_INFO "CPU %d is now offline\n", cpu);
if (1 == num_online_cpus())
alternatives_smp_switch(0);
return;
}
msleep(100);
}
printk(KERN_ERR "CPU %u didn't die...\n", cpu);
}
#else /* ... !CONFIG_HOTPLUG_CPU */
int __cpu_disable(void)
{
return -ENOSYS;
}
void __cpu_die(unsigned int cpu)
{
/* We said "no" in __cpu_disable */
BUG();
}
#endif
/*
* If the BIOS enumerates physical processors before logical,
* maxcpus=N at enumeration-time can be used to disable HT.
*/
static int __init parse_maxcpus(char *arg)
{
extern unsigned int maxcpus;
maxcpus = simple_strtoul(arg, NULL, 0);
return 0;
}
early_param("maxcpus", parse_maxcpus);