/*
* Copyright (C) 1995 Linus Torvalds
*
* Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
*
* Memory region support
* David Parsons <orc@pell.chi.il.us>, July-August 1999
*
* Added E820 sanitization routine (removes overlapping memory regions);
* Brian Moyle <bmoyle@mvista.com>, February 2001
*
* Moved CPU detection code to cpu/${cpu}.c
* Patrick Mochel <mochel@osdl.org>, March 2002
*
* Provisions for empty E820 memory regions (reported by certain BIOSes).
* Alex Achenbach <xela@slit.de>, December 2002.
*
*/
/*
* This file handles the architecture-dependent parts of initialization
*/
#include <linux/sched.h>
#include <linux/mm.h>
#include <linux/mmzone.h>
#include <linux/screen_info.h>
#include <linux/ioport.h>
#include <linux/acpi.h>
#include <linux/apm_bios.h>
#include <linux/initrd.h>
#include <linux/bootmem.h>
#include <linux/seq_file.h>
#include <linux/console.h>
#include <linux/mca.h>
#include <linux/root_dev.h>
#include <linux/highmem.h>
#include <linux/module.h>
#include <linux/efi.h>
#include <linux/init.h>
#include <linux/edd.h>
#include <linux/iscsi_ibft.h>
#include <linux/nodemask.h>
#include <linux/kexec.h>
#include <linux/crash_dump.h>
#include <linux/dmi.h>
#include <linux/pfn.h>
#include <linux/pci.h>
#include <linux/init_ohci1394_dma.h>
#include <linux/kvm_para.h>
#include <video/edid.h>
#include <asm/mtrr.h>
#include <asm/apic.h>
#include <asm/e820.h>
#include <asm/mpspec.h>
#include <asm/mmzone.h>
#include <asm/setup.h>
#include <asm/arch_hooks.h>
#include <asm/sections.h>
#include <asm/io_apic.h>
#include <asm/ist.h>
#include <asm/io.h>
#include <asm/vmi.h>
#include <setup_arch.h>
#include <asm/bios_ebda.h>
#include <asm/cacheflush.h>
#include <asm/processor.h>
/* This value is set up by the early boot code to point to the value
immediately after the boot time page tables. It contains a *physical*
address, and must not be in the .bss segment! */
unsigned long init_pg_tables_end __initdata = ~0UL;
/*
* Machine setup..
*/
static struct resource data_resource = {
.name = "Kernel data",
.start = 0,
.end = 0,
.flags = IORESOURCE_BUSY | IORESOURCE_MEM
};
static struct resource code_resource = {
.name = "Kernel code",
.start = 0,
.end = 0,
.flags = IORESOURCE_BUSY | IORESOURCE_MEM
};
static struct resource bss_resource = {
.name = "Kernel bss",
.start = 0,
.end = 0,
.flags = IORESOURCE_BUSY | IORESOURCE_MEM
};
static struct resource video_ram_resource = {
.name = "Video RAM area",
.start = 0xa0000,
.end = 0xbffff,
.flags = IORESOURCE_BUSY | IORESOURCE_MEM
};
static struct resource standard_io_resources[] = { {
.name = "dma1",
.start = 0x0000,
.end = 0x001f,
.flags = IORESOURCE_BUSY | IORESOURCE_IO
}, {
.name = "pic1",
.start = 0x0020,
.end = 0x0021,
.flags = IORESOURCE_BUSY | IORESOURCE_IO
}, {
.name = "timer0",
.start = 0x0040,
.end = 0x0043,
.flags = IORESOURCE_BUSY | IORESOURCE_IO
}, {
.name = "timer1",
.start = 0x0050,
.end = 0x0053,
.flags = IORESOURCE_BUSY | IORESOURCE_IO
}, {
.name = "keyboard",
.start = 0x0060,
.end = 0x0060,
.flags = IORESOURCE_BUSY | IORESOURCE_IO
}, {
.name = "keyboard",
.start = 0x0064,
.end = 0x0064,
.flags = IORESOURCE_BUSY | IORESOURCE_IO
}, {
.name = "dma page reg",
.start = 0x0080,
.end = 0x008f,
.flags = IORESOURCE_BUSY | IORESOURCE_IO
}, {
.name = "pic2",
.start = 0x00a0,
.end = 0x00a1,
.flags = IORESOURCE_BUSY | IORESOURCE_IO
}, {
.name = "dma2",
.start = 0x00c0,
.end = 0x00df,
.flags = IORESOURCE_BUSY | IORESOURCE_IO
}, {
.name = "fpu",
.start = 0x00f0,
.end = 0x00ff,
.flags = IORESOURCE_BUSY | IORESOURCE_IO
} };
/* cpu data as detected by the assembly code in head.S */
struct cpuinfo_x86 new_cpu_data __cpuinitdata = { 0, 0, 0, 0, -1, 1, 0, 0, -1 };
/* common cpu data for all cpus */
struct cpuinfo_x86 boot_cpu_data __read_mostly = { 0, 0, 0, 0, -1, 1, 0, 0, -1 };
EXPORT_SYMBOL(boot_cpu_data);
unsigned int def_to_bigsmp;
#ifndef CONFIG_X86_PAE
unsigned long mmu_cr4_features;
#else
unsigned long mmu_cr4_features = X86_CR4_PAE;
#endif
/* for MCA, but anyone else can use it if they want */
unsigned int machine_id;
unsigned int machine_submodel_id;
unsigned int BIOS_revision;
/* Boot loader ID as an integer, for the benefit of proc_dointvec */
int bootloader_type;
/* user-defined highmem size */
static unsigned int highmem_pages = -1;
/*
* Setup options
*/
struct screen_info screen_info;
EXPORT_SYMBOL(screen_info);
struct apm_info apm_info;
EXPORT_SYMBOL(apm_info);
struct edid_info edid_info;
EXPORT_SYMBOL_GPL(edid_info);
struct ist_info ist_info;
#if defined(CONFIG_X86_SPEEDSTEP_SMI) || \
defined(CONFIG_X86_SPEEDSTEP_SMI_MODULE)
EXPORT_SYMBOL(ist_info);
#endif
extern void early_cpu_init(void);
extern int root_mountflags;
unsigned long saved_video_mode;
#define RAMDISK_IMAGE_START_MASK 0x07FF
#define RAMDISK_PROMPT_FLAG 0x8000
#define RAMDISK_LOAD_FLAG 0x4000
static char __initdata command_line[COMMAND_LINE_SIZE];
#ifndef CONFIG_DEBUG_BOOT_PARAMS
struct boot_params __initdata boot_params;
#else
struct boot_params boot_params;
#endif
#if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
struct edd edd;
#ifdef CONFIG_EDD_MODULE
EXPORT_SYMBOL(edd);
#endif
/**
* copy_edd() - Copy the BIOS EDD information
* from boot_params into a safe place.
*
*/
static inline void copy_edd(void)
{
memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer,
sizeof(edd.mbr_signature));
memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info));
edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries;
edd.edd_info_nr = boot_params.eddbuf_entries;
}
#else
static inline void copy_edd(void)
{
}
#endif
#ifdef CONFIG_PROC_VMCORE
/* elfcorehdr= specifies the location of elf core header
* stored by the crashed kernel.
*/
static int __init parse_elfcorehdr(char *arg)
{
if (!arg)
return -EINVAL;
elfcorehdr_addr = memparse(arg, &arg);
return 0;
}
early_param("elfcorehdr", parse_elfcorehdr);
#endif /* CONFIG_PROC_VMCORE */
/*
* highmem=size forces highmem to be exactly 'size' bytes.
* This works even on boxes that have no highmem otherwise.
* This also works to reduce highmem size on bigger boxes.
*/
static int __init parse_highmem(char *arg)
{
if (!arg)
return -EINVAL;
highmem_pages = memparse(arg, &arg) >> PAGE_SHIFT;
return 0;
}
early_param("highmem", parse_highmem);
/*
* vmalloc=size forces the vmalloc area to be exactly 'size'
* bytes. This can be used to increase (or decrease) the
* vmalloc area - the default is 128m.
*/
static int __init parse_vmalloc(char *arg)
{
if (!arg)
return -EINVAL;
__VMALLOC_RESERVE = memparse(arg, &arg);
return 0;
}
early_param("vmalloc", parse_vmalloc);
/*
* reservetop=size reserves a hole at the top of the kernel address space which
* a hypervisor can load into later. Needed for dynamically loaded hypervisors,
* so relocating the fixmap can be done before paging initialization.
*/
static int __init parse_reservetop(char *arg)
{
unsigned long address;
if (!arg)
return -EINVAL;
address = memparse(arg, &arg);
reserve_top_address(address);
return 0;
}
early_param("reservetop", parse_reservetop);
/*
* Determine low and high memory ranges:
*/
unsigned long __init find_max_low_pfn(void)
{
unsigned long max_low_pfn;
max_low_pfn = max_pfn;
if (max_low_pfn > MAXMEM_PFN) {
if (highmem_pages == -1)
highmem_pages = max_pfn - MAXMEM_PFN;
if (highmem_pages + MAXMEM_PFN < max_pfn)
max_pfn = MAXMEM_PFN + highmem_pages;
if (highmem_pages + MAXMEM_PFN > max_pfn) {
printk("only %luMB highmem pages available, ignoring highmem size of %uMB.\n", pages_to_mb(max_pfn - MAXMEM_PFN), pages_to_mb(highmem_pages));
highmem_pages = 0;
}
max_low_pfn = MAXMEM_PFN;
#ifndef CONFIG_HIGHMEM
/* Maximum memory usable is what is directly addressable */
printk(KERN_WARNING "Warning only %ldMB will be used.\n",
MAXMEM>>20);
if (max_pfn > MAX_NONPAE_PFN)
printk(KERN_WARNING "Use a HIGHMEM64G enabled kernel.\n");
else
printk(KERN_WARNING "Use a HIGHMEM enabled kernel.\n");
max_pfn = MAXMEM_PFN;
#else /* !CONFIG_HIGHMEM */
#ifndef CONFIG_HIGHMEM64G
if (max_pfn > MAX_NONPAE_PFN) {
max_pfn = MAX_NONPAE_PFN;
printk(KERN_WARNING "Warning only 4GB will be used.\n");
printk(KERN_WARNING "Use a HIGHMEM64G enabled kernel.\n");
}
#endif /* !CONFIG_HIGHMEM64G */
#endif /* !CONFIG_HIGHMEM */
} else {
if (highmem_pages == -1)
highmem_pages = 0;
#ifdef CONFIG_HIGHMEM
if (highmem_pages >= max_pfn) {
printk(KERN_ERR "highmem size specified (%uMB) is bigger than pages available (%luMB)!.\n", pages_to_mb(highmem_pages), pages_to_mb(max_pfn));
highmem_pages = 0;
}
if (highmem_pages) {
if (max_low_pfn-highmem_pages < 64*1024*1024/PAGE_SIZE){
printk(KERN_ERR "highmem size %uMB results in smaller than 64MB lowmem, ignoring it.\n", pages_to_mb(highmem_pages));
highmem_pages = 0;
}
max_low_pfn -= highmem_pages;
}
#else
if (highmem_pages)
printk(KERN_ERR "ignoring highmem size on non-highmem kernel!\n");
#endif
}
return max_low_pfn;
}
#ifndef CONFIG_NEED_MULTIPLE_NODES
static void __init setup_bootmem_allocator(void);
static unsigned long __init setup_memory(void)
{
/*
* partially used pages are not usable - thus
* we are rounding upwards:
*/
min_low_pfn = PFN_UP(init_pg_tables_end);
max_low_pfn = find_max_low_pfn();
#ifdef CONFIG_HIGHMEM
highstart_pfn = highend_pfn = max_pfn;
if (max_pfn > max_low_pfn) {
highstart_pfn = max_low_pfn;
}
printk(KERN_NOTICE "%ldMB HIGHMEM available.\n",
pages_to_mb(highend_pfn - highstart_pfn));
num_physpages = highend_pfn;
high_memory = (void *) __va(highstart_pfn * PAGE_SIZE - 1) + 1;
#else
num_physpages = max_low_pfn;
high_memory = (void *) __va(max_low_pfn * PAGE_SIZE - 1) + 1;
#endif
#ifdef CONFIG_FLATMEM
max_mapnr = num_physpages;
#endif
printk(KERN_NOTICE "%ldMB LOWMEM available.\n",
pages_to_mb(max_low_pfn));
setup_bootmem_allocator();
return max_low_pfn;
}
static void __init zone_sizes_init(void)
{
unsigned long max_zone_pfns[MAX_NR_ZONES];
memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
max_zone_pfns[ZONE_DMA] =
virt_to_phys((char *)MAX_DMA_ADDRESS) >> PAGE_SHIFT;
max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
#ifdef CONFIG_HIGHMEM
max_zone_pfns[ZONE_HIGHMEM] = highend_pfn;
add_active_range(0, 0, highend_pfn);
#else
add_active_range(0, 0, max_low_pfn);
#endif
free_area_init_nodes(max_zone_pfns);
}
#else
extern unsigned long __init setup_memory(void);
extern void zone_sizes_init(void);
#endif /* !CONFIG_NEED_MULTIPLE_NODES */
static inline unsigned long long get_total_mem(void)
{
unsigned long long total;
total = max_low_pfn - min_low_pfn;
#ifdef CONFIG_HIGHMEM
total += highend_pfn - highstart_pfn;
#endif
return total << PAGE_SHIFT;
}
#ifdef CONFIG_KEXEC
static void __init reserve_crashkernel(void)
{
unsigned long long total_mem;
unsigned long long crash_size, crash_base;
int ret;
total_mem = get_total_mem();
ret = parse_crashkernel(boot_command_line, total_mem,
&crash_size, &crash_base);
if (ret == 0 && crash_size > 0) {
if (crash_base > 0) {
printk(KERN_INFO "Reserving %ldMB of memory at %ldMB "
"for crashkernel (System RAM: %ldMB)\n",
(unsigned long)(crash_size >> 20),
(unsigned long)(crash_base >> 20),
(unsigned long)(total_mem >> 20));
crashk_res.start = crash_base;
crashk_res.end = crash_base + crash_size - 1;
reserve_bootmem(crash_base, crash_size,
BOOTMEM_DEFAULT);
} else
printk(KERN_INFO "crashkernel reservation failed - "
"you have to specify a base address\n");
}
}
#else
static inline void __init reserve_crashkernel(void)
{}
#endif
#ifdef CONFIG_BLK_DEV_INITRD
static bool do_relocate_initrd = false;
static void __init reserve_initrd(void)
{
u64 ramdisk_image = boot_params.hdr.ramdisk_image;
u64 ramdisk_size = boot_params.hdr.ramdisk_size;
u64 ramdisk_end = ramdisk_image + ramdisk_size;
u64 end_of_lowmem = max_low_pfn << PAGE_SHIFT;
u64 ramdisk_here;
if (!boot_params.hdr.type_of_loader ||
!ramdisk_image || !ramdisk_size)
return; /* No initrd provided by bootloader */
initrd_start = 0;
if (ramdisk_size >= end_of_lowmem/2) {
free_early(ramdisk_image, ramdisk_image + ramdisk_size - 1);
printk(KERN_ERR "initrd too large to handle, "
"disabling initrd\n");
return;
}
if (ramdisk_end <= end_of_lowmem) {
/* All in lowmem, easy case */
/*
* don't need to reserve again, already reserved early
* in i386_start_kernel
*/
initrd_start = ramdisk_image + PAGE_OFFSET;
initrd_end = initrd_start+ramdisk_size;
return;
}
/* We need to move the initrd down into lowmem */
ramdisk_here = find_e820_area(min_low_pfn<<PAGE_SHIFT,
end_of_lowmem, ramdisk_size,
PAGE_SIZE);
/* Note: this includes all the lowmem currently occupied by
the initrd, we rely on that fact to keep the data intact. */
reserve_early(ramdisk_here, ramdisk_here + ramdisk_size - 1,
"NEW RAMDISK");
initrd_start = ramdisk_here + PAGE_OFFSET;
initrd_end = initrd_start + ramdisk_size;
do_relocate_initrd = true;
}
#define MAX_MAP_CHUNK (NR_FIX_BTMAPS << PAGE_SHIFT)
static void __init relocate_initrd(void)
{
u64 ramdisk_image = boot_params.hdr.ramdisk_image;
u64 ramdisk_size = boot_params.hdr.ramdisk_size;
u64 end_of_lowmem = max_low_pfn << PAGE_SHIFT;
u64 ramdisk_here;
unsigned long slop, clen, mapaddr;
char *p, *q;
if (!do_relocate_initrd)
return;
ramdisk_here = initrd_start - PAGE_OFFSET;
q = (char *)initrd_start;
/* Copy any lowmem portion of the initrd */
if (ramdisk_image < end_of_lowmem) {
clen = end_of_lowmem - ramdisk_image;
p = (char *)__va(ramdisk_image);
memcpy(q, p, clen);
q += clen;
/* need to free these low pages...*/
printk(KERN_INFO "Freeing old partial RAMDISK %08llx-%08llx\n",
ramdisk_image, ramdisk_image + clen - 1);
free_bootmem(ramdisk_image, clen);
ramdisk_image += clen;
ramdisk_size -= clen;
}
/* Copy the highmem portion of the initrd */
while (ramdisk_size) {
slop = ramdisk_image & ~PAGE_MASK;
clen = ramdisk_size;
if (clen > MAX_MAP_CHUNK-slop)
clen = MAX_MAP_CHUNK-slop;
mapaddr = ramdisk_image & PAGE_MASK;
p = early_ioremap(mapaddr, clen+slop);
memcpy(q, p+slop, clen);
early_iounmap(p, clen+slop);
q += clen;
ramdisk_image += clen;
ramdisk_size -= clen;
}
/* high pages is not converted by early_res_to_bootmem */
ramdisk_image = boot_params.hdr.ramdisk_image;
ramdisk_size = boot_params.hdr.ramdisk_size;
printk(KERN_INFO "Copied RAMDISK from %016llx - %016llx to %08llx - %08llx\n",
ramdisk_image, ramdisk_image + ramdisk_size - 1,
ramdisk_here, ramdisk_here + ramdisk_size - 1);
}
#endif /* CONFIG_BLK_DEV_INITRD */
void __init setup_bootmem_allocator(void)
{
unsigned long bootmap_size, bootmap;
/*
* Initialize the boot-time allocator (with low memory only):
*/
bootmap_size = bootmem_bootmap_pages(max_low_pfn)<<PAGE_SHIFT;
bootmap = find_e820_area(min_low_pfn<<PAGE_SHIFT,
max_low_pfn<<PAGE_SHIFT, bootmap_size,
PAGE_SIZE);
if (bootmap == -1L)
panic("Cannot find bootmem map of size %ld\n", bootmap_size);
reserve_early(bootmap, bootmap + bootmap_size - 1, "BOOTMAP");
#ifdef CONFIG_BLK_DEV_INITRD
reserve_initrd();
#endif
bootmap_size = init_bootmem(bootmap >> PAGE_SHIFT, max_low_pfn);
printk(KERN_INFO " low ram: %08lx - %08lx\n",
min_low_pfn<<PAGE_SHIFT, max_low_pfn<<PAGE_SHIFT);
printk(KERN_INFO " bootmap [%08lx - %08lx]\n",
bootmap, bootmap + bootmap_size - 1);
register_bootmem_low_pages(max_low_pfn);
early_res_to_bootmem(0, max_low_pfn<<PAGE_SHIFT);
#ifdef CONFIG_ACPI_SLEEP
/*
* Reserve low memory region for sleep support.
*/
acpi_reserve_bootmem();
#endif
#ifdef CONFIG_X86_FIND_SMP_CONFIG
/*
* Find and reserve possible boot-time SMP configuration:
*/
find_smp_config();
#endif
numa_kva_reserve();
reserve_crashkernel();
reserve_ibft_region();
}
/*
* The node 0 pgdat is initialized before all of these because
* it's needed for bootmem. node>0 pgdats have their virtual
* space allocated before the pagetables are in place to access
* them, so they can't be cleared then.
*
* This should all compile down to nothing when NUMA is off.
*/
static void __init remapped_pgdat_init(void)
{
int nid;
for_each_online_node(nid) {
if (nid != 0)
memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
}
}
#ifdef CONFIG_MCA
static void set_mca_bus(int x)
{
MCA_bus = x;
}
#else
static void set_mca_bus(int x) { }
#endif
#ifdef CONFIG_NUMA
/*
* In the golden day, when everything among i386 and x86_64 will be
* integrated, this will not live here
*/
void *x86_cpu_to_node_map_early_ptr;
int x86_cpu_to_node_map_init[NR_CPUS] = {
[0 ... NR_CPUS-1] = NUMA_NO_NODE
};
DEFINE_PER_CPU(int, x86_cpu_to_node_map) = NUMA_NO_NODE;
#endif
/*
* Determine if we were loaded by an EFI loader. If so, then we have also been
* passed the efi memmap, systab, etc., so we should use these data structures
* for initialization. Note, the efi init code path is determined by the
* global efi_enabled. This allows the same kernel image to be used on existing
* systems (with a traditional BIOS) as well as on EFI systems.
*/
void __init setup_arch(char **cmdline_p)
{
unsigned long max_low_pfn;
memcpy(&boot_cpu_data, &new_cpu_data, sizeof(new_cpu_data));
pre_setup_arch_hook();
early_cpu_init();
early_ioremap_init();
#ifdef CONFIG_EFI
if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
"EL32", 4))
efi_enabled = 1;
#endif
ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev);
screen_info = boot_params.screen_info;
edid_info = boot_params.edid_info;
apm_info.bios = boot_params.apm_bios_info;
ist_info = boot_params.ist_info;
saved_video_mode = boot_params.hdr.vid_mode;
if( boot_params.sys_desc_table.length != 0 ) {
set_mca_bus(boot_params.sys_desc_table.table[3] & 0x2);
machine_id = boot_params.sys_desc_table.table[0];
machine_submodel_id = boot_params.sys_desc_table.table[1];
BIOS_revision = boot_params.sys_desc_table.table[2];
}
bootloader_type = boot_params.hdr.type_of_loader;
#ifdef CONFIG_BLK_DEV_RAM
rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK;
rd_prompt = ((boot_params.hdr.ram_size & RAMDISK_PROMPT_FLAG) != 0);
rd_doload = ((boot_params.hdr.ram_size & RAMDISK_LOAD_FLAG) != 0);
#endif
ARCH_SETUP
setup_memory_map();
copy_edd();
if (!boot_params.hdr.root_flags)
root_mountflags &= ~MS_RDONLY;
init_mm.start_code = (unsigned long) _text;
init_mm.end_code = (unsigned long) _etext;
init_mm.end_data = (unsigned long) _edata;
init_mm.brk = init_pg_tables_end + PAGE_OFFSET;
code_resource.start = virt_to_phys(_text);
code_resource.end = virt_to_phys(_etext)-1;
data_resource.start = virt_to_phys(_etext);
data_resource.end = virt_to_phys(_edata)-1;
bss_resource.start = virt_to_phys(&__bss_start);
bss_resource.end = virt_to_phys(&__bss_stop)-1;
parse_early_param();
finish_e820_parsing();
strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
*cmdline_p = command_line;
if (efi_enabled)
efi_init();
/* update e820 for memory not covered by WB MTRRs */
propagate_e820_map();
mtrr_bp_init();
if (mtrr_trim_uncached_memory(max_pfn))
propagate_e820_map();
max_low_pfn = setup_memory();
#ifdef CONFIG_KVM_CLOCK
kvmclock_init();
#endif
#ifdef CONFIG_VMI
/*
* Must be after max_low_pfn is determined, and before kernel
* pagetables are setup.
*/
vmi_init();
#endif
kvm_guest_init();
/*
* NOTE: before this point _nobody_ is allowed to allocate
* any memory using the bootmem allocator. Although the
* allocator is now initialised only the first 8Mb of the kernel
* virtual address space has been mapped. All allocations before
* paging_init() has completed must use the alloc_bootmem_low_pages()
* variant (which allocates DMA'able memory) and care must be taken
* not to exceed the 8Mb limit.
*/
paging_init();
/*
* NOTE: On x86-32, only from this point on, fixmaps are ready for use.
*/
#ifdef CONFIG_PROVIDE_OHCI1394_DMA_INIT
if (init_ohci1394_dma_early)
init_ohci1394_dma_on_all_controllers();
#endif
remapped_pgdat_init();
sparse_init();
zone_sizes_init();
/*
* NOTE: at this point the bootmem allocator is fully available.
*/
#ifdef CONFIG_BLK_DEV_INITRD
relocate_initrd();
#endif
paravirt_post_allocator_init();
dmi_scan_machine();
io_delay_init();
#ifdef CONFIG_X86_SMP
/*
* setup to use the early static init tables during kernel startup
* X86_SMP will exclude sub-arches that don't deal well with it.
*/
x86_cpu_to_apicid_early_ptr = (void *)x86_cpu_to_apicid_init;
x86_bios_cpu_apicid_early_ptr = (void *)x86_bios_cpu_apicid_init;
#ifdef CONFIG_NUMA
x86_cpu_to_node_map_early_ptr = (void *)x86_cpu_to_node_map_init;
#endif
#endif
#ifdef CONFIG_X86_GENERICARCH
generic_apic_probe();
#endif
#ifdef CONFIG_ACPI
/*
* Parse the ACPI tables for possible boot-time SMP configuration.
*/
acpi_boot_table_init();
#endif
early_quirks();
#ifdef CONFIG_ACPI
acpi_boot_init();
#if defined(CONFIG_SMP) && defined(CONFIG_X86_PC)
if (def_to_bigsmp)
printk(KERN_WARNING "More than 8 CPUs detected and "
"CONFIG_X86_PC cannot handle it.\nUse "
"CONFIG_X86_GENERICARCH or CONFIG_X86_BIGSMP.\n");
#endif
#endif
#if defined(CONFIG_X86_MPPARSE) || defined(CONFIG_X86_VISWS)
if (smp_found_config)
get_smp_config();
#endif
e820_setup_gap();
e820_mark_nosave_regions(max_low_pfn);
#ifdef CONFIG_VT
#if defined(CONFIG_VGA_CONSOLE)
if (!efi_enabled || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY))
conswitchp = &vga_con;
#elif defined(CONFIG_DUMMY_CONSOLE)
conswitchp = &dummy_con;
#endif
#endif
}
/*
* Request address space for all standard resources
*
* This is called just before pcibios_init(), which is also a
* subsys_initcall, but is linked in later (in arch/i386/pci/common.c).
*/
static int __init request_standard_resources(void)
{
int i;
printk(KERN_INFO "Setting up standard PCI resources\n");
init_iomem_resources(&code_resource, &data_resource, &bss_resource);
request_resource(&iomem_resource, &video_ram_resource);
/* request I/O space for devices used on all i[345]86 PCs */
for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++)
request_resource(&ioport_resource, &standard_io_resources[i]);
return 0;
}
subsys_initcall(request_standard_resources);