/*
* Copyright (C) 1992, 1998 Linus Torvalds, Ingo Molnar
*
* This file contains the lowest level x86-specific interrupt
* entry, irq-stacks and irq statistics code. All the remaining
* irq logic is done by the generic kernel/irq/ code and
* by the x86-specific irq controller code. (e.g. i8259.c and
* io_apic.c.)
*/
#include <linux/module.h>
#include <linux/seq_file.h>
#include <linux/interrupt.h>
#include <linux/kernel_stat.h>
#include <linux/notifier.h>
#include <linux/cpu.h>
#include <linux/delay.h>
#include <asm/apic.h>
#include <asm/uaccess.h>
DEFINE_PER_CPU_SHARED_ALIGNED(irq_cpustat_t, irq_stat);
EXPORT_PER_CPU_SYMBOL(irq_stat);
DEFINE_PER_CPU(struct pt_regs *, irq_regs);
EXPORT_PER_CPU_SYMBOL(irq_regs);
/*
* 'what should we do if we get a hw irq event on an illegal vector'.
* each architecture has to answer this themselves.
*/
void ack_bad_irq(unsigned int irq)
{
printk(KERN_ERR "unexpected IRQ trap at vector %02x\n", irq);
#ifdef CONFIG_X86_LOCAL_APIC
/*
* Currently unexpected vectors happen only on SMP and APIC.
* We _must_ ack these because every local APIC has only N
* irq slots per priority level, and a 'hanging, unacked' IRQ
* holds up an irq slot - in excessive cases (when multiple
* unexpected vectors occur) that might lock up the APIC
* completely.
* But only ack when the APIC is enabled -AK
*/
if (cpu_has_apic)
ack_APIC_irq();
#endif
}
#ifdef CONFIG_DEBUG_STACKOVERFLOW
/* Debugging check for stack overflow: is there less than 1KB free? */
static int check_stack_overflow(void)
{
long sp;
__asm__ __volatile__("andl %%esp,%0" :
"=r" (sp) : "0" (THREAD_SIZE - 1));
return sp < (sizeof(struct thread_info) + STACK_WARN);
}
static void print_stack_overflow(void)
{
printk(KERN_WARNING "low stack detected by irq handler\n");
dump_stack();
}
#else
static inline int check_stack_overflow(void) { return 0; }
static inline void print_stack_overflow(void) { }
#endif
#ifdef CONFIG_4KSTACKS
/*
* per-CPU IRQ handling contexts (thread information and stack)
*/
union irq_ctx {
struct thread_info tinfo;
u32 stack[THREAD_SIZE/sizeof(u32)];
};
static union irq_ctx *hardirq_ctx[NR_CPUS] __read_mostly;
static union irq_ctx *softirq_ctx[NR_CPUS] __read_mostly;
static char softirq_stack[NR_CPUS * THREAD_SIZE] __page_aligned_bss;
static char hardirq_stack[NR_CPUS * THREAD_SIZE] __page_aligned_bss;
static void call_on_stack(void *func, void *stack)
{
asm volatile("xchgl %%ebx,%%esp \n"
"call *%%edi \n"
"movl %%ebx,%%esp \n"
: "=b" (stack)
: "0" (stack),
"D"(func)
: "memory", "cc", "edx", "ecx", "eax");
}
static inline int
execute_on_irq_stack(int overflow, struct irq_desc *desc, int irq)
{
union irq_ctx *curctx, *irqctx;
u32 *isp, arg1, arg2;
curctx = (union irq_ctx *) current_thread_info();
irqctx = hardirq_ctx[smp_processor_id()];
/*
* this is where we switch to the IRQ stack. However, if we are
* already using the IRQ stack (because we interrupted a hardirq
* handler) we can't do that and just have to keep using the
* current stack (which is the irq stack already after all)
*/
if (unlikely(curctx == irqctx))
return 0;
/* build the stack frame on the IRQ stack */
isp = (u32 *) ((char*)irqctx + sizeof(*irqctx));
irqctx->tinfo.task = curctx->tinfo.task;
irqctx->tinfo.previous_esp = current_stack_pointer;
/*
* Copy the softirq bits in preempt_count so that the
* softirq checks work in the hardirq context.
*/
irqctx->tinfo.preempt_count =
(irqctx->tinfo.preempt_count & ~SOFTIRQ_MASK) |
(curctx->tinfo.preempt_count & SOFTIRQ_MASK);
if (unlikely(overflow))
call_on_stack(print_stack_overflow, isp);
asm volatile("xchgl %%ebx,%%esp \n"
"call *%%edi \n"
"movl %%ebx,%%esp \n"
: "=a" (arg1), "=d" (arg2), "=b" (isp)
: "0" (irq), "1" (desc), "2" (isp),
"D" (desc->handle_irq)
: "memory", "cc", "ecx");
return 1;
}
/*
* allocate per-cpu stacks for hardirq and for softirq processing
*/
void __cpuinit irq_ctx_init(int cpu)
{
union irq_ctx *irqctx;
if (hardirq_ctx[cpu])
return;
irqctx = (union irq_ctx*) &hardirq_stack[cpu*THREAD_SIZE];
irqctx->tinfo.task = NULL;
irqctx->tinfo.exec_domain = NULL;
irqctx->tinfo.cpu = cpu;
irqctx->tinfo.preempt_count = HARDIRQ_OFFSET;
irqctx->tinfo.addr_limit = MAKE_MM_SEG(0);
hardirq_ctx[cpu] = irqctx;
irqctx = (union irq_ctx*) &softirq_stack[cpu*THREAD_SIZE];
irqctx->tinfo.task = NULL;
irqctx->tinfo.exec_domain = NULL;
irqctx->tinfo.cpu = cpu;
irqctx->tinfo.preempt_count = 0;
irqctx->tinfo.addr_limit = MAKE_MM_SEG(0);
softirq_ctx[cpu] = irqctx;
printk(KERN_DEBUG "CPU %u irqstacks, hard=%p soft=%p\n",
cpu,hardirq_ctx[cpu],softirq_ctx[cpu]);
}
void irq_ctx_exit(int cpu)
{
hardirq_ctx[cpu] = NULL;
}
asmlinkage void do_softirq(void)
{
unsigned long flags;
struct thread_info *curctx;
union irq_ctx *irqctx;
u32 *isp;
if (in_interrupt())
return;
local_irq_save(flags);
if (local_softirq_pending()) {
curctx = current_thread_info();
irqctx = softirq_ctx[smp_processor_id()];
irqctx->tinfo.task = curctx->task;
irqctx->tinfo.previous_esp = current_stack_pointer;
/* build the stack frame on the softirq stack */
isp = (u32*) ((char*)irqctx + sizeof(*irqctx));
call_on_stack(__do_softirq, isp);
/*
* Shouldnt happen, we returned above if in_interrupt():
*/
WARN_ON_ONCE(softirq_count());
}
local_irq_restore(flags);
}
#else
static inline int
execute_on_irq_stack(int overflow, struct irq_desc *desc, int irq) { return 0; }
#endif
/*
* do_IRQ handles all normal device IRQ's (the special
* SMP cross-CPU interrupts have their own specific
* handlers).
*/
unsigned int do_IRQ(struct pt_regs *regs)
{
struct pt_regs *old_regs;
/* high bit used in ret_from_ code */
int overflow, irq = ~regs->orig_ax;
struct irq_desc *desc = irq_to_desc(irq);
if (unlikely((unsigned)irq >= nr_irqs)) {
printk(KERN_EMERG "%s: cannot handle IRQ %d\n",
__func__, irq);
BUG();
}
old_regs = set_irq_regs(regs);
irq_enter();
overflow = check_stack_overflow();
if (!execute_on_irq_stack(overflow, desc, irq)) {
if (unlikely(overflow))
print_stack_overflow();
desc->handle_irq(irq, desc);
}
irq_exit();
set_irq_regs(old_regs);
return 1;
}
/*
* Interrupt statistics:
*/
atomic_t irq_err_count;
/*
* /proc/interrupts printing:
*/
int show_interrupts(struct seq_file *p, void *v)
{
int i = *(loff_t *) v, j;
struct irqaction * action;
unsigned long flags;
if (i == 0) {
seq_printf(p, " ");
for_each_online_cpu(j)
seq_printf(p, "CPU%-8d",j);
seq_putc(p, '\n');
}
if (i < nr_irqs) {
unsigned any_count = 0;
struct irq_desc *desc = irq_to_desc(i);
spin_lock_irqsave(&desc->lock, flags);
#ifndef CONFIG_SMP
any_count = kstat_irqs(i);
#else
for_each_online_cpu(j)
any_count |= kstat_irqs_cpu(i, j);
#endif
action = desc->action;
if (!action && !any_count)
goto skip;
seq_printf(p, "%3d: ",i);
#ifndef CONFIG_SMP
seq_printf(p, "%10u ", kstat_irqs(i));
#else
for_each_online_cpu(j)
seq_printf(p, "%10u ", kstat_irqs_cpu(i, j));
#endif
seq_printf(p, " %8s", desc->chip->name);
seq_printf(p, "-%-8s", desc->name);
if (action) {
seq_printf(p, " %s", action->name);
while ((action = action->next) != NULL)
seq_printf(p, ", %s", action->name);
}
seq_putc(p, '\n');
skip:
spin_unlock_irqrestore(&desc->lock, flags);
} else if (i == nr_irqs) {
seq_printf(p, "NMI: ");
for_each_online_cpu(j)
seq_printf(p, "%10u ", nmi_count(j));
seq_printf(p, " Non-maskable interrupts\n");
#ifdef CONFIG_X86_LOCAL_APIC
seq_printf(p, "LOC: ");
for_each_online_cpu(j)
seq_printf(p, "%10u ",
per_cpu(irq_stat,j).apic_timer_irqs);
seq_printf(p, " Local timer interrupts\n");
#endif
#ifdef CONFIG_SMP
seq_printf(p, "RES: ");
for_each_online_cpu(j)
seq_printf(p, "%10u ",
per_cpu(irq_stat,j).irq_resched_count);
seq_printf(p, " Rescheduling interrupts\n");
seq_printf(p, "CAL: ");
for_each_online_cpu(j)
seq_printf(p, "%10u ",
per_cpu(irq_stat,j).irq_call_count);
seq_printf(p, " Function call interrupts\n");
seq_printf(p, "TLB: ");
for_each_online_cpu(j)
seq_printf(p, "%10u ",
per_cpu(irq_stat,j).irq_tlb_count);
seq_printf(p, " TLB shootdowns\n");
#endif
#ifdef CONFIG_X86_MCE
seq_printf(p, "TRM: ");
for_each_online_cpu(j)
seq_printf(p, "%10u ",
per_cpu(irq_stat,j).irq_thermal_count);
seq_printf(p, " Thermal event interrupts\n");
#endif
#ifdef CONFIG_X86_LOCAL_APIC
seq_printf(p, "SPU: ");
for_each_online_cpu(j)
seq_printf(p, "%10u ",
per_cpu(irq_stat,j).irq_spurious_count);
seq_printf(p, " Spurious interrupts\n");
#endif
seq_printf(p, "ERR: %10u\n", atomic_read(&irq_err_count));
#if defined(CONFIG_X86_IO_APIC)
seq_printf(p, "MIS: %10u\n", atomic_read(&irq_mis_count));
#endif
}
return 0;
}
/*
* /proc/stat helpers
*/
u64 arch_irq_stat_cpu(unsigned int cpu)
{
u64 sum = nmi_count(cpu);
#ifdef CONFIG_X86_LOCAL_APIC
sum += per_cpu(irq_stat, cpu).apic_timer_irqs;
#endif
#ifdef CONFIG_SMP
sum += per_cpu(irq_stat, cpu).irq_resched_count;
sum += per_cpu(irq_stat, cpu).irq_call_count;
sum += per_cpu(irq_stat, cpu).irq_tlb_count;
#endif
#ifdef CONFIG_X86_MCE
sum += per_cpu(irq_stat, cpu).irq_thermal_count;
#endif
#ifdef CONFIG_X86_LOCAL_APIC
sum += per_cpu(irq_stat, cpu).irq_spurious_count;
#endif
return sum;
}
u64 arch_irq_stat(void)
{
u64 sum = atomic_read(&irq_err_count);
#ifdef CONFIG_X86_IO_APIC
sum += atomic_read(&irq_mis_count);
#endif
return sum;
}
#ifdef CONFIG_HOTPLUG_CPU
#include <mach_apic.h>
void fixup_irqs(cpumask_t map)
{
unsigned int irq;
static int warned;
for (irq = 0; irq < nr_irqs; irq++) {
cpumask_t mask;
struct irq_desc *desc;
if (irq == 2)
continue;
desc = irq_to_desc(irq);
cpus_and(mask, desc->affinity, map);
if (any_online_cpu(mask) == NR_CPUS) {
printk("Breaking affinity for irq %i\n", irq);
mask = map;
}
if (desc->chip->set_affinity)
desc->chip->set_affinity(irq, mask);
else if (desc->action && !(warned++))
printk("Cannot set affinity for irq %i\n", irq);
}
#if 0
barrier();
/* Ingo Molnar says: "after the IO-APIC masks have been redirected
[note the nop - the interrupt-enable boundary on x86 is two
instructions from sti] - to flush out pending hardirqs and
IPIs. After this point nothing is supposed to reach this CPU." */
__asm__ __volatile__("sti; nop; cli");
barrier();
#else
/* That doesn't seem sufficient. Give it 1ms. */
local_irq_enable();
mdelay(1);
local_irq_disable();
#endif
}
#endif