/*
* Machine check handler.
*
* K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs.
* Rest from unknown author(s).
* 2004 Andi Kleen. Rewrote most of it.
* Copyright 2008 Intel Corporation
* Author: Andi Kleen
*/
#include <linux/thread_info.h>
#include <linux/capability.h>
#include <linux/miscdevice.h>
#include <linux/interrupt.h>
#include <linux/ratelimit.h>
#include <linux/kallsyms.h>
#include <linux/rcupdate.h>
#include <linux/kobject.h>
#include <linux/uaccess.h>
#include <linux/kdebug.h>
#include <linux/kernel.h>
#include <linux/percpu.h>
#include <linux/string.h>
#include <linux/sysdev.h>
#include <linux/delay.h>
#include <linux/ctype.h>
#include <linux/sched.h>
#include <linux/sysfs.h>
#include <linux/types.h>
#include <linux/init.h>
#include <linux/kmod.h>
#include <linux/poll.h>
#include <linux/nmi.h>
#include <linux/cpu.h>
#include <linux/smp.h>
#include <linux/fs.h>
#include <linux/mm.h>
#include <asm/processor.h>
#include <asm/hw_irq.h>
#include <asm/apic.h>
#include <asm/idle.h>
#include <asm/ipi.h>
#include <asm/mce.h>
#include <asm/msr.h>
#include "mce-internal.h"
#include "mce.h"
/* Handle unconfigured int18 (should never happen) */
static void unexpected_machine_check(struct pt_regs *regs, long error_code)
{
printk(KERN_ERR "CPU#%d: Unexpected int18 (Machine Check).\n",
smp_processor_id());
}
/* Call the installed machine check handler for this CPU setup. */
void (*machine_check_vector)(struct pt_regs *, long error_code) =
unexpected_machine_check;
int mce_disabled;
#ifdef CONFIG_X86_NEW_MCE
#define MISC_MCELOG_MINOR 227
#define SPINUNIT 100 /* 100ns */
atomic_t mce_entry;
DEFINE_PER_CPU(unsigned, mce_exception_count);
/*
* Tolerant levels:
* 0: always panic on uncorrected errors, log corrected errors
* 1: panic or SIGBUS on uncorrected errors, log corrected errors
* 2: SIGBUS or log uncorrected errors (if possible), log corrected errors
* 3: never panic or SIGBUS, log all errors (for testing only)
*/
static int tolerant = 1;
static int banks;
static u64 *bank;
static unsigned long notify_user;
static int rip_msr;
static int mce_bootlog = -1;
static int monarch_timeout = -1;
static int mce_panic_timeout;
int mce_ser;
static char trigger[128];
static char *trigger_argv[2] = { trigger, NULL };
static unsigned long dont_init_banks;
static DECLARE_WAIT_QUEUE_HEAD(mce_wait);
static DEFINE_PER_CPU(struct mce, mces_seen);
static int cpu_missing;
/* MCA banks polled by the period polling timer for corrected events */
DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = {
[0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL
};
static inline int skip_bank_init(int i)
{
return i < BITS_PER_LONG && test_bit(i, &dont_init_banks);
}
static DEFINE_PER_CPU(struct work_struct, mce_work);
/* Do initial initialization of a struct mce */
void mce_setup(struct mce *m)
{
memset(m, 0, sizeof(struct mce));
m->cpu = m->extcpu = smp_processor_id();
rdtscll(m->tsc);
/* We hope get_seconds stays lockless */
m->time = get_seconds();
m->cpuvendor = boot_cpu_data.x86_vendor;
m->cpuid = cpuid_eax(1);
#ifdef CONFIG_SMP
m->socketid = cpu_data(m->extcpu).phys_proc_id;
#endif
m->apicid = cpu_data(m->extcpu).initial_apicid;
rdmsrl(MSR_IA32_MCG_CAP, m->mcgcap);
}
DEFINE_PER_CPU(struct mce, injectm);
EXPORT_PER_CPU_SYMBOL_GPL(injectm);
/*
* Lockless MCE logging infrastructure.
* This avoids deadlocks on printk locks without having to break locks. Also
* separate MCEs from kernel messages to avoid bogus bug reports.
*/
static struct mce_log mcelog = {
.signature = MCE_LOG_SIGNATURE,
.len = MCE_LOG_LEN,
.recordlen = sizeof(struct mce),
};
void mce_log(struct mce *mce)
{
unsigned next, entry;
mce->finished = 0;
wmb();
for (;;) {
entry = rcu_dereference(mcelog.next);
for (;;) {
/*
* When the buffer fills up discard new entries.
* Assume that the earlier errors are the more
* interesting ones:
*/
if (entry >= MCE_LOG_LEN) {
set_bit(MCE_OVERFLOW,
(unsigned long *)&mcelog.flags);
return;
}
/* Old left over entry. Skip: */
if (mcelog.entry[entry].finished) {
entry++;
continue;
}
break;
}
smp_rmb();
next = entry + 1;
if (cmpxchg(&mcelog.next, entry, next) == entry)
break;
}
memcpy(mcelog.entry + entry, mce, sizeof(struct mce));
wmb();
mcelog.entry[entry].finished = 1;
wmb();
mce->finished = 1;
set_bit(0, ¬ify_user);
}
static void print_mce(struct mce *m)
{
printk(KERN_EMERG
"CPU %d: Machine Check Exception: %16Lx Bank %d: %016Lx\n",
m->extcpu, m->mcgstatus, m->bank, m->status);
if (m->ip) {
printk(KERN_EMERG "RIP%s %02x:<%016Lx> ",
!(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "",
m->cs, m->ip);
if (m->cs == __KERNEL_CS)
print_symbol("{%s}", m->ip);
printk("\n");
}
printk(KERN_EMERG "TSC %llx ", m->tsc);
if (m->addr)
printk("ADDR %llx ", m->addr);
if (m->misc)
printk("MISC %llx ", m->misc);
printk("\n");
printk(KERN_EMERG "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x\n",
m->cpuvendor, m->cpuid, m->time, m->socketid,
m->apicid);
}
static void print_mce_head(void)
{
printk(KERN_EMERG "\n" KERN_EMERG "HARDWARE ERROR\n");
}
static void print_mce_tail(void)
{
printk(KERN_EMERG "This is not a software problem!\n"
KERN_EMERG "Run through mcelog --ascii to decode and contact your hardware vendor\n");
}
#define PANIC_TIMEOUT 5 /* 5 seconds */
static atomic_t mce_paniced;
/* Panic in progress. Enable interrupts and wait for final IPI */
static void wait_for_panic(void)
{
long timeout = PANIC_TIMEOUT*USEC_PER_SEC;
preempt_disable();
local_irq_enable();
while (timeout-- > 0)
udelay(1);
if (panic_timeout == 0)
panic_timeout = mce_panic_timeout;
panic("Panicing machine check CPU died");
}
static void mce_panic(char *msg, struct mce *final, char *exp)
{
int i;
/*
* Make sure only one CPU runs in machine check panic
*/
if (atomic_add_return(1, &mce_paniced) > 1)
wait_for_panic();
barrier();
bust_spinlocks(1);
console_verbose();
print_mce_head();
/* First print corrected ones that are still unlogged */
for (i = 0; i < MCE_LOG_LEN; i++) {
struct mce *m = &mcelog.entry[i];
if (!(m->status & MCI_STATUS_VAL))
continue;
if (!(m->status & MCI_STATUS_UC))
print_mce(m);
}
/* Now print uncorrected but with the final one last */
for (i = 0; i < MCE_LOG_LEN; i++) {
struct mce *m = &mcelog.entry[i];
if (!(m->status & MCI_STATUS_VAL))
continue;
if (!(m->status & MCI_STATUS_UC))
continue;
if (!final || memcmp(m, final, sizeof(struct mce)))
print_mce(m);
}
if (final)
print_mce(final);
if (cpu_missing)
printk(KERN_EMERG "Some CPUs didn't answer in synchronization\n");
print_mce_tail();
if (exp)
printk(KERN_EMERG "Machine check: %s\n", exp);
if (panic_timeout == 0)
panic_timeout = mce_panic_timeout;
panic(msg);
}
/* Support code for software error injection */
static int msr_to_offset(u32 msr)
{
unsigned bank = __get_cpu_var(injectm.bank);
if (msr == rip_msr)
return offsetof(struct mce, ip);
if (msr == MSR_IA32_MC0_STATUS + bank*4)
return offsetof(struct mce, status);
if (msr == MSR_IA32_MC0_ADDR + bank*4)
return offsetof(struct mce, addr);
if (msr == MSR_IA32_MC0_MISC + bank*4)
return offsetof(struct mce, misc);
if (msr == MSR_IA32_MCG_STATUS)
return offsetof(struct mce, mcgstatus);
return -1;
}
/* MSR access wrappers used for error injection */
static u64 mce_rdmsrl(u32 msr)
{
u64 v;
if (__get_cpu_var(injectm).finished) {
int offset = msr_to_offset(msr);
if (offset < 0)
return 0;
return *(u64 *)((char *)&__get_cpu_var(injectm) + offset);
}
rdmsrl(msr, v);
return v;
}
static void mce_wrmsrl(u32 msr, u64 v)
{
if (__get_cpu_var(injectm).finished) {
int offset = msr_to_offset(msr);
if (offset >= 0)
*(u64 *)((char *)&__get_cpu_var(injectm) + offset) = v;
return;
}
wrmsrl(msr, v);
}
/*
* Simple lockless ring to communicate PFNs from the exception handler with the
* process context work function. This is vastly simplified because there's
* only a single reader and a single writer.
*/
#define MCE_RING_SIZE 16 /* we use one entry less */
struct mce_ring {
unsigned short start;
unsigned short end;
unsigned long ring[MCE_RING_SIZE];
};
static DEFINE_PER_CPU(struct mce_ring, mce_ring);
/* Runs with CPU affinity in workqueue */
static int mce_ring_empty(void)
{
struct mce_ring *r = &__get_cpu_var(mce_ring);
return r->start == r->end;
}
static int mce_ring_get(unsigned long *pfn)
{
struct mce_ring *r;
int ret = 0;
*pfn = 0;
get_cpu();
r = &__get_cpu_var(mce_ring);
if (r->start == r->end)
goto out;
*pfn = r->ring[r->start];
r->start = (r->start + 1) % MCE_RING_SIZE;
ret = 1;
out:
put_cpu();
return ret;
}
/* Always runs in MCE context with preempt off */
static int mce_ring_add(unsigned long pfn)
{
struct mce_ring *r = &__get_cpu_var(mce_ring);
unsigned next;
next = (r->end + 1) % MCE_RING_SIZE;
if (next == r->start)
return -1;
r->ring[r->end] = pfn;
wmb();
r->end = next;
return 0;
}
int mce_available(struct cpuinfo_x86 *c)
{
if (mce_disabled)
return 0;
return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA);
}
static void mce_schedule_work(void)
{
if (!mce_ring_empty()) {
struct work_struct *work = &__get_cpu_var(mce_work);
if (!work_pending(work))
schedule_work(work);
}
}
/*
* Get the address of the instruction at the time of the machine check
* error.
*/
static inline void mce_get_rip(struct mce *m, struct pt_regs *regs)
{
if (regs && (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV))) {
m->ip = regs->ip;
m->cs = regs->cs;
} else {
m->ip = 0;
m->cs = 0;
}
if (rip_msr)
m->ip = mce_rdmsrl(rip_msr);
}
#ifdef CONFIG_X86_LOCAL_APIC
/*
* Called after interrupts have been reenabled again
* when a MCE happened during an interrupts off region
* in the kernel.
*/
asmlinkage void smp_mce_self_interrupt(struct pt_regs *regs)
{
ack_APIC_irq();
exit_idle();
irq_enter();
mce_notify_irq();
mce_schedule_work();
irq_exit();
}
#endif
static void mce_report_event(struct pt_regs *regs)
{
if (regs->flags & (X86_VM_MASK|X86_EFLAGS_IF)) {
mce_notify_irq();
/*
* Triggering the work queue here is just an insurance
* policy in case the syscall exit notify handler
* doesn't run soon enough or ends up running on the
* wrong CPU (can happen when audit sleeps)
*/
mce_schedule_work();
return;
}
#ifdef CONFIG_X86_LOCAL_APIC
/*
* Without APIC do not notify. The event will be picked
* up eventually.
*/
if (!cpu_has_apic)
return;
/*
* When interrupts are disabled we cannot use
* kernel services safely. Trigger an self interrupt
* through the APIC to instead do the notification
* after interrupts are reenabled again.
*/
apic->send_IPI_self(MCE_SELF_VECTOR);
/*
* Wait for idle afterwards again so that we don't leave the
* APIC in a non idle state because the normal APIC writes
* cannot exclude us.
*/
apic_wait_icr_idle();
#endif
}
DEFINE_PER_CPU(unsigned, mce_poll_count);
/*
* Poll for corrected events or events that happened before reset.
* Those are just logged through /dev/mcelog.
*
* This is executed in standard interrupt context.
*
* Note: spec recommends to panic for fatal unsignalled
* errors here. However this would be quite problematic --
* we would need to reimplement the Monarch handling and
* it would mess up the exclusion between exception handler
* and poll hander -- * so we skip this for now.
* These cases should not happen anyways, or only when the CPU
* is already totally * confused. In this case it's likely it will
* not fully execute the machine check handler either.
*/
void machine_check_poll(enum mcp_flags flags, mce_banks_t *b)
{
struct mce m;
int i;
__get_cpu_var(mce_poll_count)++;
mce_setup(&m);
m.mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
for (i = 0; i < banks; i++) {
if (!bank[i] || !test_bit(i, *b))
continue;
m.misc = 0;
m.addr = 0;
m.bank = i;
m.tsc = 0;
barrier();
m.status = mce_rdmsrl(MSR_IA32_MC0_STATUS + i*4);
if (!(m.status & MCI_STATUS_VAL))
continue;
/*
* Uncorrected or signalled events are handled by the exception
* handler when it is enabled, so don't process those here.
*
* TBD do the same check for MCI_STATUS_EN here?
*/
if (!(flags & MCP_UC) &&
(m.status & (mce_ser ? MCI_STATUS_S : MCI_STATUS_UC)))
continue;
if (m.status & MCI_STATUS_MISCV)
m.misc = mce_rdmsrl(MSR_IA32_MC0_MISC + i*4);
if (m.status & MCI_STATUS_ADDRV)
m.addr = mce_rdmsrl(MSR_IA32_MC0_ADDR + i*4);
if (!(flags & MCP_TIMESTAMP))
m.tsc = 0;
/*
* Don't get the IP here because it's unlikely to
* have anything to do with the actual error location.
*/
if (!(flags & MCP_DONTLOG)) {
mce_log(&m);
add_taint(TAINT_MACHINE_CHECK);
}
/*
* Clear state for this bank.
*/
mce_wrmsrl(MSR_IA32_MC0_STATUS+4*i, 0);
}
/*
* Don't clear MCG_STATUS here because it's only defined for
* exceptions.
*/
sync_core();
}
EXPORT_SYMBOL_GPL(machine_check_poll);
/*
* Do a quick check if any of the events requires a panic.
* This decides if we keep the events around or clear them.
*/
static int mce_no_way_out(struct mce *m, char **msg)
{
int i;
for (i = 0; i < banks; i++) {
m->status = mce_rdmsrl(MSR_IA32_MC0_STATUS + i*4);
if (mce_severity(m, tolerant, msg) >= MCE_PANIC_SEVERITY)
return 1;
}
return 0;
}
/*
* Variable to establish order between CPUs while scanning.
* Each CPU spins initially until executing is equal its number.
*/
static atomic_t mce_executing;
/*
* Defines order of CPUs on entry. First CPU becomes Monarch.
*/
static atomic_t mce_callin;
/*
* Check if a timeout waiting for other CPUs happened.
*/
static int mce_timed_out(u64 *t)
{
/*
* The others already did panic for some reason.
* Bail out like in a timeout.
* rmb() to tell the compiler that system_state
* might have been modified by someone else.
*/
rmb();
if (atomic_read(&mce_paniced))
wait_for_panic();
if (!monarch_timeout)
goto out;
if ((s64)*t < SPINUNIT) {
/* CHECKME: Make panic default for 1 too? */
if (tolerant < 1)
mce_panic("Timeout synchronizing machine check over CPUs",
NULL, NULL);
cpu_missing = 1;
return 1;
}
*t -= SPINUNIT;
out:
touch_nmi_watchdog();
return 0;
}
/*
* The Monarch's reign. The Monarch is the CPU who entered
* the machine check handler first. It waits for the others to
* raise the exception too and then grades them. When any
* error is fatal panic. Only then let the others continue.
*
* The other CPUs entering the MCE handler will be controlled by the
* Monarch. They are called Subjects.
*
* This way we prevent any potential data corruption in a unrecoverable case
* and also makes sure always all CPU's errors are examined.
*
* Also this detects the case of an machine check event coming from outer
* space (not detected by any CPUs) In this case some external agent wants
* us to shut down, so panic too.
*
* The other CPUs might still decide to panic if the handler happens
* in a unrecoverable place, but in this case the system is in a semi-stable
* state and won't corrupt anything by itself. It's ok to let the others
* continue for a bit first.
*
* All the spin loops have timeouts; when a timeout happens a CPU
* typically elects itself to be Monarch.
*/
static void mce_reign(void)
{
int cpu;
struct mce *m = NULL;
int global_worst = 0;
char *msg = NULL;
char *nmsg = NULL;
/*
* This CPU is the Monarch and the other CPUs have run
* through their handlers.
* Grade the severity of the errors of all the CPUs.
*/
for_each_possible_cpu(cpu) {
int severity = mce_severity(&per_cpu(mces_seen, cpu), tolerant,
&nmsg);
if (severity > global_worst) {
msg = nmsg;
global_worst = severity;
m = &per_cpu(mces_seen, cpu);
}
}
/*
* Cannot recover? Panic here then.
* This dumps all the mces in the log buffer and stops the
* other CPUs.
*/
if (m && global_worst >= MCE_PANIC_SEVERITY && tolerant < 3)
mce_panic("Fatal Machine check", m, msg);
/*
* For UC somewhere we let the CPU who detects it handle it.
* Also must let continue the others, otherwise the handling
* CPU could deadlock on a lock.
*/
/*
* No machine check event found. Must be some external
* source or one CPU is hung. Panic.
*/
if (!m && tolerant < 3)
mce_panic("Machine check from unknown source", NULL, NULL);
/*
* Now clear all the mces_seen so that they don't reappear on
* the next mce.
*/
for_each_possible_cpu(cpu)
memset(&per_cpu(mces_seen, cpu), 0, sizeof(struct mce));
}
static atomic_t global_nwo;
/*
* Start of Monarch synchronization. This waits until all CPUs have
* entered the exception handler and then determines if any of them
* saw a fatal event that requires panic. Then it executes them
* in the entry order.
* TBD double check parallel CPU hotunplug
*/
static int mce_start(int no_way_out, int *order)
{
int nwo;
int cpus = num_online_cpus();
u64 timeout = (u64)monarch_timeout * NSEC_PER_USEC;
if (!timeout) {
*order = -1;
return no_way_out;
}
atomic_add(no_way_out, &global_nwo);
/*
* Wait for everyone.
*/
while (atomic_read(&mce_callin) != cpus) {
if (mce_timed_out(&timeout)) {
atomic_set(&global_nwo, 0);
*order = -1;
return no_way_out;
}
ndelay(SPINUNIT);
}
/*
* Cache the global no_way_out state.
*/
nwo = atomic_read(&global_nwo);
/*
* Monarch starts executing now, the others wait.
*/
if (*order == 1) {
atomic_set(&mce_executing, 1);
return nwo;
}
/*
* Now start the scanning loop one by one
* in the original callin order.
* This way when there are any shared banks it will
* be only seen by one CPU before cleared, avoiding duplicates.
*/
while (atomic_read(&mce_executing) < *order) {
if (mce_timed_out(&timeout)) {
atomic_set(&global_nwo, 0);
*order = -1;
return no_way_out;
}
ndelay(SPINUNIT);
}
return nwo;
}
/*
* Synchronize between CPUs after main scanning loop.
* This invokes the bulk of the Monarch processing.
*/
static int mce_end(int order)
{
int ret = -1;
u64 timeout = (u64)monarch_timeout * NSEC_PER_USEC;
if (!timeout)
goto reset;
if (order < 0)
goto reset;
/*
* Allow others to run.
*/
atomic_inc(&mce_executing);
if (order == 1) {
/* CHECKME: Can this race with a parallel hotplug? */
int cpus = num_online_cpus();
/*
* Monarch: Wait for everyone to go through their scanning
* loops.
*/
while (atomic_read(&mce_executing) <= cpus) {
if (mce_timed_out(&timeout))
goto reset;
ndelay(SPINUNIT);
}
mce_reign();
barrier();
ret = 0;
} else {
/*
* Subject: Wait for Monarch to finish.
*/
while (atomic_read(&mce_executing) != 0) {
if (mce_timed_out(&timeout))
goto reset;
ndelay(SPINUNIT);
}
/*
* Don't reset anything. That's done by the Monarch.
*/
return 0;
}
/*
* Reset all global state.
*/
reset:
atomic_set(&global_nwo, 0);
atomic_set(&mce_callin, 0);
barrier();
/*
* Let others run again.
*/
atomic_set(&mce_executing, 0);
return ret;
}
/*
* Check if the address reported by the CPU is in a format we can parse.
* It would be possible to add code for most other cases, but all would
* be somewhat complicated (e.g. segment offset would require an instruction
* parser). So only support physical addresses upto page granuality for now.
*/
static int mce_usable_address(struct mce *m)
{
if (!(m->status & MCI_STATUS_MISCV) || !(m->status & MCI_STATUS_ADDRV))
return 0;
if ((m->misc & 0x3f) > PAGE_SHIFT)
return 0;
if (((m->misc >> 6) & 7) != MCM_ADDR_PHYS)
return 0;
return 1;
}
static void mce_clear_state(unsigned long *toclear)
{
int i;
for (i = 0; i < banks; i++) {
if (test_bit(i, toclear))
mce_wrmsrl(MSR_IA32_MC0_STATUS+4*i, 0);
}
}
/*
* The actual machine check handler. This only handles real
* exceptions when something got corrupted coming in through int 18.
*
* This is executed in NMI context not subject to normal locking rules. This
* implies that most kernel services cannot be safely used. Don't even
* think about putting a printk in there!
*
* On Intel systems this is entered on all CPUs in parallel through
* MCE broadcast. However some CPUs might be broken beyond repair,
* so be always careful when synchronizing with others.
*/
void do_machine_check(struct pt_regs *regs, long error_code)
{
struct mce m, *final;
int i;
int worst = 0;
int severity;
/*
* Establish sequential order between the CPUs entering the machine
* check handler.
*/
int order;
/*
* If no_way_out gets set, there is no safe way to recover from this
* MCE. If tolerant is cranked up, we'll try anyway.
*/
int no_way_out = 0;
/*
* If kill_it gets set, there might be a way to recover from this
* error.
*/
int kill_it = 0;
DECLARE_BITMAP(toclear, MAX_NR_BANKS);
char *msg = "Unknown";
atomic_inc(&mce_entry);
__get_cpu_var(mce_exception_count)++;
if (notify_die(DIE_NMI, "machine check", regs, error_code,
18, SIGKILL) == NOTIFY_STOP)
goto out;
if (!banks)
goto out;
order = atomic_add_return(1, &mce_callin);
mce_setup(&m);
m.mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
no_way_out = mce_no_way_out(&m, &msg);
final = &__get_cpu_var(mces_seen);
*final = m;
barrier();
/*
* When no restart IP must always kill or panic.
*/
if (!(m.mcgstatus & MCG_STATUS_RIPV))
kill_it = 1;
/*
* Go through all the banks in exclusion of the other CPUs.
* This way we don't report duplicated events on shared banks
* because the first one to see it will clear it.
*/
no_way_out = mce_start(no_way_out, &order);
for (i = 0; i < banks; i++) {
__clear_bit(i, toclear);
if (!bank[i])
continue;
m.misc = 0;
m.addr = 0;
m.bank = i;
m.status = mce_rdmsrl(MSR_IA32_MC0_STATUS + i*4);
if ((m.status & MCI_STATUS_VAL) == 0)
continue;
/*
* Non uncorrected or non signaled errors are handled by
* machine_check_poll. Leave them alone, unless this panics.
*/
if (!(m.status & (mce_ser ? MCI_STATUS_S : MCI_STATUS_UC)) &&
!no_way_out)
continue;
/*
* Set taint even when machine check was not enabled.
*/
add_taint(TAINT_MACHINE_CHECK);
severity = mce_severity(&m, tolerant, NULL);
/*
* When machine check was for corrected handler don't touch,
* unless we're panicing.
*/
if (severity == MCE_KEEP_SEVERITY && !no_way_out)
continue;
__set_bit(i, toclear);
if (severity == MCE_NO_SEVERITY) {
/*
* Machine check event was not enabled. Clear, but
* ignore.
*/
continue;
}
/*
* Kill on action required.
*/
if (severity == MCE_AR_SEVERITY)
kill_it = 1;
if (m.status & MCI_STATUS_MISCV)
m.misc = mce_rdmsrl(MSR_IA32_MC0_MISC + i*4);
if (m.status & MCI_STATUS_ADDRV)
m.addr = mce_rdmsrl(MSR_IA32_MC0_ADDR + i*4);
/*
* Action optional error. Queue address for later processing.
* When the ring overflows we just ignore the AO error.
* RED-PEN add some logging mechanism when
* usable_address or mce_add_ring fails.
* RED-PEN don't ignore overflow for tolerant == 0
*/
if (severity == MCE_AO_SEVERITY && mce_usable_address(&m))
mce_ring_add(m.addr >> PAGE_SHIFT);
mce_get_rip(&m, regs);
mce_log(&m);
if (severity > worst) {
*final = m;
worst = severity;
}
}
if (!no_way_out)
mce_clear_state(toclear);
/*
* Do most of the synchronization with other CPUs.
* When there's any problem use only local no_way_out state.
*/
if (mce_end(order) < 0)
no_way_out = worst >= MCE_PANIC_SEVERITY;
/*
* If we have decided that we just CAN'T continue, and the user
* has not set tolerant to an insane level, give up and die.
*
* This is mainly used in the case when the system doesn't
* support MCE broadcasting or it has been disabled.
*/
if (no_way_out && tolerant < 3)
mce_panic("Fatal machine check on current CPU", final, msg);
/*
* If the error seems to be unrecoverable, something should be
* done. Try to kill as little as possible. If we can kill just
* one task, do that. If the user has set the tolerance very
* high, don't try to do anything at all.
*/
if (kill_it && tolerant < 3)
force_sig(SIGBUS, current);
/* notify userspace ASAP */
set_thread_flag(TIF_MCE_NOTIFY);
if (worst > 0)
mce_report_event(regs);
mce_wrmsrl(MSR_IA32_MCG_STATUS, 0);
out:
atomic_dec(&mce_entry);
sync_core();
}
EXPORT_SYMBOL_GPL(do_machine_check);
/* dummy to break dependency. actual code is in mm/memory-failure.c */
void __attribute__((weak)) memory_failure(unsigned long pfn, int vector)
{
printk(KERN_ERR "Action optional memory failure at %lx ignored\n", pfn);
}
/*
* Called after mce notification in process context. This code
* is allowed to sleep. Call the high level VM handler to process
* any corrupted pages.
* Assume that the work queue code only calls this one at a time
* per CPU.
* Note we don't disable preemption, so this code might run on the wrong
* CPU. In this case the event is picked up by the scheduled work queue.
* This is merely a fast path to expedite processing in some common
* cases.
*/
void mce_notify_process(void)
{
unsigned long pfn;
mce_notify_irq();
while (mce_ring_get(&pfn))
memory_failure(pfn, MCE_VECTOR);
}
static void mce_process_work(struct work_struct *dummy)
{
mce_notify_process();
}
#ifdef CONFIG_X86_MCE_INTEL
/***
* mce_log_therm_throt_event - Logs the thermal throttling event to mcelog
* @cpu: The CPU on which the event occurred.
* @status: Event status information
*
* This function should be called by the thermal interrupt after the
* event has been processed and the decision was made to log the event
* further.
*
* The status parameter will be saved to the 'status' field of 'struct mce'
* and historically has been the register value of the
* MSR_IA32_THERMAL_STATUS (Intel) msr.
*/
void mce_log_therm_throt_event(__u64 status)
{
struct mce m;
mce_setup(&m);
m.bank = MCE_THERMAL_BANK;
m.status = status;
mce_log(&m);
}
#endif /* CONFIG_X86_MCE_INTEL */
/*
* Periodic polling timer for "silent" machine check errors. If the
* poller finds an MCE, poll 2x faster. When the poller finds no more
* errors, poll 2x slower (up to check_interval seconds).
*/
static int check_interval = 5 * 60; /* 5 minutes */
static DEFINE_PER_CPU(int, next_interval); /* in jiffies */
static DEFINE_PER_CPU(struct timer_list, mce_timer);
static void mcheck_timer(unsigned long data)
{
struct timer_list *t = &per_cpu(mce_timer, data);
int *n;
WARN_ON(smp_processor_id() != data);
if (mce_available(¤t_cpu_data)) {
machine_check_poll(MCP_TIMESTAMP,
&__get_cpu_var(mce_poll_banks));
}
/*
* Alert userspace if needed. If we logged an MCE, reduce the
* polling interval, otherwise increase the polling interval.
*/
n = &__get_cpu_var(next_interval);
if (mce_notify_irq())
*n = max(*n/2, HZ/100);
else
*n = min(*n*2, (int)round_jiffies_relative(check_interval*HZ));
t->expires = jiffies + *n;
add_timer(t);
}
static void mce_do_trigger(struct work_struct *work)
{
call_usermodehelper(trigger, trigger_argv, NULL, UMH_NO_WAIT);
}
static DECLARE_WORK(mce_trigger_work, mce_do_trigger);
/*
* Notify the user(s) about new machine check events.
* Can be called from interrupt context, but not from machine check/NMI
* context.
*/
int mce_notify_irq(void)
{
/* Not more than two messages every minute */
static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2);
clear_thread_flag(TIF_MCE_NOTIFY);
if (test_and_clear_bit(0, ¬ify_user)) {
wake_up_interruptible(&mce_wait);
/*
* There is no risk of missing notifications because
* work_pending is always cleared before the function is
* executed.
*/
if (trigger[0] && !work_pending(&mce_trigger_work))
schedule_work(&mce_trigger_work);
if (__ratelimit(&ratelimit))
printk(KERN_INFO "Machine check events logged\n");
return 1;
}
return 0;
}
EXPORT_SYMBOL_GPL(mce_notify_irq);
/*
* Initialize Machine Checks for a CPU.
*/
static int mce_cap_init(void)
{
unsigned b;
u64 cap;
rdmsrl(MSR_IA32_MCG_CAP, cap);
b = cap & MCG_BANKCNT_MASK;
printk(KERN_INFO "mce: CPU supports %d MCE banks\n", b);
if (b > MAX_NR_BANKS) {
printk(KERN_WARNING
"MCE: Using only %u machine check banks out of %u\n",
MAX_NR_BANKS, b);
b = MAX_NR_BANKS;
}
/* Don't support asymmetric configurations today */
WARN_ON(banks != 0 && b != banks);
banks = b;
if (!bank) {
bank = kmalloc(banks * sizeof(u64), GFP_KERNEL);
if (!bank)
return -ENOMEM;
memset(bank, 0xff, banks * sizeof(u64));
}
/* Use accurate RIP reporting if available. */
if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9)
rip_msr = MSR_IA32_MCG_EIP;
if (cap & MCG_SER_P)
mce_ser = 1;
return 0;
}
static void mce_init(void)
{
mce_banks_t all_banks;
u64 cap;
int i;
/*
* Log the machine checks left over from the previous reset.
*/
bitmap_fill(all_banks, MAX_NR_BANKS);
machine_check_poll(MCP_UC|(!mce_bootlog ? MCP_DONTLOG : 0), &all_banks);
set_in_cr4(X86_CR4_MCE);
rdmsrl(MSR_IA32_MCG_CAP, cap);
if (cap & MCG_CTL_P)
wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff);
for (i = 0; i < banks; i++) {
if (skip_bank_init(i))
continue;
wrmsrl(MSR_IA32_MC0_CTL+4*i, bank[i]);
wrmsrl(MSR_IA32_MC0_STATUS+4*i, 0);
}
}
/* Add per CPU specific workarounds here */
static void mce_cpu_quirks(struct cpuinfo_x86 *c)
{
/* This should be disabled by the BIOS, but isn't always */
if (c->x86_vendor == X86_VENDOR_AMD) {
if (c->x86 == 15 && banks > 4) {
/*
* disable GART TBL walk error reporting, which
* trips off incorrectly with the IOMMU & 3ware
* & Cerberus:
*/
clear_bit(10, (unsigned long *)&bank[4]);
}
if (c->x86 <= 17 && mce_bootlog < 0) {
/*
* Lots of broken BIOS around that don't clear them
* by default and leave crap in there. Don't log:
*/
mce_bootlog = 0;
}
/*
* Various K7s with broken bank 0 around. Always disable
* by default.
*/
if (c->x86 == 6)
bank[0] = 0;
}
if (c->x86_vendor == X86_VENDOR_INTEL) {
/*
* SDM documents that on family 6 bank 0 should not be written
* because it aliases to another special BIOS controlled
* register.
* But it's not aliased anymore on model 0x1a+
* Don't ignore bank 0 completely because there could be a
* valid event later, merely don't write CTL0.
*/
if (c->x86 == 6 && c->x86_model < 0x1A)
__set_bit(0, &dont_init_banks);
/*
* All newer Intel systems support MCE broadcasting. Enable
* synchronization with a one second timeout.
*/
if ((c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xe)) &&
monarch_timeout < 0)
monarch_timeout = USEC_PER_SEC;
}
if (monarch_timeout < 0)
monarch_timeout = 0;
if (mce_bootlog != 0)
mce_panic_timeout = 30;
}
static void __cpuinit mce_ancient_init(struct cpuinfo_x86 *c)
{
if (c->x86 != 5)
return;
switch (c->x86_vendor) {
case X86_VENDOR_INTEL:
if (mce_p5_enabled())
intel_p5_mcheck_init(c);
break;
case X86_VENDOR_CENTAUR:
winchip_mcheck_init(c);
break;
}
}
static void mce_cpu_features(struct cpuinfo_x86 *c)
{
switch (c->x86_vendor) {
case X86_VENDOR_INTEL:
mce_intel_feature_init(c);
break;
case X86_VENDOR_AMD:
mce_amd_feature_init(c);
break;
default:
break;
}
}
static void mce_init_timer(void)
{
struct timer_list *t = &__get_cpu_var(mce_timer);
int *n = &__get_cpu_var(next_interval);
*n = check_interval * HZ;
if (!*n)
return;
setup_timer(t, mcheck_timer, smp_processor_id());
t->expires = round_jiffies(jiffies + *n);
add_timer(t);
}
/*
* Called for each booted CPU to set up machine checks.
* Must be called with preempt off:
*/
void __cpuinit mcheck_init(struct cpuinfo_x86 *c)
{
if (mce_disabled)
return;
mce_ancient_init(c);
if (!mce_available(c))
return;
if (mce_cap_init() < 0) {
mce_disabled = 1;
return;
}
mce_cpu_quirks(c);
machine_check_vector = do_machine_check;
mce_init();
mce_cpu_features(c);
mce_init_timer();
INIT_WORK(&__get_cpu_var(mce_work), mce_process_work);
}
/*
* Character device to read and clear the MCE log.
*/
static DEFINE_SPINLOCK(mce_state_lock);
static int open_count; /* #times opened */
static int open_exclu; /* already open exclusive? */
static int mce_open(struct inode *inode, struct file *file)
{
spin_lock(&mce_state_lock);
if (open_exclu || (open_count && (file->f_flags & O_EXCL))) {
spin_unlock(&mce_state_lock);
return -EBUSY;
}
if (file->f_flags & O_EXCL)
open_exclu = 1;
open_count++;
spin_unlock(&mce_state_lock);
return nonseekable_open(inode, file);
}
static int mce_release(struct inode *inode, struct file *file)
{
spin_lock(&mce_state_lock);
open_count--;
open_exclu = 0;
spin_unlock(&mce_state_lock);
return 0;
}
static void collect_tscs(void *data)
{
unsigned long *cpu_tsc = (unsigned long *)data;
rdtscll(cpu_tsc[smp_processor_id()]);
}
static DEFINE_MUTEX(mce_read_mutex);
static ssize_t mce_read(struct file *filp, char __user *ubuf, size_t usize,
loff_t *off)
{
char __user *buf = ubuf;
unsigned long *cpu_tsc;
unsigned prev, next;
int i, err;
cpu_tsc = kmalloc(nr_cpu_ids * sizeof(long), GFP_KERNEL);
if (!cpu_tsc)
return -ENOMEM;
mutex_lock(&mce_read_mutex);
next = rcu_dereference(mcelog.next);
/* Only supports full reads right now */
if (*off != 0 || usize < MCE_LOG_LEN*sizeof(struct mce)) {
mutex_unlock(&mce_read_mutex);
kfree(cpu_tsc);
return -EINVAL;
}
err = 0;
prev = 0;
do {
for (i = prev; i < next; i++) {
unsigned long start = jiffies;
while (!mcelog.entry[i].finished) {
if (time_after_eq(jiffies, start + 2)) {
memset(mcelog.entry + i, 0,
sizeof(struct mce));
goto timeout;
}
cpu_relax();
}
smp_rmb();
err |= copy_to_user(buf, mcelog.entry + i,
sizeof(struct mce));
buf += sizeof(struct mce);
timeout:
;
}
memset(mcelog.entry + prev, 0,
(next - prev) * sizeof(struct mce));
prev = next;
next = cmpxchg(&mcelog.next, prev, 0);
} while (next != prev);
synchronize_sched();
/*
* Collect entries that were still getting written before the
* synchronize.
*/
on_each_cpu(collect_tscs, cpu_tsc, 1);
for (i = next; i < MCE_LOG_LEN; i++) {
if (mcelog.entry[i].finished &&
mcelog.entry[i].tsc < cpu_tsc[mcelog.entry[i].cpu]) {
err |= copy_to_user(buf, mcelog.entry+i,
sizeof(struct mce));
smp_rmb();
buf += sizeof(struct mce);
memset(&mcelog.entry[i], 0, sizeof(struct mce));
}
}
mutex_unlock(&mce_read_mutex);
kfree(cpu_tsc);
return err ? -EFAULT : buf - ubuf;
}
static unsigned int mce_poll(struct file *file, poll_table *wait)
{
poll_wait(file, &mce_wait, wait);
if (rcu_dereference(mcelog.next))
return POLLIN | POLLRDNORM;
return 0;
}
static long mce_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
{
int __user *p = (int __user *)arg;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
switch (cmd) {
case MCE_GET_RECORD_LEN:
return put_user(sizeof(struct mce), p);
case MCE_GET_LOG_LEN:
return put_user(MCE_LOG_LEN, p);
case MCE_GETCLEAR_FLAGS: {
unsigned flags;
do {
flags = mcelog.flags;
} while (cmpxchg(&mcelog.flags, flags, 0) != flags);
return put_user(flags, p);
}
default:
return -ENOTTY;
}
}
/* Modified in mce-inject.c, so not static or const */
struct file_operations mce_chrdev_ops = {
.open = mce_open,
.release = mce_release,
.read = mce_read,
.poll = mce_poll,
.unlocked_ioctl = mce_ioctl,
};
EXPORT_SYMBOL_GPL(mce_chrdev_ops);
static struct miscdevice mce_log_device = {
MISC_MCELOG_MINOR,
"mcelog",
&mce_chrdev_ops,
};
/*
* mce=off disables machine check
* mce=TOLERANCELEVEL[,monarchtimeout] (number, see above)
* monarchtimeout is how long to wait for other CPUs on machine
* check, or 0 to not wait
* mce=bootlog Log MCEs from before booting. Disabled by default on AMD.
* mce=nobootlog Don't log MCEs from before booting.
*/
static int __init mcheck_enable(char *str)
{
if (*str == 0)
enable_p5_mce();
if (*str == '=')
str++;
if (!strcmp(str, "off"))
mce_disabled = 1;
else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog"))
mce_bootlog = (str[0] == 'b');
else if (isdigit(str[0])) {
get_option(&str, &tolerant);
if (*str == ',') {
++str;
get_option(&str, &monarch_timeout);
}
} else {
printk(KERN_INFO "mce argument %s ignored. Please use /sys\n",
str);
return 0;
}
return 1;
}
__setup("mce", mcheck_enable);
/*
* Sysfs support
*/
/*
* Disable machine checks on suspend and shutdown. We can't really handle
* them later.
*/
static int mce_disable(void)
{
int i;
for (i = 0; i < banks; i++) {
if (!skip_bank_init(i))
wrmsrl(MSR_IA32_MC0_CTL + i*4, 0);
}
return 0;
}
static int mce_suspend(struct sys_device *dev, pm_message_t state)
{
return mce_disable();
}
static int mce_shutdown(struct sys_device *dev)
{
return mce_disable();
}
/*
* On resume clear all MCE state. Don't want to see leftovers from the BIOS.
* Only one CPU is active at this time, the others get re-added later using
* CPU hotplug:
*/
static int mce_resume(struct sys_device *dev)
{
mce_init();
mce_cpu_features(¤t_cpu_data);
return 0;
}
static void mce_cpu_restart(void *data)
{
del_timer_sync(&__get_cpu_var(mce_timer));
if (mce_available(¤t_cpu_data))
mce_init();
mce_init_timer();
}
/* Reinit MCEs after user configuration changes */
static void mce_restart(void)
{
on_each_cpu(mce_cpu_restart, NULL, 1);
}
static struct sysdev_class mce_sysclass = {
.suspend = mce_suspend,
.shutdown = mce_shutdown,
.resume = mce_resume,
.name = "machinecheck",
};
DEFINE_PER_CPU(struct sys_device, mce_dev);
__cpuinitdata
void (*threshold_cpu_callback)(unsigned long action, unsigned int cpu);
static struct sysdev_attribute *bank_attrs;
static ssize_t show_bank(struct sys_device *s, struct sysdev_attribute *attr,
char *buf)
{
u64 b = bank[attr - bank_attrs];
return sprintf(buf, "%llx\n", b);
}
static ssize_t set_bank(struct sys_device *s, struct sysdev_attribute *attr,
const char *buf, size_t size)
{
u64 new;
if (strict_strtoull(buf, 0, &new) < 0)
return -EINVAL;
bank[attr - bank_attrs] = new;
mce_restart();
return size;
}
static ssize_t
show_trigger(struct sys_device *s, struct sysdev_attribute *attr, char *buf)
{
strcpy(buf, trigger);
strcat(buf, "\n");
return strlen(trigger) + 1;
}
static ssize_t set_trigger(struct sys_device *s, struct sysdev_attribute *attr,
const char *buf, size_t siz)
{
char *p;
int len;
strncpy(trigger, buf, sizeof(trigger));
trigger[sizeof(trigger)-1] = 0;
len = strlen(trigger);
p = strchr(trigger, '\n');
if (*p)
*p = 0;
return len;
}
static ssize_t store_int_with_restart(struct sys_device *s,
struct sysdev_attribute *attr,
const char *buf, size_t size)
{
ssize_t ret = sysdev_store_int(s, attr, buf, size);
mce_restart();
return ret;
}
static SYSDEV_ATTR(trigger, 0644, show_trigger, set_trigger);
static SYSDEV_INT_ATTR(tolerant, 0644, tolerant);
static SYSDEV_INT_ATTR(monarch_timeout, 0644, monarch_timeout);
static struct sysdev_ext_attribute attr_check_interval = {
_SYSDEV_ATTR(check_interval, 0644, sysdev_show_int,
store_int_with_restart),
&check_interval
};
static struct sysdev_attribute *mce_attrs[] = {
&attr_tolerant.attr, &attr_check_interval.attr, &attr_trigger,
&attr_monarch_timeout.attr,
NULL
};
static cpumask_var_t mce_dev_initialized;
/* Per cpu sysdev init. All of the cpus still share the same ctrl bank: */
static __cpuinit int mce_create_device(unsigned int cpu)
{
int err;
int i;
if (!mce_available(&boot_cpu_data))
return -EIO;
memset(&per_cpu(mce_dev, cpu).kobj, 0, sizeof(struct kobject));
per_cpu(mce_dev, cpu).id = cpu;
per_cpu(mce_dev, cpu).cls = &mce_sysclass;
err = sysdev_register(&per_cpu(mce_dev, cpu));
if (err)
return err;
for (i = 0; mce_attrs[i]; i++) {
err = sysdev_create_file(&per_cpu(mce_dev, cpu), mce_attrs[i]);
if (err)
goto error;
}
for (i = 0; i < banks; i++) {
err = sysdev_create_file(&per_cpu(mce_dev, cpu),
&bank_attrs[i]);
if (err)
goto error2;
}
cpumask_set_cpu(cpu, mce_dev_initialized);
return 0;
error2:
while (--i >= 0)
sysdev_remove_file(&per_cpu(mce_dev, cpu), &bank_attrs[i]);
error:
while (--i >= 0)
sysdev_remove_file(&per_cpu(mce_dev, cpu), mce_attrs[i]);
sysdev_unregister(&per_cpu(mce_dev, cpu));
return err;
}
static __cpuinit void mce_remove_device(unsigned int cpu)
{
int i;
if (!cpumask_test_cpu(cpu, mce_dev_initialized))
return;
for (i = 0; mce_attrs[i]; i++)
sysdev_remove_file(&per_cpu(mce_dev, cpu), mce_attrs[i]);
for (i = 0; i < banks; i++)
sysdev_remove_file(&per_cpu(mce_dev, cpu), &bank_attrs[i]);
sysdev_unregister(&per_cpu(mce_dev, cpu));
cpumask_clear_cpu(cpu, mce_dev_initialized);
}
/* Make sure there are no machine checks on offlined CPUs. */
static void mce_disable_cpu(void *h)
{
unsigned long action = *(unsigned long *)h;
int i;
if (!mce_available(¤t_cpu_data))
return;
if (!(action & CPU_TASKS_FROZEN))
cmci_clear();
for (i = 0; i < banks; i++) {
if (!skip_bank_init(i))
wrmsrl(MSR_IA32_MC0_CTL + i*4, 0);
}
}
static void mce_reenable_cpu(void *h)
{
unsigned long action = *(unsigned long *)h;
int i;
if (!mce_available(¤t_cpu_data))
return;
if (!(action & CPU_TASKS_FROZEN))
cmci_reenable();
for (i = 0; i < banks; i++) {
if (!skip_bank_init(i))
wrmsrl(MSR_IA32_MC0_CTL + i*4, bank[i]);
}
}
/* Get notified when a cpu comes on/off. Be hotplug friendly. */
static int __cpuinit
mce_cpu_callback(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
unsigned int cpu = (unsigned long)hcpu;
struct timer_list *t = &per_cpu(mce_timer, cpu);
switch (action) {
case CPU_ONLINE:
case CPU_ONLINE_FROZEN:
mce_create_device(cpu);
if (threshold_cpu_callback)
threshold_cpu_callback(action, cpu);
break;
case CPU_DEAD:
case CPU_DEAD_FROZEN:
if (threshold_cpu_callback)
threshold_cpu_callback(action, cpu);
mce_remove_device(cpu);
break;
case CPU_DOWN_PREPARE:
case CPU_DOWN_PREPARE_FROZEN:
del_timer_sync(t);
smp_call_function_single(cpu, mce_disable_cpu, &action, 1);
break;
case CPU_DOWN_FAILED:
case CPU_DOWN_FAILED_FROZEN:
t->expires = round_jiffies(jiffies +
__get_cpu_var(next_interval));
add_timer_on(t, cpu);
smp_call_function_single(cpu, mce_reenable_cpu, &action, 1);
break;
case CPU_POST_DEAD:
/* intentionally ignoring frozen here */
cmci_rediscover(cpu);
break;
}
return NOTIFY_OK;
}
static struct notifier_block mce_cpu_notifier __cpuinitdata = {
.notifier_call = mce_cpu_callback,
};
static __init int mce_init_banks(void)
{
int i;
bank_attrs = kzalloc(sizeof(struct sysdev_attribute) * banks,
GFP_KERNEL);
if (!bank_attrs)
return -ENOMEM;
for (i = 0; i < banks; i++) {
struct sysdev_attribute *a = &bank_attrs[i];
a->attr.name = kasprintf(GFP_KERNEL, "bank%d", i);
if (!a->attr.name)
goto nomem;
a->attr.mode = 0644;
a->show = show_bank;
a->store = set_bank;
}
return 0;
nomem:
while (--i >= 0)
kfree(bank_attrs[i].attr.name);
kfree(bank_attrs);
bank_attrs = NULL;
return -ENOMEM;
}
static __init int mce_init_device(void)
{
int err;
int i = 0;
if (!mce_available(&boot_cpu_data))
return -EIO;
alloc_cpumask_var(&mce_dev_initialized, GFP_KERNEL);
err = mce_init_banks();
if (err)
return err;
err = sysdev_class_register(&mce_sysclass);
if (err)
return err;
for_each_online_cpu(i) {
err = mce_create_device(i);
if (err)
return err;
}
register_hotcpu_notifier(&mce_cpu_notifier);
misc_register(&mce_log_device);
return err;
}
device_initcall(mce_init_device);
#else /* CONFIG_X86_OLD_MCE: */
int nr_mce_banks;
EXPORT_SYMBOL_GPL(nr_mce_banks); /* non-fatal.o */
/* This has to be run for each processor */
void mcheck_init(struct cpuinfo_x86 *c)
{
if (mce_disabled == 1)
return;
switch (c->x86_vendor) {
case X86_VENDOR_AMD:
amd_mcheck_init(c);
break;
case X86_VENDOR_INTEL:
if (c->x86 == 5)
intel_p5_mcheck_init(c);
if (c->x86 == 6)
intel_p6_mcheck_init(c);
if (c->x86 == 15)
intel_p4_mcheck_init(c);
break;
case X86_VENDOR_CENTAUR:
if (c->x86 == 5)
winchip_mcheck_init(c);
break;
default:
break;
}
printk(KERN_INFO "mce: CPU supports %d MCE banks\n", nr_mce_banks);
}
static int __init mcheck_enable(char *str)
{
mce_disabled = -1;
return 1;
}
__setup("mce", mcheck_enable);
#endif /* CONFIG_X86_OLD_MCE */
/*
* Old style boot options parsing. Only for compatibility.
*/
static int __init mcheck_disable(char *str)
{
mce_disabled = 1;
return 1;
}
__setup("nomce", mcheck_disable);