summaryrefslogblamecommitdiff
path: root/arch/tile/kernel/unaligned.c
blob: d075f92ccee04eb5e89e7acab9b38b0558521d66 (plain) (tree)
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372


























                                                                        
                                   




























































































































































                                                                             
                           




































































































































































































































































































































































                                                                              

                                                                     















                                                                           
                                                                               

























































































































































































































































































































































































































                                                                                
                                                                                             













                                                                             
                                                                      































































































































































































































































































































































































                                                                                
                                                                                                    







                                                                     

                                                                            



















                                                                             
                                                                                














































                                                                              
                                                      


































                                                                           
                                                                                 


                                                                              



                                                                            
                         







                                                                           
                 
                          













                                                                 
                                                                 







                                                                                
                          















                                                                               
                          
































                                                                              
                                                                       
                                  




                                                                
                                                                               





                                                                     


                                   


                       
/*
 * Copyright 2013 Tilera Corporation. All Rights Reserved.
 *
 *   This program is free software; you can redistribute it and/or
 *   modify it under the terms of the GNU General Public License
 *   as published by the Free Software Foundation, version 2.
 *
 *   This program is distributed in the hope that it will be useful, but
 *   WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
 *   NON INFRINGEMENT.  See the GNU General Public License for
 *   more details.
 *
 * A code-rewriter that handles unaligned exception.
 */

#include <linux/smp.h>
#include <linux/ptrace.h>
#include <linux/slab.h>
#include <linux/thread_info.h>
#include <linux/uaccess.h>
#include <linux/mman.h>
#include <linux/types.h>
#include <linux/err.h>
#include <linux/module.h>
#include <linux/compat.h>
#include <linux/prctl.h>
#include <linux/context_tracking.h>
#include <asm/cacheflush.h>
#include <asm/traps.h>
#include <asm/uaccess.h>
#include <asm/unaligned.h>
#include <arch/abi.h>
#include <arch/spr_def.h>
#include <arch/opcode.h>


/*
 * This file handles unaligned exception for tile-Gx. The tilepro's unaligned
 * exception is supported out of single_step.c
 */

int unaligned_printk;

static int __init setup_unaligned_printk(char *str)
{
	long val;
	if (kstrtol(str, 0, &val) != 0)
		return 0;
	unaligned_printk = val;
	pr_info("Printk for each unaligned data accesses is %s\n",
		unaligned_printk ? "enabled" : "disabled");
	return 1;
}
__setup("unaligned_printk=", setup_unaligned_printk);

unsigned int unaligned_fixup_count;

#ifdef __tilegx__

/*
 * Unalign data jit fixup code fragement. Reserved space is 128 bytes.
 * The 1st 64-bit word saves fault PC address, 2nd word is the fault
 * instruction bundle followed by 14 JIT bundles.
 */

struct unaligned_jit_fragment {
	unsigned long       pc;
	tilegx_bundle_bits  bundle;
	tilegx_bundle_bits  insn[14];
};

/*
 * Check if a nop or fnop at bundle's pipeline X0.
 */

static bool is_bundle_x0_nop(tilegx_bundle_bits bundle)
{
	return (((get_UnaryOpcodeExtension_X0(bundle) ==
		  NOP_UNARY_OPCODE_X0) &&
		 (get_RRROpcodeExtension_X0(bundle) ==
		  UNARY_RRR_0_OPCODE_X0) &&
		 (get_Opcode_X0(bundle) ==
		  RRR_0_OPCODE_X0)) ||
		((get_UnaryOpcodeExtension_X0(bundle) ==
		  FNOP_UNARY_OPCODE_X0) &&
		 (get_RRROpcodeExtension_X0(bundle) ==
		  UNARY_RRR_0_OPCODE_X0) &&
		 (get_Opcode_X0(bundle) ==
		  RRR_0_OPCODE_X0)));
}

/*
 * Check if nop or fnop at bundle's pipeline X1.
 */

static bool is_bundle_x1_nop(tilegx_bundle_bits bundle)
{
	return (((get_UnaryOpcodeExtension_X1(bundle) ==
		  NOP_UNARY_OPCODE_X1) &&
		 (get_RRROpcodeExtension_X1(bundle) ==
		  UNARY_RRR_0_OPCODE_X1) &&
		 (get_Opcode_X1(bundle) ==
		  RRR_0_OPCODE_X1)) ||
		((get_UnaryOpcodeExtension_X1(bundle) ==
		  FNOP_UNARY_OPCODE_X1) &&
		 (get_RRROpcodeExtension_X1(bundle) ==
		  UNARY_RRR_0_OPCODE_X1) &&
		 (get_Opcode_X1(bundle) ==
		  RRR_0_OPCODE_X1)));
}

/*
 * Check if nop or fnop at bundle's Y0 pipeline.
 */

static bool is_bundle_y0_nop(tilegx_bundle_bits bundle)
{
	return (((get_UnaryOpcodeExtension_Y0(bundle) ==
		  NOP_UNARY_OPCODE_Y0) &&
		 (get_RRROpcodeExtension_Y0(bundle) ==
		  UNARY_RRR_1_OPCODE_Y0) &&
		 (get_Opcode_Y0(bundle) ==
		  RRR_1_OPCODE_Y0)) ||
		((get_UnaryOpcodeExtension_Y0(bundle) ==
		  FNOP_UNARY_OPCODE_Y0) &&
		 (get_RRROpcodeExtension_Y0(bundle) ==
		  UNARY_RRR_1_OPCODE_Y0) &&
		 (get_Opcode_Y0(bundle) ==
		  RRR_1_OPCODE_Y0)));
}

/*
 * Check if nop or fnop at bundle's pipeline Y1.
 */

static bool is_bundle_y1_nop(tilegx_bundle_bits bundle)
{
	return (((get_UnaryOpcodeExtension_Y1(bundle) ==
		  NOP_UNARY_OPCODE_Y1) &&
		 (get_RRROpcodeExtension_Y1(bundle) ==
		  UNARY_RRR_1_OPCODE_Y1) &&
		 (get_Opcode_Y1(bundle) ==
		  RRR_1_OPCODE_Y1)) ||
		((get_UnaryOpcodeExtension_Y1(bundle) ==
		  FNOP_UNARY_OPCODE_Y1) &&
		 (get_RRROpcodeExtension_Y1(bundle) ==
		  UNARY_RRR_1_OPCODE_Y1) &&
		 (get_Opcode_Y1(bundle) ==
		  RRR_1_OPCODE_Y1)));
}

/*
 * Test if a bundle's y0 and y1 pipelines are both nop or fnop.
 */

static bool is_y0_y1_nop(tilegx_bundle_bits bundle)
{
	return is_bundle_y0_nop(bundle) && is_bundle_y1_nop(bundle);
}

/*
 * Test if a bundle's x0 and x1 pipelines are both nop or fnop.
 */

static bool is_x0_x1_nop(tilegx_bundle_bits bundle)
{
	return is_bundle_x0_nop(bundle) && is_bundle_x1_nop(bundle);
}

/*
 * Find the destination, source registers of fault unalign access instruction
 * at X1 or Y2. Also, allocate up to 3 scratch registers clob1, clob2 and
 * clob3, which are guaranteed different from any register used in the fault
 * bundle. r_alias is used to return if the other instructions other than the
 * unalign load/store shares same register with ra, rb and rd.
 */

static void find_regs(tilegx_bundle_bits bundle, uint64_t *rd, uint64_t *ra,
		      uint64_t *rb, uint64_t *clob1, uint64_t *clob2,
		      uint64_t *clob3, bool *r_alias)
{
	int i;
	uint64_t reg;
	uint64_t reg_map = 0, alias_reg_map = 0, map;
	bool alias = false;

	/*
	 * Parse fault bundle, find potential used registers and mark
	 * corresponding bits in reg_map and alias_map. These 2 bit maps
	 * are used to find the scratch registers and determine if there
	 * is register alais.
	 */
	if (bundle & TILEGX_BUNDLE_MODE_MASK) {  /* Y Mode Bundle. */

		reg = get_SrcA_Y2(bundle);
		reg_map |= 1ULL << reg;
		*ra = reg;
		reg = get_SrcBDest_Y2(bundle);
		reg_map |= 1ULL << reg;

		if (rd) {
			/* Load. */
			*rd = reg;
			alias_reg_map = (1ULL << *rd) | (1ULL << *ra);
		} else {
			/* Store. */
			*rb = reg;
			alias_reg_map = (1ULL << *ra) | (1ULL << *rb);
		}

		if (!is_bundle_y1_nop(bundle)) {
			reg = get_SrcA_Y1(bundle);
			reg_map |= (1ULL << reg);
			map = (1ULL << reg);

			reg = get_SrcB_Y1(bundle);
			reg_map |= (1ULL << reg);
			map |= (1ULL << reg);

			reg = get_Dest_Y1(bundle);
			reg_map |= (1ULL << reg);
			map |= (1ULL << reg);

			if (map & alias_reg_map)
				alias = true;
		}

		if (!is_bundle_y0_nop(bundle)) {
			reg = get_SrcA_Y0(bundle);
			reg_map |= (1ULL << reg);
			map = (1ULL << reg);

			reg = get_SrcB_Y0(bundle);
			reg_map |= (1ULL << reg);
			map |= (1ULL << reg);

			reg = get_Dest_Y0(bundle);
			reg_map |= (1ULL << reg);
			map |= (1ULL << reg);

			if (map & alias_reg_map)
				alias = true;
		}
	} else	{ /* X Mode Bundle. */

		reg = get_SrcA_X1(bundle);
		reg_map |= (1ULL << reg);
		*ra = reg;
		if (rd)	{
			/* Load. */
			reg = get_Dest_X1(bundle);
			reg_map |= (1ULL << reg);
			*rd = reg;
			alias_reg_map = (1ULL << *rd) | (1ULL << *ra);
		} else {
			/* Store. */
			reg = get_SrcB_X1(bundle);
			reg_map |= (1ULL << reg);
			*rb = reg;
			alias_reg_map = (1ULL << *ra) | (1ULL << *rb);
		}

		if (!is_bundle_x0_nop(bundle)) {
			reg = get_SrcA_X0(bundle);
			reg_map |= (1ULL << reg);
			map = (1ULL << reg);

			reg = get_SrcB_X0(bundle);
			reg_map |= (1ULL << reg);
			map |= (1ULL << reg);

			reg = get_Dest_X0(bundle);
			reg_map |= (1ULL << reg);
			map |= (1ULL << reg);

			if (map & alias_reg_map)
				alias = true;
		}
	}

	/*
	 * "alias" indicates if the unalign access registers have collision
	 * with others in the same bundle. We jsut simply test all register
	 * operands case (RRR), ignored the case with immidate. If a bundle
	 * has no register alias, we may do fixup in a simple or fast manner.
	 * So if an immidata field happens to hit with a register, we may end
	 * up fall back to the generic handling.
	 */

	*r_alias = alias;

	/* Flip bits on reg_map. */
	reg_map ^= -1ULL;

	/* Scan reg_map lower 54(TREG_SP) bits to find 3 set bits. */
	for (i = 0; i < TREG_SP; i++) {
		if (reg_map & (0x1ULL << i)) {
			if (*clob1 == -1) {
				*clob1 = i;
			} else if (*clob2 == -1) {
				*clob2 = i;
			} else if (*clob3 == -1) {
				*clob3 = i;
				return;
			}
		}
	}
}

/*
 * Sanity check for register ra, rb, rd, clob1/2/3. Return true if any of them
 * is unexpected.
 */

static bool check_regs(uint64_t rd, uint64_t ra, uint64_t rb,
		       uint64_t clob1, uint64_t clob2,  uint64_t clob3)
{
	bool unexpected = false;
	if ((ra >= 56) && (ra != TREG_ZERO))
		unexpected = true;

	if ((clob1 >= 56) || (clob2 >= 56) || (clob3 >= 56))
		unexpected = true;

	if (rd != -1) {
		if ((rd >= 56) && (rd != TREG_ZERO))
			unexpected = true;
	} else {
		if ((rb >= 56) && (rb != TREG_ZERO))
			unexpected = true;
	}
	return unexpected;
}


#define  GX_INSN_X0_MASK   ((1ULL << 31) - 1)
#define  GX_INSN_X1_MASK   (((1ULL << 31) - 1) << 31)
#define  GX_INSN_Y0_MASK   ((0xFULL << 27) | (0xFFFFFULL))
#define  GX_INSN_Y1_MASK   (GX_INSN_Y0_MASK << 31)
#define  GX_INSN_Y2_MASK   ((0x7FULL << 51) | (0x7FULL << 20))

#ifdef __LITTLE_ENDIAN
#define  GX_INSN_BSWAP(_bundle_)    (_bundle_)
#else
#define  GX_INSN_BSWAP(_bundle_)    swab64(_bundle_)
#endif /* __LITTLE_ENDIAN */

/*
 * __JIT_CODE(.) creates template bundles in .rodata.unalign_data section.
 * The corresponding static function jix_x#_###(.) generates partial or
 * whole bundle based on the template and given arguments.
 */

#define __JIT_CODE(_X_)						\
	asm (".pushsection .rodata.unalign_data, \"a\"\n"	\
	     _X_"\n"						\
	     ".popsection\n")

__JIT_CODE("__unalign_jit_x1_mtspr:   {mtspr 0,  r0}");
static tilegx_bundle_bits jit_x1_mtspr(int spr, int reg)
{
	extern  tilegx_bundle_bits __unalign_jit_x1_mtspr;
	return (GX_INSN_BSWAP(__unalign_jit_x1_mtspr) & GX_INSN_X1_MASK) |
		create_MT_Imm14_X1(spr) | create_SrcA_X1(reg);
}

__JIT_CODE("__unalign_jit_x1_mfspr:   {mfspr r0, 0}");
static tilegx_bundle_bits  jit_x1_mfspr(int reg, int spr)
{
	extern  tilegx_bundle_bits __unalign_jit_x1_mfspr;
	return (GX_INSN_BSWAP(__unalign_jit_x1_mfspr) & GX_INSN_X1_MASK) |
		create_MF_Imm14_X1(spr) | create_Dest_X1(reg);
}

__JIT_CODE("__unalign_jit_x0_addi:   {addi  r0, r0, 0; iret}");
static tilegx_bundle_bits  jit_x0_addi(int rd, int ra, int imm8)
{
	extern  tilegx_bundle_bits __unalign_jit_x0_addi;
	return (GX_INSN_BSWAP(__unalign_jit_x0_addi) & GX_INSN_X0_MASK) |
		create_Dest_X0(rd) | create_SrcA_X0(ra) |
		create_Imm8_X0(imm8);
}

__JIT_CODE("__unalign_jit_x1_ldna:   {ldna  r0, r0}");
static tilegx_bundle_bits  jit_x1_ldna(int rd, int ra)
{
	extern  tilegx_bundle_bits __unalign_jit_x1_ldna;
	return (GX_INSN_BSWAP(__unalign_jit_x1_ldna) &  GX_INSN_X1_MASK) |
		create_Dest_X1(rd) | create_SrcA_X1(ra);
}

__JIT_CODE("__unalign_jit_x0_dblalign:   {dblalign r0, r0 ,r0}");
static tilegx_bundle_bits  jit_x0_dblalign(int rd, int ra, int rb)
{
	extern  tilegx_bundle_bits __unalign_jit_x0_dblalign;
	return (GX_INSN_BSWAP(__unalign_jit_x0_dblalign) & GX_INSN_X0_MASK) |
		create_Dest_X0(rd) | create_SrcA_X0(ra) |
		create_SrcB_X0(rb);
}

__JIT_CODE("__unalign_jit_x1_iret:   {iret}");
static tilegx_bundle_bits  jit_x1_iret(void)
{
	extern  tilegx_bundle_bits __unalign_jit_x1_iret;
	return GX_INSN_BSWAP(__unalign_jit_x1_iret) & GX_INSN_X1_MASK;
}

__JIT_CODE("__unalign_jit_x01_fnop:   {fnop;fnop}");
static tilegx_bundle_bits  jit_x0_fnop(void)
{
	extern  tilegx_bundle_bits __unalign_jit_x01_fnop;
	return GX_INSN_BSWAP(__unalign_jit_x01_fnop) & GX_INSN_X0_MASK;
}

static tilegx_bundle_bits  jit_x1_fnop(void)
{
	extern  tilegx_bundle_bits __unalign_jit_x01_fnop;
	return GX_INSN_BSWAP(__unalign_jit_x01_fnop) & GX_INSN_X1_MASK;
}

__JIT_CODE("__unalign_jit_y2_dummy:   {fnop; fnop; ld zero, sp}");
static tilegx_bundle_bits  jit_y2_dummy(void)
{
	extern  tilegx_bundle_bits __unalign_jit_y2_dummy;
	return GX_INSN_BSWAP(__unalign_jit_y2_dummy) & GX_INSN_Y2_MASK;
}

static tilegx_bundle_bits  jit_y1_fnop(void)
{
	extern  tilegx_bundle_bits __unalign_jit_y2_dummy;
	return GX_INSN_BSWAP(__unalign_jit_y2_dummy) & GX_INSN_Y1_MASK;
}

__JIT_CODE("__unalign_jit_x1_st1_add:  {st1_add r1, r0, 0}");
static tilegx_bundle_bits  jit_x1_st1_add(int ra, int rb, int imm8)
{
	extern  tilegx_bundle_bits __unalign_jit_x1_st1_add;
	return (GX_INSN_BSWAP(__unalign_jit_x1_st1_add) &
		(~create_SrcA_X1(-1)) &
		GX_INSN_X1_MASK) | create_SrcA_X1(ra) |
		create_SrcB_X1(rb) | create_Dest_Imm8_X1(imm8);
}

__JIT_CODE("__unalign_jit_x1_st:  {crc32_8 r1, r0, r0; st  r0, r0}");
static tilegx_bundle_bits  jit_x1_st(int ra, int rb)
{
	extern  tilegx_bundle_bits __unalign_jit_x1_st;
	return (GX_INSN_BSWAP(__unalign_jit_x1_st) & GX_INSN_X1_MASK) |
		create_SrcA_X1(ra) | create_SrcB_X1(rb);
}

__JIT_CODE("__unalign_jit_x1_st_add:  {st_add  r1, r0, 0}");
static tilegx_bundle_bits  jit_x1_st_add(int ra, int rb, int imm8)
{
	extern  tilegx_bundle_bits __unalign_jit_x1_st_add;
	return (GX_INSN_BSWAP(__unalign_jit_x1_st_add) &
		(~create_SrcA_X1(-1)) &
		GX_INSN_X1_MASK) | create_SrcA_X1(ra) |
		create_SrcB_X1(rb) | create_Dest_Imm8_X1(imm8);
}

__JIT_CODE("__unalign_jit_x1_ld:  {crc32_8 r1, r0, r0; ld  r0, r0}");
static tilegx_bundle_bits  jit_x1_ld(int rd, int ra)
{
	extern  tilegx_bundle_bits __unalign_jit_x1_ld;
	return (GX_INSN_BSWAP(__unalign_jit_x1_ld) & GX_INSN_X1_MASK) |
		create_Dest_X1(rd) | create_SrcA_X1(ra);
}

__JIT_CODE("__unalign_jit_x1_ld_add:  {ld_add  r1, r0, 0}");
static tilegx_bundle_bits  jit_x1_ld_add(int rd, int ra, int imm8)
{
	extern  tilegx_bundle_bits __unalign_jit_x1_ld_add;
	return (GX_INSN_BSWAP(__unalign_jit_x1_ld_add) &
		(~create_Dest_X1(-1)) &
		GX_INSN_X1_MASK) | create_Dest_X1(rd) |
		create_SrcA_X1(ra) | create_Imm8_X1(imm8);
}

__JIT_CODE("__unalign_jit_x0_bfexts:  {bfexts r0, r0, 0, 0}");
static tilegx_bundle_bits  jit_x0_bfexts(int rd, int ra, int bfs, int bfe)
{
	extern  tilegx_bundle_bits __unalign_jit_x0_bfexts;
	return (GX_INSN_BSWAP(__unalign_jit_x0_bfexts) &
		GX_INSN_X0_MASK) |
		create_Dest_X0(rd) | create_SrcA_X0(ra) |
		create_BFStart_X0(bfs) | create_BFEnd_X0(bfe);
}

__JIT_CODE("__unalign_jit_x0_bfextu:  {bfextu r0, r0, 0, 0}");
static tilegx_bundle_bits  jit_x0_bfextu(int rd, int ra, int bfs, int bfe)
{
	extern  tilegx_bundle_bits __unalign_jit_x0_bfextu;
	return (GX_INSN_BSWAP(__unalign_jit_x0_bfextu) &
		GX_INSN_X0_MASK) |
		create_Dest_X0(rd) | create_SrcA_X0(ra) |
		create_BFStart_X0(bfs) | create_BFEnd_X0(bfe);
}

__JIT_CODE("__unalign_jit_x1_addi:  {bfextu r1, r1, 0, 0; addi r0, r0, 0}");
static tilegx_bundle_bits  jit_x1_addi(int rd, int ra, int imm8)
{
	extern  tilegx_bundle_bits __unalign_jit_x1_addi;
	return (GX_INSN_BSWAP(__unalign_jit_x1_addi) & GX_INSN_X1_MASK) |
		create_Dest_X1(rd) | create_SrcA_X1(ra) |
		create_Imm8_X1(imm8);
}

__JIT_CODE("__unalign_jit_x0_shrui:  {shrui r0, r0, 0; iret}");
static tilegx_bundle_bits  jit_x0_shrui(int rd, int ra, int imm6)
{
	extern  tilegx_bundle_bits __unalign_jit_x0_shrui;
	return (GX_INSN_BSWAP(__unalign_jit_x0_shrui) &
		GX_INSN_X0_MASK) |
		create_Dest_X0(rd) | create_SrcA_X0(ra) |
		create_ShAmt_X0(imm6);
}

__JIT_CODE("__unalign_jit_x0_rotli:  {rotli r0, r0, 0; iret}");
static tilegx_bundle_bits  jit_x0_rotli(int rd, int ra, int imm6)
{
	extern  tilegx_bundle_bits __unalign_jit_x0_rotli;
	return (GX_INSN_BSWAP(__unalign_jit_x0_rotli) &
		GX_INSN_X0_MASK) |
		create_Dest_X0(rd) | create_SrcA_X0(ra) |
		create_ShAmt_X0(imm6);
}

__JIT_CODE("__unalign_jit_x1_bnezt:  {bnezt r0, __unalign_jit_x1_bnezt}");
static tilegx_bundle_bits  jit_x1_bnezt(int ra, int broff)
{
	extern  tilegx_bundle_bits __unalign_jit_x1_bnezt;
	return (GX_INSN_BSWAP(__unalign_jit_x1_bnezt) &
		GX_INSN_X1_MASK) |
		create_SrcA_X1(ra) | create_BrOff_X1(broff);
}

#undef __JIT_CODE

/*
 * This function generates unalign fixup JIT.
 *
 * We first find unalign load/store instruction's destination, source
 * registers: ra, rb and rd. and 3 scratch registers by calling
 * find_regs(...). 3 scratch clobbers should not alias with any register
 * used in the fault bundle. Then analyze the fault bundle to determine
 * if it's a load or store, operand width, branch or address increment etc.
 * At last generated JIT is copied into JIT code area in user space.
 */

static
void jit_bundle_gen(struct pt_regs *regs, tilegx_bundle_bits bundle,
		    int align_ctl)
{
	struct thread_info *info = current_thread_info();
	struct unaligned_jit_fragment frag;
	struct unaligned_jit_fragment *jit_code_area;
	tilegx_bundle_bits bundle_2 = 0;
	/* If bundle_2_enable = false, bundle_2 is fnop/nop operation. */
	bool     bundle_2_enable = true;
	uint64_t ra = -1, rb = -1, rd = -1, clob1 = -1, clob2 = -1, clob3 = -1;
	/*
	 * Indicate if the unalign access
	 * instruction's registers hit with
	 * others in the same bundle.
	 */
	bool     alias = false;
	bool     load_n_store = true;
	bool     load_store_signed = false;
	unsigned int  load_store_size = 8;
	bool     y1_br = false;  /* True, for a branch in same bundle at Y1.*/
	int      y1_br_reg = 0;
	/* True for link operation. i.e. jalr or lnk at Y1 */
	bool     y1_lr = false;
	int      y1_lr_reg = 0;
	bool     x1_add = false;/* True, for load/store ADD instruction at X1*/
	int      x1_add_imm8 = 0;
	bool     unexpected = false;
	int      n = 0, k;

	jit_code_area =
		(struct unaligned_jit_fragment *)(info->unalign_jit_base);

	memset((void *)&frag, 0, sizeof(frag));

	/* 0: X mode, Otherwise: Y mode. */
	if (bundle & TILEGX_BUNDLE_MODE_MASK) {
		unsigned int mod, opcode;

		if (get_Opcode_Y1(bundle) == RRR_1_OPCODE_Y1 &&
		    get_RRROpcodeExtension_Y1(bundle) ==
		    UNARY_RRR_1_OPCODE_Y1) {

			opcode = get_UnaryOpcodeExtension_Y1(bundle);

			/*
			 * Test "jalr", "jalrp", "jr", "jrp" instruction at Y1
			 * pipeline.
			 */
			switch (opcode) {
			case JALR_UNARY_OPCODE_Y1:
			case JALRP_UNARY_OPCODE_Y1:
				y1_lr = true;
				y1_lr_reg = 55; /* Link register. */
				/* FALLTHROUGH */
			case JR_UNARY_OPCODE_Y1:
			case JRP_UNARY_OPCODE_Y1:
				y1_br = true;
				y1_br_reg = get_SrcA_Y1(bundle);
				break;
			case LNK_UNARY_OPCODE_Y1:
				/* "lnk" at Y1 pipeline. */
				y1_lr = true;
				y1_lr_reg = get_Dest_Y1(bundle);
				break;
			}
		}

		opcode = get_Opcode_Y2(bundle);
		mod = get_Mode(bundle);

		/*
		 *  bundle_2 is bundle after making Y2 as a dummy operation
		 *  - ld zero, sp
		 */
		bundle_2 = (bundle & (~GX_INSN_Y2_MASK)) | jit_y2_dummy();

		/* Make Y1 as fnop if Y1 is a branch or lnk operation. */
		if (y1_br || y1_lr) {
			bundle_2 &= ~(GX_INSN_Y1_MASK);
			bundle_2 |= jit_y1_fnop();
		}

		if (is_y0_y1_nop(bundle_2))
			bundle_2_enable = false;

		if (mod == MODE_OPCODE_YC2) {
			/* Store. */
			load_n_store = false;
			load_store_size = 1 << opcode;
			load_store_signed = false;
			find_regs(bundle, 0, &ra, &rb, &clob1, &clob2,
				  &clob3, &alias);
			if (load_store_size > 8)
				unexpected = true;
		} else {
			/* Load. */
			load_n_store = true;
			if (mod == MODE_OPCODE_YB2) {
				switch (opcode) {
				case LD_OPCODE_Y2:
					load_store_signed = false;
					load_store_size = 8;
					break;
				case LD4S_OPCODE_Y2:
					load_store_signed = true;
					load_store_size = 4;
					break;
				case LD4U_OPCODE_Y2:
					load_store_signed = false;
					load_store_size = 4;
					break;
				default:
					unexpected = true;
				}
			} else if (mod == MODE_OPCODE_YA2) {
				if (opcode == LD2S_OPCODE_Y2) {
					load_store_signed = true;
					load_store_size = 2;
				} else if (opcode == LD2U_OPCODE_Y2) {
					load_store_signed = false;
					load_store_size = 2;
				} else
					unexpected = true;
			} else
				unexpected = true;
			find_regs(bundle, &rd, &ra, &rb, &clob1, &clob2,
				  &clob3, &alias);
		}
	} else {
		unsigned int opcode;

		/* bundle_2 is bundle after making X1 as "fnop". */
		bundle_2 = (bundle & (~GX_INSN_X1_MASK)) | jit_x1_fnop();

		if (is_x0_x1_nop(bundle_2))
			bundle_2_enable = false;

		if (get_Opcode_X1(bundle) == RRR_0_OPCODE_X1) {
			opcode = get_UnaryOpcodeExtension_X1(bundle);

			if (get_RRROpcodeExtension_X1(bundle) ==
			    UNARY_RRR_0_OPCODE_X1) {
				load_n_store = true;
				find_regs(bundle, &rd, &ra, &rb, &clob1,
					  &clob2, &clob3, &alias);

				switch (opcode) {
				case LD_UNARY_OPCODE_X1:
					load_store_signed = false;
					load_store_size = 8;
					break;
				case LD4S_UNARY_OPCODE_X1:
					load_store_signed = true;
					/* FALLTHROUGH */
				case LD4U_UNARY_OPCODE_X1:
					load_store_size = 4;
					break;

				case LD2S_UNARY_OPCODE_X1:
					load_store_signed = true;
					/* FALLTHROUGH */
				case LD2U_UNARY_OPCODE_X1:
					load_store_size = 2;
					break;
				default:
					unexpected = true;
				}
			} else {
				load_n_store = false;
				load_store_signed = false;
				find_regs(bundle, 0, &ra, &rb,
					  &clob1, &clob2, &clob3,
					  &alias);

				opcode = get_RRROpcodeExtension_X1(bundle);
				switch (opcode)	{
				case ST_RRR_0_OPCODE_X1:
					load_store_size = 8;
					break;
				case ST4_RRR_0_OPCODE_X1:
					load_store_size = 4;
					break;
				case ST2_RRR_0_OPCODE_X1:
					load_store_size = 2;
					break;
				default:
					unexpected = true;
				}
			}
		} else if (get_Opcode_X1(bundle) == IMM8_OPCODE_X1) {
			load_n_store = true;
			opcode = get_Imm8OpcodeExtension_X1(bundle);
			switch (opcode)	{
			case LD_ADD_IMM8_OPCODE_X1:
				load_store_size = 8;
				break;

			case LD4S_ADD_IMM8_OPCODE_X1:
				load_store_signed = true;
				/* FALLTHROUGH */
			case LD4U_ADD_IMM8_OPCODE_X1:
				load_store_size = 4;
				break;

			case LD2S_ADD_IMM8_OPCODE_X1:
				load_store_signed = true;
				/* FALLTHROUGH */
			case LD2U_ADD_IMM8_OPCODE_X1:
				load_store_size = 2;
				break;

			case ST_ADD_IMM8_OPCODE_X1:
				load_n_store = false;
				load_store_size = 8;
				break;
			case ST4_ADD_IMM8_OPCODE_X1:
				load_n_store = false;
				load_store_size = 4;
				break;
			case ST2_ADD_IMM8_OPCODE_X1:
				load_n_store = false;
				load_store_size = 2;
				break;
			default:
				unexpected = true;
			}

			if (!unexpected) {
				x1_add = true;
				if (load_n_store)
					x1_add_imm8 = get_Imm8_X1(bundle);
				else
					x1_add_imm8 = get_Dest_Imm8_X1(bundle);
			}

			find_regs(bundle, load_n_store ? (&rd) : NULL,
				  &ra, &rb, &clob1, &clob2, &clob3, &alias);
		} else
			unexpected = true;
	}

	/*
	 * Some sanity check for register numbers extracted from fault bundle.
	 */
	if (check_regs(rd, ra, rb, clob1, clob2, clob3) == true)
		unexpected = true;

	/* Give warning if register ra has an aligned address. */
	if (!unexpected)
		WARN_ON(!((load_store_size - 1) & (regs->regs[ra])));


	/*
	 * Fault came from kernel space, here we only need take care of
	 * unaligned "get_user/put_user" macros defined in "uaccess.h".
	 * Basically, we will handle bundle like this:
	 * {ld/2u/4s rd, ra; movei rx, 0} or {st/2/4 ra, rb; movei rx, 0}
	 * (Refer to file "arch/tile/include/asm/uaccess.h" for details).
	 * For either load or store, byte-wise operation is performed by calling
	 * get_user() or put_user(). If the macro returns non-zero value,
	 * set the value to rx, otherwise set zero to rx. Finally make pc point
	 * to next bundle and return.
	 */

	if (EX1_PL(regs->ex1) != USER_PL) {

		unsigned long rx = 0;
		unsigned long x = 0, ret = 0;

		if (y1_br || y1_lr || x1_add ||
		    (load_store_signed !=
		     (load_n_store && load_store_size == 4))) {
			/* No branch, link, wrong sign-ext or load/store add. */
			unexpected = true;
		} else if (!unexpected) {
			if (bundle & TILEGX_BUNDLE_MODE_MASK) {
				/*
				 * Fault bundle is Y mode.
				 * Check if the Y1 and Y0 is the form of
				 * { movei rx, 0; nop/fnop }, if yes,
				 * find the rx.
				 */

				if ((get_Opcode_Y1(bundle) == ADDI_OPCODE_Y1)
				    && (get_SrcA_Y1(bundle) == TREG_ZERO) &&
				    (get_Imm8_Y1(bundle) == 0) &&
				    is_bundle_y0_nop(bundle)) {
					rx = get_Dest_Y1(bundle);
				} else if ((get_Opcode_Y0(bundle) ==
					    ADDI_OPCODE_Y0) &&
					   (get_SrcA_Y0(bundle) == TREG_ZERO) &&
					   (get_Imm8_Y0(bundle) == 0) &&
					   is_bundle_y1_nop(bundle)) {
					rx = get_Dest_Y0(bundle);
				} else {
					unexpected = true;
				}
			} else {
				/*
				 * Fault bundle is X mode.
				 * Check if the X0 is 'movei rx, 0',
				 * if yes, find the rx.
				 */

				if ((get_Opcode_X0(bundle) == IMM8_OPCODE_X0)
				    && (get_Imm8OpcodeExtension_X0(bundle) ==
					ADDI_IMM8_OPCODE_X0) &&
				    (get_SrcA_X0(bundle) == TREG_ZERO) &&
				    (get_Imm8_X0(bundle) == 0)) {
					rx = get_Dest_X0(bundle);
				} else {
					unexpected = true;
				}
			}

			/* rx should be less than 56. */
			if (!unexpected && (rx >= 56))
				unexpected = true;
		}

		if (!search_exception_tables(regs->pc)) {
			/* No fixup in the exception tables for the pc. */
			unexpected = true;
		}

		if (unexpected) {
			/* Unexpected unalign kernel fault. */
			struct task_struct *tsk = validate_current();

			bust_spinlocks(1);

			show_regs(regs);

			if (unlikely(tsk->pid < 2)) {
				panic("Kernel unalign fault running %s!",
				      tsk->pid ? "init" : "the idle task");
			}
#ifdef SUPPORT_DIE
			die("Oops", regs);
#endif
			bust_spinlocks(1);

			do_group_exit(SIGKILL);

		} else {
			unsigned long i, b = 0;
			unsigned char *ptr =
				(unsigned char *)regs->regs[ra];
			if (load_n_store) {
				/* handle get_user(x, ptr) */
				for (i = 0; i < load_store_size; i++) {
					ret = get_user(b, ptr++);
					if (!ret) {
						/* Success! update x. */
#ifdef __LITTLE_ENDIAN
						x |= (b << (8 * i));
#else
						x <<= 8;
						x |= b;
#endif /* __LITTLE_ENDIAN */
					} else {
						x = 0;
						break;
					}
				}

				/* Sign-extend 4-byte loads. */
				if (load_store_size == 4)
					x = (long)(int)x;

				/* Set register rd. */
				regs->regs[rd] = x;

				/* Set register rx. */
				regs->regs[rx] = ret;

				/* Bump pc. */
				regs->pc += 8;

			} else {
				/* Handle put_user(x, ptr) */
				x = regs->regs[rb];
#ifdef __LITTLE_ENDIAN
				b = x;
#else
				/*
				 * Swap x in order to store x from low
				 * to high memory same as the
				 * little-endian case.
				 */
				switch (load_store_size) {
				case 8:
					b = swab64(x);
					break;
				case 4:
					b = swab32(x);
					break;
				case 2:
					b = swab16(x);
					break;
				}
#endif /* __LITTLE_ENDIAN */
				for (i = 0; i < load_store_size; i++) {
					ret = put_user(b, ptr++);
					if (ret)
						break;
					/* Success! shift 1 byte. */
					b >>= 8;
				}
				/* Set register rx. */
				regs->regs[rx] = ret;

				/* Bump pc. */
				regs->pc += 8;
			}
		}

		unaligned_fixup_count++;

		if (unaligned_printk) {
			pr_info("%s/%d - Unalign fixup for kernel access to userspace %lx\n",
				current->comm, current->pid, regs->regs[ra]);
		}

		/* Done! Return to the exception handler. */
		return;
	}

	if ((align_ctl == 0) || unexpected) {
		siginfo_t info = {
			.si_signo = SIGBUS,
			.si_code = BUS_ADRALN,
			.si_addr = (unsigned char __user *)0
		};
		if (unaligned_printk)
			pr_info("Unalign bundle: unexp @%llx, %llx\n",
				(unsigned long long)regs->pc,
				(unsigned long long)bundle);

		if (ra < 56) {
			unsigned long uaa = (unsigned long)regs->regs[ra];
			/* Set bus Address. */
			info.si_addr = (unsigned char __user *)uaa;
		}

		unaligned_fixup_count++;

		trace_unhandled_signal("unaligned fixup trap", regs,
				       (unsigned long)info.si_addr, SIGBUS);
		force_sig_info(info.si_signo, &info, current);
		return;
	}

#ifdef __LITTLE_ENDIAN
#define UA_FIXUP_ADDR_DELTA          1
#define UA_FIXUP_BFEXT_START(_B_)    0
#define UA_FIXUP_BFEXT_END(_B_)     (8 * (_B_) - 1)
#else /* __BIG_ENDIAN */
#define UA_FIXUP_ADDR_DELTA          -1
#define UA_FIXUP_BFEXT_START(_B_)   (64 - 8 * (_B_))
#define UA_FIXUP_BFEXT_END(_B_)      63
#endif /* __LITTLE_ENDIAN */



	if ((ra != rb) && (rd != TREG_SP) && !alias &&
	    !y1_br && !y1_lr && !x1_add) {
		/*
		 * Simple case: ra != rb and no register alias found,
		 * and no branch or link. This will be the majority.
		 * We can do a little better for simplae case than the
		 * generic scheme below.
		 */
		if (!load_n_store) {
			/*
			 * Simple store: ra != rb, no need for scratch register.
			 * Just store and rotate to right bytewise.
			 */
#ifdef __BIG_ENDIAN
			frag.insn[n++] =
				jit_x0_addi(ra, ra, load_store_size - 1) |
				jit_x1_fnop();
#endif /* __BIG_ENDIAN */
			for (k = 0; k < load_store_size; k++) {
				/* Store a byte. */
				frag.insn[n++] =
					jit_x0_rotli(rb, rb, 56) |
					jit_x1_st1_add(ra, rb,
						       UA_FIXUP_ADDR_DELTA);
			}
#ifdef __BIG_ENDIAN
			frag.insn[n] = jit_x1_addi(ra, ra, 1);
#else
			frag.insn[n] = jit_x1_addi(ra, ra,
						   -1 * load_store_size);
#endif /* __LITTLE_ENDIAN */

			if (load_store_size == 8) {
				frag.insn[n] |= jit_x0_fnop();
			} else if (load_store_size == 4) {
				frag.insn[n] |= jit_x0_rotli(rb, rb, 32);
			} else { /* = 2 */
				frag.insn[n] |= jit_x0_rotli(rb, rb, 16);
			}
			n++;
			if (bundle_2_enable)
				frag.insn[n++] = bundle_2;
			frag.insn[n++] = jit_x0_fnop() | jit_x1_iret();
		} else {
			if (rd == ra) {
				/* Use two clobber registers: clob1/2. */
				frag.insn[n++] =
					jit_x0_addi(TREG_SP, TREG_SP, -16) |
					jit_x1_fnop();
				frag.insn[n++] =
					jit_x0_addi(clob1, ra, 7) |
					jit_x1_st_add(TREG_SP, clob1, -8);
				frag.insn[n++] =
					jit_x0_addi(clob2, ra, 0) |
					jit_x1_st(TREG_SP, clob2);
				frag.insn[n++] =
					jit_x0_fnop() |
					jit_x1_ldna(rd, ra);
				frag.insn[n++] =
					jit_x0_fnop() |
					jit_x1_ldna(clob1, clob1);
				/*
				 * Note: we must make sure that rd must not
				 * be sp. Recover clob1/2 from stack.
				 */
				frag.insn[n++] =
					jit_x0_dblalign(rd, clob1, clob2) |
					jit_x1_ld_add(clob2, TREG_SP, 8);
				frag.insn[n++] =
					jit_x0_fnop() |
					jit_x1_ld_add(clob1, TREG_SP, 16);
			} else {
				/* Use one clobber register: clob1 only. */
				frag.insn[n++] =
					jit_x0_addi(TREG_SP, TREG_SP, -16) |
					jit_x1_fnop();
				frag.insn[n++] =
					jit_x0_addi(clob1, ra, 7) |
					jit_x1_st(TREG_SP, clob1);
				frag.insn[n++] =
					jit_x0_fnop() |
					jit_x1_ldna(rd, ra);
				frag.insn[n++] =
					jit_x0_fnop() |
					jit_x1_ldna(clob1, clob1);
				/*
				 * Note: we must make sure that rd must not
				 * be sp. Recover clob1 from stack.
				 */
				frag.insn[n++] =
					jit_x0_dblalign(rd, clob1, ra) |
					jit_x1_ld_add(clob1, TREG_SP, 16);
			}

			if (bundle_2_enable)
				frag.insn[n++] = bundle_2;
			/*
			 * For non 8-byte load, extract corresponding bytes and
			 * signed extension.
			 */
			if (load_store_size == 4) {
				if (load_store_signed)
					frag.insn[n++] =
						jit_x0_bfexts(
							rd, rd,
							UA_FIXUP_BFEXT_START(4),
							UA_FIXUP_BFEXT_END(4)) |
						jit_x1_fnop();
				else
					frag.insn[n++] =
						jit_x0_bfextu(
							rd, rd,
							UA_FIXUP_BFEXT_START(4),
							UA_FIXUP_BFEXT_END(4)) |
						jit_x1_fnop();
			} else if (load_store_size == 2) {
				if (load_store_signed)
					frag.insn[n++] =
						jit_x0_bfexts(
							rd, rd,
							UA_FIXUP_BFEXT_START(2),
							UA_FIXUP_BFEXT_END(2)) |
						jit_x1_fnop();
				else
					frag.insn[n++] =
						jit_x0_bfextu(
							rd, rd,
							UA_FIXUP_BFEXT_START(2),
							UA_FIXUP_BFEXT_END(2)) |
						jit_x1_fnop();
			}

			frag.insn[n++] =
				jit_x0_fnop()  |
				jit_x1_iret();
		}
	} else if (!load_n_store) {

		/*
		 * Generic memory store cases: use 3 clobber registers.
		 *
		 * Alloc space for saveing clob2,1,3 on user's stack.
		 * register clob3 points to where clob2 saved, followed by
		 * clob1 and 3 from high to low memory.
		 */
		frag.insn[n++] =
			jit_x0_addi(TREG_SP, TREG_SP, -32)    |
			jit_x1_fnop();
		frag.insn[n++] =
			jit_x0_addi(clob3, TREG_SP, 16)  |
			jit_x1_st_add(TREG_SP, clob3, 8);
#ifdef __LITTLE_ENDIAN
		frag.insn[n++] =
			jit_x0_addi(clob1, ra, 0)   |
			jit_x1_st_add(TREG_SP, clob1, 8);
#else
		frag.insn[n++] =
			jit_x0_addi(clob1, ra, load_store_size - 1)   |
			jit_x1_st_add(TREG_SP, clob1, 8);
#endif
		if (load_store_size == 8) {
			/*
			 * We save one byte a time, not for fast, but compact
			 * code. After each store, data source register shift
			 * right one byte. unchanged after 8 stores.
			 */
			frag.insn[n++] =
				jit_x0_addi(clob2, TREG_ZERO, 7)     |
				jit_x1_st_add(TREG_SP, clob2, 16);
			frag.insn[n++] =
				jit_x0_rotli(rb, rb, 56)      |
				jit_x1_st1_add(clob1, rb, UA_FIXUP_ADDR_DELTA);
			frag.insn[n++] =
				jit_x0_addi(clob2, clob2, -1) |
				jit_x1_bnezt(clob2, -1);
			frag.insn[n++] =
				jit_x0_fnop()                 |
				jit_x1_addi(clob2, y1_br_reg, 0);
		} else if (load_store_size == 4) {
			frag.insn[n++] =
				jit_x0_addi(clob2, TREG_ZERO, 3)     |
				jit_x1_st_add(TREG_SP, clob2, 16);
			frag.insn[n++] =
				jit_x0_rotli(rb, rb, 56)      |
				jit_x1_st1_add(clob1, rb, UA_FIXUP_ADDR_DELTA);
			frag.insn[n++] =
				jit_x0_addi(clob2, clob2, -1) |
				jit_x1_bnezt(clob2, -1);
			/*
			 * same as 8-byte case, but need shift another 4
			 * byte to recover rb for 4-byte store.
			 */
			frag.insn[n++] = jit_x0_rotli(rb, rb, 32)      |
				jit_x1_addi(clob2, y1_br_reg, 0);
		} else { /* =2 */
			frag.insn[n++] =
				jit_x0_addi(clob2, rb, 0)     |
				jit_x1_st_add(TREG_SP, clob2, 16);
			for (k = 0; k < 2; k++) {
				frag.insn[n++] =
					jit_x0_shrui(rb, rb, 8)  |
					jit_x1_st1_add(clob1, rb,
						       UA_FIXUP_ADDR_DELTA);
			}
			frag.insn[n++] =
				jit_x0_addi(rb, clob2, 0)       |
				jit_x1_addi(clob2, y1_br_reg, 0);
		}

		if (bundle_2_enable)
			frag.insn[n++] = bundle_2;

		if (y1_lr) {
			frag.insn[n++] =
				jit_x0_fnop()                    |
				jit_x1_mfspr(y1_lr_reg,
					     SPR_EX_CONTEXT_0_0);
		}
		if (y1_br) {
			frag.insn[n++] =
				jit_x0_fnop()                    |
				jit_x1_mtspr(SPR_EX_CONTEXT_0_0,
					     clob2);
		}
		if (x1_add) {
			frag.insn[n++] =
				jit_x0_addi(ra, ra, x1_add_imm8) |
				jit_x1_ld_add(clob2, clob3, -8);
		} else {
			frag.insn[n++] =
				jit_x0_fnop()                    |
				jit_x1_ld_add(clob2, clob3, -8);
		}
		frag.insn[n++] =
			jit_x0_fnop()   |
			jit_x1_ld_add(clob1, clob3, -8);
		frag.insn[n++] = jit_x0_fnop()   | jit_x1_ld(clob3, clob3);
		frag.insn[n++] = jit_x0_fnop()   | jit_x1_iret();

	} else {
		/*
		 * Generic memory load cases.
		 *
		 * Alloc space for saveing clob1,2,3 on user's stack.
		 * register clob3 points to where clob1 saved, followed
		 * by clob2 and 3 from high to low memory.
		 */

		frag.insn[n++] =
			jit_x0_addi(TREG_SP, TREG_SP, -32) |
			jit_x1_fnop();
		frag.insn[n++] =
			jit_x0_addi(clob3, TREG_SP, 16) |
			jit_x1_st_add(TREG_SP, clob3, 8);
		frag.insn[n++] =
			jit_x0_addi(clob2, ra, 0) |
			jit_x1_st_add(TREG_SP, clob2, 8);

		if (y1_br) {
			frag.insn[n++] =
				jit_x0_addi(clob1, y1_br_reg, 0) |
				jit_x1_st_add(TREG_SP, clob1, 16);
		} else {
			frag.insn[n++] =
				jit_x0_fnop() |
				jit_x1_st_add(TREG_SP, clob1, 16);
		}

		if (bundle_2_enable)
			frag.insn[n++] = bundle_2;

		if (y1_lr) {
			frag.insn[n++] =
				jit_x0_fnop()  |
				jit_x1_mfspr(y1_lr_reg,
					     SPR_EX_CONTEXT_0_0);
		}

		if (y1_br) {
			frag.insn[n++] =
				jit_x0_fnop() |
				jit_x1_mtspr(SPR_EX_CONTEXT_0_0,
					     clob1);
		}

		frag.insn[n++] =
			jit_x0_addi(clob1, clob2, 7)      |
			jit_x1_ldna(rd, clob2);
		frag.insn[n++] =
			jit_x0_fnop()                     |
			jit_x1_ldna(clob1, clob1);
		frag.insn[n++] =
			jit_x0_dblalign(rd, clob1, clob2) |
			jit_x1_ld_add(clob1, clob3, -8);
		if (x1_add) {
			frag.insn[n++] =
				jit_x0_addi(ra, ra, x1_add_imm8) |
				jit_x1_ld_add(clob2, clob3, -8);
		} else {
			frag.insn[n++] =
				jit_x0_fnop()  |
				jit_x1_ld_add(clob2, clob3, -8);
		}

		frag.insn[n++] =
			jit_x0_fnop() |
			jit_x1_ld(clob3, clob3);

		if (load_store_size == 4) {
			if (load_store_signed)
				frag.insn[n++] =
					jit_x0_bfexts(
						rd, rd,
						UA_FIXUP_BFEXT_START(4),
						UA_FIXUP_BFEXT_END(4)) |
					jit_x1_fnop();
			else
				frag.insn[n++] =
					jit_x0_bfextu(
						rd, rd,
						UA_FIXUP_BFEXT_START(4),
						UA_FIXUP_BFEXT_END(4)) |
					jit_x1_fnop();
		} else if (load_store_size == 2) {
			if (load_store_signed)
				frag.insn[n++] =
					jit_x0_bfexts(
						rd, rd,
						UA_FIXUP_BFEXT_START(2),
						UA_FIXUP_BFEXT_END(2)) |
					jit_x1_fnop();
			else
				frag.insn[n++] =
					jit_x0_bfextu(
						rd, rd,
						UA_FIXUP_BFEXT_START(2),
						UA_FIXUP_BFEXT_END(2)) |
					jit_x1_fnop();
		}

		frag.insn[n++] = jit_x0_fnop() | jit_x1_iret();
	}

	/* Max JIT bundle count is 14. */
	WARN_ON(n > 14);

	if (!unexpected) {
		int status = 0;
		int idx = (regs->pc >> 3) &
			((1ULL << (PAGE_SHIFT - UNALIGN_JIT_SHIFT)) - 1);

		frag.pc = regs->pc;
		frag.bundle = bundle;

		if (unaligned_printk) {
			pr_info("%s/%d, Unalign fixup: pc=%lx bundle=%lx %d %d %d %d %d %d %d %d\n",
				current->comm, current->pid,
				(unsigned long)frag.pc,
				(unsigned long)frag.bundle,
				(int)alias, (int)rd, (int)ra,
				(int)rb, (int)bundle_2_enable,
				(int)y1_lr, (int)y1_br, (int)x1_add);

			for (k = 0; k < n; k += 2)
				pr_info("[%d] %016llx %016llx\n",
					k, (unsigned long long)frag.insn[k],
					(unsigned long long)frag.insn[k+1]);
		}

		/* Swap bundle byte order for big endian sys. */
#ifdef __BIG_ENDIAN
		frag.bundle = GX_INSN_BSWAP(frag.bundle);
		for (k = 0; k < n; k++)
			frag.insn[k] = GX_INSN_BSWAP(frag.insn[k]);
#endif /* __BIG_ENDIAN */

		status = copy_to_user((void __user *)&jit_code_area[idx],
				      &frag, sizeof(frag));
		if (status) {
			/* Fail to copy JIT into user land. send SIGSEGV. */
			siginfo_t info = {
				.si_signo = SIGSEGV,
				.si_code = SEGV_MAPERR,
				.si_addr = (void __user *)&jit_code_area[idx]
			};

			pr_warn("Unalign fixup: pid=%d %s jit_code_area=%llx\n",
				current->pid, current->comm,
				(unsigned long long)&jit_code_area[idx]);

			trace_unhandled_signal("segfault in unalign fixup",
					       regs,
					       (unsigned long)info.si_addr,
					       SIGSEGV);
			force_sig_info(info.si_signo, &info, current);
			return;
		}


		/* Do a cheaper increment, not accurate. */
		unaligned_fixup_count++;
		__flush_icache_range((unsigned long)&jit_code_area[idx],
				     (unsigned long)&jit_code_area[idx] +
				     sizeof(frag));

		/* Setup SPR_EX_CONTEXT_0_0/1 for returning to user program.*/
		__insn_mtspr(SPR_EX_CONTEXT_0_0, regs->pc + 8);
		__insn_mtspr(SPR_EX_CONTEXT_0_1, PL_ICS_EX1(USER_PL, 0));

		/* Modify pc at the start of new JIT. */
		regs->pc = (unsigned long)&jit_code_area[idx].insn[0];
		/* Set ICS in SPR_EX_CONTEXT_K_1. */
		regs->ex1 = PL_ICS_EX1(USER_PL, 1);
	}
}


/*
 * C function to generate unalign data JIT. Called from unalign data
 * interrupt handler.
 *
 * First check if unalign fix is disabled or exception did not not come from
 * user space or sp register points to unalign address, if true, generate a
 * SIGBUS. Then map a page into user space as JIT area if it is not mapped
 * yet. Genenerate JIT code by calling jit_bundle_gen(). After that return
 * back to exception handler.
 *
 * The exception handler will "iret" to new generated JIT code after
 * restoring caller saved registers. In theory, the JIT code will perform
 * another "iret" to resume user's program.
 */

void do_unaligned(struct pt_regs *regs, int vecnum)
{
	enum ctx_state prev_state = exception_enter();
	tilegx_bundle_bits __user  *pc;
	tilegx_bundle_bits bundle;
	struct thread_info *info = current_thread_info();
	int align_ctl;

	/* Checks the per-process unaligned JIT flags */
	align_ctl = unaligned_fixup;
	switch (task_thread_info(current)->align_ctl) {
	case PR_UNALIGN_NOPRINT:
		align_ctl = 1;
		break;
	case PR_UNALIGN_SIGBUS:
		align_ctl = 0;
		break;
	}

	/* Enable iterrupt in order to access user land. */
	local_irq_enable();

	/*
	 * The fault came from kernel space. Two choices:
	 * (a) unaligned_fixup < 1, we will first call get/put_user fixup
	 *     to return -EFAULT. If no fixup, simply panic the kernel.
	 * (b) unaligned_fixup >=1, we will try to fix the unaligned access
	 *     if it was triggered by get_user/put_user() macros. Panic the
	 *     kernel if it is not fixable.
	 */

	if (EX1_PL(regs->ex1) != USER_PL) {

		if (align_ctl < 1) {
			unaligned_fixup_count++;
			/* If exception came from kernel, try fix it up. */
			if (fixup_exception(regs)) {
				if (unaligned_printk)
					pr_info("Unalign fixup: %d %llx @%llx\n",
						(int)unaligned_fixup,
						(unsigned long long)regs->ex1,
						(unsigned long long)regs->pc);
			} else {
				/* Not fixable. Go panic. */
				panic("Unalign exception in Kernel. pc=%lx",
				      regs->pc);
			}
		} else {
			/*
			 * Try to fix the exception. If we can't, panic the
			 * kernel.
			 */
			bundle = GX_INSN_BSWAP(
				*((tilegx_bundle_bits *)(regs->pc)));
			jit_bundle_gen(regs, bundle, align_ctl);
		}
		goto done;
	}

	/*
	 * Fault came from user with ICS or stack is not aligned.
	 * If so, we will trigger SIGBUS.
	 */
	if ((regs->sp & 0x7) || (regs->ex1) || (align_ctl < 0)) {
		siginfo_t info = {
			.si_signo = SIGBUS,
			.si_code = BUS_ADRALN,
			.si_addr = (unsigned char __user *)0
		};

		if (unaligned_printk)
			pr_info("Unalign fixup: %d %llx @%llx\n",
				(int)unaligned_fixup,
				(unsigned long long)regs->ex1,
				(unsigned long long)regs->pc);

		unaligned_fixup_count++;

		trace_unhandled_signal("unaligned fixup trap", regs, 0, SIGBUS);
		force_sig_info(info.si_signo, &info, current);
		goto done;
	}


	/* Read the bundle casued the exception! */
	pc = (tilegx_bundle_bits __user *)(regs->pc);
	if (get_user(bundle, pc) != 0) {
		/* Probably never be here since pc is valid user address.*/
		siginfo_t info = {
			.si_signo = SIGSEGV,
			.si_code = SEGV_MAPERR,
			.si_addr = (void __user *)pc
		};
		pr_err("Couldn't read instruction at %p trying to step\n", pc);
		trace_unhandled_signal("segfault in unalign fixup", regs,
				       (unsigned long)info.si_addr, SIGSEGV);
		force_sig_info(info.si_signo, &info, current);
		goto done;
	}

	if (!info->unalign_jit_base) {
		void __user *user_page;

		/*
		 * Allocate a page in userland.
		 * For 64-bit processes we try to place the mapping far
		 * from anything else that might be going on (specifically
		 * 64 GB below the top of the user address space).  If it
		 * happens not to be possible to put it there, it's OK;
		 * the kernel will choose another location and we'll
		 * remember it for later.
		 */
		if (is_compat_task())
			user_page = NULL;
		else
			user_page = (void __user *)(TASK_SIZE - (1UL << 36)) +
				(current->pid << PAGE_SHIFT);

		user_page = (void __user *) vm_mmap(NULL,
						    (unsigned long)user_page,
						    PAGE_SIZE,
						    PROT_EXEC | PROT_READ |
						    PROT_WRITE,
#ifdef CONFIG_HOMECACHE
						    MAP_CACHE_HOME_TASK |
#endif
						    MAP_PRIVATE |
						    MAP_ANONYMOUS,
						    0);

		if (IS_ERR((void __force *)user_page)) {
			pr_err("Out of kernel pages trying do_mmap\n");
			goto done;
		}

		/* Save the address in the thread_info struct */
		info->unalign_jit_base = user_page;
		if (unaligned_printk)
			pr_info("Unalign bundle: %d:%d, allocate page @%llx\n",
				raw_smp_processor_id(), current->pid,
				(unsigned long long)user_page);
	}

	/* Generate unalign JIT */
	jit_bundle_gen(regs, GX_INSN_BSWAP(bundle), align_ctl);

done:
	exception_exit(prev_state);
}

#endif /* __tilegx__ */