summaryrefslogblamecommitdiff
path: root/arch/sparc64/kernel/traps.c
blob: 5956d0a940095c40c9d3ad503e3e0c88f6baf9fa (plain) (tree)
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415


































                                                                   
                       



                          
                     

































                                                                    
                     


                                                                            

                                                 



































































                                                                           
                                                                                                 







                                                                      

                                                                      













                                                
                                                                                                     





                                                                              
                                                         

 






































                                                                                                      
                                                                                                 








                                                               
                                                          
 


                                                                              

                                                                                    

                                                                        
      
                                                 
                                                   


                               

                                                                      










                                                
                                                                                                     





                                                                       
                                                         

 






































                                                                                                      
































                                                                     
                                               
 




                                                          




































                                                       

                                            
                                                                                                                    
 

                                
 

                                                        









                                                                          

                                                        








                                                                          
























































































































                                                                                                                                                            

 


















                                                                     
























































































































































































































































































                                                                                         
                                                                          
 
                                            
                                                                             

                                                            
























                                                                            

                                           
































































                                                                             




                                                             

                                                   
                                                                      


                                                             

                                                             


























                                                                          




                                                             
 
                                                                      


                                                             
                                                                         









                                                                          




                                                             
 


                                                                      




                                                                
                                                             
                                                              
                                                                            



                                                                          

                                                                      








































































































































































































































































































































































































                                                                                                   
                                                  
 
                                                

                         
                                      





























































































































































































































































                                                                                           
                                                                  
 

                                                                   

















                                                                                  
                                                                 
                                                                   


















































                                                                                             



















































































































































































                                                                                                    













































































































































                                                                              
                                        




















































                                                                      
                                                            








































































































                                                                                      

                                                                           








                                                                                        
                                                                          









                                               
                                                                                   


















                                                                          







































































































































                                                                  













                                                                 
                                                       
                                                        






















                                                                           
                                                                          

                                                                              


                                                                              



                                                                
                                                                           







                                                              

                                                                   

                                                                 

                                                                      
                                       




                                                                  

                                                        





                                                               
/* $Id: traps.c,v 1.85 2002/02/09 19:49:31 davem Exp $
 * arch/sparc64/kernel/traps.c
 *
 * Copyright (C) 1995,1997 David S. Miller (davem@caip.rutgers.edu)
 * Copyright (C) 1997,1999,2000 Jakub Jelinek (jakub@redhat.com)
 */

/*
 * I like traps on v9, :))))
 */

#include <linux/config.h>
#include <linux/module.h>
#include <linux/sched.h>  /* for jiffies */
#include <linux/kernel.h>
#include <linux/kallsyms.h>
#include <linux/signal.h>
#include <linux/smp.h>
#include <linux/smp_lock.h>
#include <linux/mm.h>
#include <linux/init.h>

#include <asm/delay.h>
#include <asm/system.h>
#include <asm/ptrace.h>
#include <asm/oplib.h>
#include <asm/page.h>
#include <asm/pgtable.h>
#include <asm/unistd.h>
#include <asm/uaccess.h>
#include <asm/fpumacro.h>
#include <asm/lsu.h>
#include <asm/dcu.h>
#include <asm/estate.h>
#include <asm/chafsr.h>
#include <asm/sfafsr.h>
#include <asm/psrcompat.h>
#include <asm/processor.h>
#include <asm/timer.h>
#include <asm/kdebug.h>
#include <asm/head.h>
#ifdef CONFIG_KMOD
#include <linux/kmod.h>
#endif

struct notifier_block *sparc64die_chain;
static DEFINE_SPINLOCK(die_notifier_lock);

int register_die_notifier(struct notifier_block *nb)
{
	int err = 0;
	unsigned long flags;
	spin_lock_irqsave(&die_notifier_lock, flags);
	err = notifier_chain_register(&sparc64die_chain, nb);
	spin_unlock_irqrestore(&die_notifier_lock, flags);
	return err;
}

/* When an irrecoverable trap occurs at tl > 0, the trap entry
 * code logs the trap state registers at every level in the trap
 * stack.  It is found at (pt_regs + sizeof(pt_regs)) and the layout
 * is as follows:
 */
struct tl1_traplog {
	struct {
		unsigned long tstate;
		unsigned long tpc;
		unsigned long tnpc;
		unsigned long tt;
	} trapstack[4];
	unsigned long tl;
};

static void dump_tl1_traplog(struct tl1_traplog *p)
{
	int i, limit;

	printk("TRAPLOG: Error at trap level 0x%lx, dumping track stack.\n",
	       p->tl);

	limit = (tlb_type == hypervisor) ? 2 : 4;
	for (i = 0; i < 4; i++) {
		printk(KERN_CRIT
		       "TRAPLOG: Trap level %d TSTATE[%016lx] TPC[%016lx] "
		       "TNPC[%016lx] TT[%lx]\n",
		       i + 1,
		       p->trapstack[i].tstate, p->trapstack[i].tpc,
		       p->trapstack[i].tnpc, p->trapstack[i].tt);
	}
}

void do_call_debug(struct pt_regs *regs) 
{ 
	notify_die(DIE_CALL, "debug call", regs, 0, 255, SIGINT); 
}

void bad_trap(struct pt_regs *regs, long lvl)
{
	char buffer[32];
	siginfo_t info;

	if (notify_die(DIE_TRAP, "bad trap", regs,
		       0, lvl, SIGTRAP) == NOTIFY_STOP)
		return;

	if (lvl < 0x100) {
		sprintf(buffer, "Bad hw trap %lx at tl0\n", lvl);
		die_if_kernel(buffer, regs);
	}

	lvl -= 0x100;
	if (regs->tstate & TSTATE_PRIV) {
		sprintf(buffer, "Kernel bad sw trap %lx", lvl);
		die_if_kernel(buffer, regs);
	}
	if (test_thread_flag(TIF_32BIT)) {
		regs->tpc &= 0xffffffff;
		regs->tnpc &= 0xffffffff;
	}
	info.si_signo = SIGILL;
	info.si_errno = 0;
	info.si_code = ILL_ILLTRP;
	info.si_addr = (void __user *)regs->tpc;
	info.si_trapno = lvl;
	force_sig_info(SIGILL, &info, current);
}

void bad_trap_tl1(struct pt_regs *regs, long lvl)
{
	char buffer[32];
	
	if (notify_die(DIE_TRAP_TL1, "bad trap tl1", regs,
		       0, lvl, SIGTRAP) == NOTIFY_STOP)
		return;

	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));

	sprintf (buffer, "Bad trap %lx at tl>0", lvl);
	die_if_kernel (buffer, regs);
}

#ifdef CONFIG_DEBUG_BUGVERBOSE
void do_BUG(const char *file, int line)
{
	bust_spinlocks(1);
	printk("kernel BUG at %s:%d!\n", file, line);
}
#endif

void spitfire_insn_access_exception(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
{
	siginfo_t info;

	if (notify_die(DIE_TRAP, "instruction access exception", regs,
		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
		return;

	if (regs->tstate & TSTATE_PRIV) {
		printk("spitfire_insn_access_exception: SFSR[%016lx] "
		       "SFAR[%016lx], going.\n", sfsr, sfar);
		die_if_kernel("Iax", regs);
	}
	if (test_thread_flag(TIF_32BIT)) {
		regs->tpc &= 0xffffffff;
		regs->tnpc &= 0xffffffff;
	}
	info.si_signo = SIGSEGV;
	info.si_errno = 0;
	info.si_code = SEGV_MAPERR;
	info.si_addr = (void __user *)regs->tpc;
	info.si_trapno = 0;
	force_sig_info(SIGSEGV, &info, current);
}

void spitfire_insn_access_exception_tl1(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
{
	if (notify_die(DIE_TRAP_TL1, "instruction access exception tl1", regs,
		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
		return;

	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
	spitfire_insn_access_exception(regs, sfsr, sfar);
}

void sun4v_insn_access_exception(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
{
	unsigned short type = (type_ctx >> 16);
	unsigned short ctx  = (type_ctx & 0xffff);
	siginfo_t info;

	if (notify_die(DIE_TRAP, "instruction access exception", regs,
		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
		return;

	if (regs->tstate & TSTATE_PRIV) {
		printk("sun4v_insn_access_exception: ADDR[%016lx] "
		       "CTX[%04x] TYPE[%04x], going.\n",
		       addr, ctx, type);
		die_if_kernel("Iax", regs);
	}

	if (test_thread_flag(TIF_32BIT)) {
		regs->tpc &= 0xffffffff;
		regs->tnpc &= 0xffffffff;
	}
	info.si_signo = SIGSEGV;
	info.si_errno = 0;
	info.si_code = SEGV_MAPERR;
	info.si_addr = (void __user *) addr;
	info.si_trapno = 0;
	force_sig_info(SIGSEGV, &info, current);
}

void sun4v_insn_access_exception_tl1(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
{
	if (notify_die(DIE_TRAP_TL1, "instruction access exception tl1", regs,
		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
		return;

	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
	sun4v_insn_access_exception(regs, addr, type_ctx);
}

void spitfire_data_access_exception(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
{
	siginfo_t info;

	if (notify_die(DIE_TRAP, "data access exception", regs,
		       0, 0x30, SIGTRAP) == NOTIFY_STOP)
		return;

	if (regs->tstate & TSTATE_PRIV) {
		/* Test if this comes from uaccess places. */
		const struct exception_table_entry *entry;

		entry = search_exception_tables(regs->tpc);
		if (entry) {
			/* Ouch, somebody is trying VM hole tricks on us... */
#ifdef DEBUG_EXCEPTIONS
			printk("Exception: PC<%016lx> faddr<UNKNOWN>\n", regs->tpc);
			printk("EX_TABLE: insn<%016lx> fixup<%016lx>\n",
			       regs->tpc, entry->fixup);
#endif
			regs->tpc = entry->fixup;
			regs->tnpc = regs->tpc + 4;
			return;
		}
		/* Shit... */
		printk("spitfire_data_access_exception: SFSR[%016lx] "
		       "SFAR[%016lx], going.\n", sfsr, sfar);
		die_if_kernel("Dax", regs);
	}

	info.si_signo = SIGSEGV;
	info.si_errno = 0;
	info.si_code = SEGV_MAPERR;
	info.si_addr = (void __user *)sfar;
	info.si_trapno = 0;
	force_sig_info(SIGSEGV, &info, current);
}

void spitfire_data_access_exception_tl1(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
{
	if (notify_die(DIE_TRAP_TL1, "data access exception tl1", regs,
		       0, 0x30, SIGTRAP) == NOTIFY_STOP)
		return;

	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
	spitfire_data_access_exception(regs, sfsr, sfar);
}

void sun4v_data_access_exception(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
{
	unsigned short type = (type_ctx >> 16);
	unsigned short ctx  = (type_ctx & 0xffff);
	siginfo_t info;

	if (notify_die(DIE_TRAP, "data access exception", regs,
		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
		return;

	if (regs->tstate & TSTATE_PRIV) {
		printk("sun4v_data_access_exception: ADDR[%016lx] "
		       "CTX[%04x] TYPE[%04x], going.\n",
		       addr, ctx, type);
		die_if_kernel("Iax", regs);
	}

	if (test_thread_flag(TIF_32BIT)) {
		regs->tpc &= 0xffffffff;
		regs->tnpc &= 0xffffffff;
	}
	info.si_signo = SIGSEGV;
	info.si_errno = 0;
	info.si_code = SEGV_MAPERR;
	info.si_addr = (void __user *) addr;
	info.si_trapno = 0;
	force_sig_info(SIGSEGV, &info, current);
}

void sun4v_data_access_exception_tl1(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
{
	if (notify_die(DIE_TRAP_TL1, "data access exception tl1", regs,
		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
		return;

	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
	sun4v_data_access_exception(regs, addr, type_ctx);
}

#ifdef CONFIG_PCI
/* This is really pathetic... */
extern volatile int pci_poke_in_progress;
extern volatile int pci_poke_cpu;
extern volatile int pci_poke_faulted;
#endif

/* When access exceptions happen, we must do this. */
static void spitfire_clean_and_reenable_l1_caches(void)
{
	unsigned long va;

	if (tlb_type != spitfire)
		BUG();

	/* Clean 'em. */
	for (va =  0; va < (PAGE_SIZE << 1); va += 32) {
		spitfire_put_icache_tag(va, 0x0);
		spitfire_put_dcache_tag(va, 0x0);
	}

	/* Re-enable in LSU. */
	__asm__ __volatile__("flush %%g6\n\t"
			     "membar #Sync\n\t"
			     "stxa %0, [%%g0] %1\n\t"
			     "membar #Sync"
			     : /* no outputs */
			     : "r" (LSU_CONTROL_IC | LSU_CONTROL_DC |
				    LSU_CONTROL_IM | LSU_CONTROL_DM),
			     "i" (ASI_LSU_CONTROL)
			     : "memory");
}

static void spitfire_enable_estate_errors(void)
{
	__asm__ __volatile__("stxa	%0, [%%g0] %1\n\t"
			     "membar	#Sync"
			     : /* no outputs */
			     : "r" (ESTATE_ERR_ALL),
			       "i" (ASI_ESTATE_ERROR_EN));
}

static char ecc_syndrome_table[] = {
	0x4c, 0x40, 0x41, 0x48, 0x42, 0x48, 0x48, 0x49,
	0x43, 0x48, 0x48, 0x49, 0x48, 0x49, 0x49, 0x4a,
	0x44, 0x48, 0x48, 0x20, 0x48, 0x39, 0x4b, 0x48,
	0x48, 0x25, 0x31, 0x48, 0x28, 0x48, 0x48, 0x2c,
	0x45, 0x48, 0x48, 0x21, 0x48, 0x3d, 0x04, 0x48,
	0x48, 0x4b, 0x35, 0x48, 0x2d, 0x48, 0x48, 0x29,
	0x48, 0x00, 0x01, 0x48, 0x0a, 0x48, 0x48, 0x4b,
	0x0f, 0x48, 0x48, 0x4b, 0x48, 0x49, 0x49, 0x48,
	0x46, 0x48, 0x48, 0x2a, 0x48, 0x3b, 0x27, 0x48,
	0x48, 0x4b, 0x33, 0x48, 0x22, 0x48, 0x48, 0x2e,
	0x48, 0x19, 0x1d, 0x48, 0x1b, 0x4a, 0x48, 0x4b,
	0x1f, 0x48, 0x4a, 0x4b, 0x48, 0x4b, 0x4b, 0x48,
	0x48, 0x4b, 0x24, 0x48, 0x07, 0x48, 0x48, 0x36,
	0x4b, 0x48, 0x48, 0x3e, 0x48, 0x30, 0x38, 0x48,
	0x49, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x16, 0x48,
	0x48, 0x12, 0x4b, 0x48, 0x49, 0x48, 0x48, 0x4b,
	0x47, 0x48, 0x48, 0x2f, 0x48, 0x3f, 0x4b, 0x48,
	0x48, 0x06, 0x37, 0x48, 0x23, 0x48, 0x48, 0x2b,
	0x48, 0x05, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x32,
	0x26, 0x48, 0x48, 0x3a, 0x48, 0x34, 0x3c, 0x48,
	0x48, 0x11, 0x15, 0x48, 0x13, 0x4a, 0x48, 0x4b,
	0x17, 0x48, 0x4a, 0x4b, 0x48, 0x4b, 0x4b, 0x48,
	0x49, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x1e, 0x48,
	0x48, 0x1a, 0x4b, 0x48, 0x49, 0x48, 0x48, 0x4b,
	0x48, 0x08, 0x0d, 0x48, 0x02, 0x48, 0x48, 0x49,
	0x03, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x4b, 0x48,
	0x49, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x10, 0x48,
	0x48, 0x14, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x4b,
	0x49, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x18, 0x48,
	0x48, 0x1c, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x4b,
	0x4a, 0x0c, 0x09, 0x48, 0x0e, 0x48, 0x48, 0x4b,
	0x0b, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x4b, 0x4a
};

static char *syndrome_unknown = "<Unknown>";

static void spitfire_log_udb_syndrome(unsigned long afar, unsigned long udbh, unsigned long udbl, unsigned long bit)
{
	unsigned short scode;
	char memmod_str[64], *p;

	if (udbl & bit) {
		scode = ecc_syndrome_table[udbl & 0xff];
		if (prom_getunumber(scode, afar,
				    memmod_str, sizeof(memmod_str)) == -1)
			p = syndrome_unknown;
		else
			p = memmod_str;
		printk(KERN_WARNING "CPU[%d]: UDBL Syndrome[%x] "
		       "Memory Module \"%s\"\n",
		       smp_processor_id(), scode, p);
	}

	if (udbh & bit) {
		scode = ecc_syndrome_table[udbh & 0xff];
		if (prom_getunumber(scode, afar,
				    memmod_str, sizeof(memmod_str)) == -1)
			p = syndrome_unknown;
		else
			p = memmod_str;
		printk(KERN_WARNING "CPU[%d]: UDBH Syndrome[%x] "
		       "Memory Module \"%s\"\n",
		       smp_processor_id(), scode, p);
	}

}

static void spitfire_cee_log(unsigned long afsr, unsigned long afar, unsigned long udbh, unsigned long udbl, int tl1, struct pt_regs *regs)
{

	printk(KERN_WARNING "CPU[%d]: Correctable ECC Error "
	       "AFSR[%lx] AFAR[%016lx] UDBL[%lx] UDBH[%lx] TL>1[%d]\n",
	       smp_processor_id(), afsr, afar, udbl, udbh, tl1);

	spitfire_log_udb_syndrome(afar, udbh, udbl, UDBE_CE);

	/* We always log it, even if someone is listening for this
	 * trap.
	 */
	notify_die(DIE_TRAP, "Correctable ECC Error", regs,
		   0, TRAP_TYPE_CEE, SIGTRAP);

	/* The Correctable ECC Error trap does not disable I/D caches.  So
	 * we only have to restore the ESTATE Error Enable register.
	 */
	spitfire_enable_estate_errors();
}

static void spitfire_ue_log(unsigned long afsr, unsigned long afar, unsigned long udbh, unsigned long udbl, unsigned long tt, int tl1, struct pt_regs *regs)
{
	siginfo_t info;

	printk(KERN_WARNING "CPU[%d]: Uncorrectable Error AFSR[%lx] "
	       "AFAR[%lx] UDBL[%lx] UDBH[%ld] TT[%lx] TL>1[%d]\n",
	       smp_processor_id(), afsr, afar, udbl, udbh, tt, tl1);

	/* XXX add more human friendly logging of the error status
	 * XXX as is implemented for cheetah
	 */

	spitfire_log_udb_syndrome(afar, udbh, udbl, UDBE_UE);

	/* We always log it, even if someone is listening for this
	 * trap.
	 */
	notify_die(DIE_TRAP, "Uncorrectable Error", regs,
		   0, tt, SIGTRAP);

	if (regs->tstate & TSTATE_PRIV) {
		if (tl1)
			dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
		die_if_kernel("UE", regs);
	}

	/* XXX need more intelligent processing here, such as is implemented
	 * XXX for cheetah errors, in fact if the E-cache still holds the
	 * XXX line with bad parity this will loop
	 */

	spitfire_clean_and_reenable_l1_caches();
	spitfire_enable_estate_errors();

	if (test_thread_flag(TIF_32BIT)) {
		regs->tpc &= 0xffffffff;
		regs->tnpc &= 0xffffffff;
	}
	info.si_signo = SIGBUS;
	info.si_errno = 0;
	info.si_code = BUS_OBJERR;
	info.si_addr = (void *)0;
	info.si_trapno = 0;
	force_sig_info(SIGBUS, &info, current);
}

void spitfire_access_error(struct pt_regs *regs, unsigned long status_encoded, unsigned long afar)
{
	unsigned long afsr, tt, udbh, udbl;
	int tl1;

	afsr = (status_encoded & SFSTAT_AFSR_MASK) >> SFSTAT_AFSR_SHIFT;
	tt = (status_encoded & SFSTAT_TRAP_TYPE) >> SFSTAT_TRAP_TYPE_SHIFT;
	tl1 = (status_encoded & SFSTAT_TL_GT_ONE) ? 1 : 0;
	udbl = (status_encoded & SFSTAT_UDBL_MASK) >> SFSTAT_UDBL_SHIFT;
	udbh = (status_encoded & SFSTAT_UDBH_MASK) >> SFSTAT_UDBH_SHIFT;

#ifdef CONFIG_PCI
	if (tt == TRAP_TYPE_DAE &&
	    pci_poke_in_progress && pci_poke_cpu == smp_processor_id()) {
		spitfire_clean_and_reenable_l1_caches();
		spitfire_enable_estate_errors();

		pci_poke_faulted = 1;
		regs->tnpc = regs->tpc + 4;
		return;
	}
#endif

	if (afsr & SFAFSR_UE)
		spitfire_ue_log(afsr, afar, udbh, udbl, tt, tl1, regs);

	if (tt == TRAP_TYPE_CEE) {
		/* Handle the case where we took a CEE trap, but ACK'd
		 * only the UE state in the UDB error registers.
		 */
		if (afsr & SFAFSR_UE) {
			if (udbh & UDBE_CE) {
				__asm__ __volatile__(
					"stxa	%0, [%1] %2\n\t"
					"membar	#Sync"
					: /* no outputs */
					: "r" (udbh & UDBE_CE),
					  "r" (0x0), "i" (ASI_UDB_ERROR_W));
			}
			if (udbl & UDBE_CE) {
				__asm__ __volatile__(
					"stxa	%0, [%1] %2\n\t"
					"membar	#Sync"
					: /* no outputs */
					: "r" (udbl & UDBE_CE),
					  "r" (0x18), "i" (ASI_UDB_ERROR_W));
			}
		}

		spitfire_cee_log(afsr, afar, udbh, udbl, tl1, regs);
	}
}

int cheetah_pcache_forced_on;

void cheetah_enable_pcache(void)
{
	unsigned long dcr;

	printk("CHEETAH: Enabling P-Cache on cpu %d.\n",
	       smp_processor_id());

	__asm__ __volatile__("ldxa [%%g0] %1, %0"
			     : "=r" (dcr)
			     : "i" (ASI_DCU_CONTROL_REG));
	dcr |= (DCU_PE | DCU_HPE | DCU_SPE | DCU_SL);
	__asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
			     "membar #Sync"
			     : /* no outputs */
			     : "r" (dcr), "i" (ASI_DCU_CONTROL_REG));
}

/* Cheetah error trap handling. */
static unsigned long ecache_flush_physbase;
static unsigned long ecache_flush_linesize;
static unsigned long ecache_flush_size;

/* WARNING: The error trap handlers in assembly know the precise
 *	    layout of the following structure.
 *
 * C-level handlers below use this information to log the error
 * and then determine how to recover (if possible).
 */
struct cheetah_err_info {
/*0x00*/u64 afsr;
/*0x08*/u64 afar;

	/* D-cache state */
/*0x10*/u64 dcache_data[4];	/* The actual data	*/
/*0x30*/u64 dcache_index;	/* D-cache index	*/
/*0x38*/u64 dcache_tag;		/* D-cache tag/valid	*/
/*0x40*/u64 dcache_utag;	/* D-cache microtag	*/
/*0x48*/u64 dcache_stag;	/* D-cache snooptag	*/

	/* I-cache state */
/*0x50*/u64 icache_data[8];	/* The actual insns + predecode	*/
/*0x90*/u64 icache_index;	/* I-cache index	*/
/*0x98*/u64 icache_tag;		/* I-cache phys tag	*/
/*0xa0*/u64 icache_utag;	/* I-cache microtag	*/
/*0xa8*/u64 icache_stag;	/* I-cache snooptag	*/
/*0xb0*/u64 icache_upper;	/* I-cache upper-tag	*/
/*0xb8*/u64 icache_lower;	/* I-cache lower-tag	*/

	/* E-cache state */
/*0xc0*/u64 ecache_data[4];	/* 32 bytes from staging registers */
/*0xe0*/u64 ecache_index;	/* E-cache index	*/
/*0xe8*/u64 ecache_tag;		/* E-cache tag/state	*/

/*0xf0*/u64 __pad[32 - 30];
};
#define CHAFSR_INVALID		((u64)-1L)

/* This table is ordered in priority of errors and matches the
 * AFAR overwrite policy as well.
 */

struct afsr_error_table {
	unsigned long mask;
	const char *name;
};

static const char CHAFSR_PERR_msg[] =
	"System interface protocol error";
static const char CHAFSR_IERR_msg[] =
	"Internal processor error";
static const char CHAFSR_ISAP_msg[] =
	"System request parity error on incoming addresss";
static const char CHAFSR_UCU_msg[] =
	"Uncorrectable E-cache ECC error for ifetch/data";
static const char CHAFSR_UCC_msg[] =
	"SW Correctable E-cache ECC error for ifetch/data";
static const char CHAFSR_UE_msg[] =
	"Uncorrectable system bus data ECC error for read";
static const char CHAFSR_EDU_msg[] =
	"Uncorrectable E-cache ECC error for stmerge/blkld";
static const char CHAFSR_EMU_msg[] =
	"Uncorrectable system bus MTAG error";
static const char CHAFSR_WDU_msg[] =
	"Uncorrectable E-cache ECC error for writeback";
static const char CHAFSR_CPU_msg[] =
	"Uncorrectable ECC error for copyout";
static const char CHAFSR_CE_msg[] =
	"HW corrected system bus data ECC error for read";
static const char CHAFSR_EDC_msg[] =
	"HW corrected E-cache ECC error for stmerge/blkld";
static const char CHAFSR_EMC_msg[] =
	"HW corrected system bus MTAG ECC error";
static const char CHAFSR_WDC_msg[] =
	"HW corrected E-cache ECC error for writeback";
static const char CHAFSR_CPC_msg[] =
	"HW corrected ECC error for copyout";
static const char CHAFSR_TO_msg[] =
	"Unmapped error from system bus";
static const char CHAFSR_BERR_msg[] =
	"Bus error response from system bus";
static const char CHAFSR_IVC_msg[] =
	"HW corrected system bus data ECC error for ivec read";
static const char CHAFSR_IVU_msg[] =
	"Uncorrectable system bus data ECC error for ivec read";
static struct afsr_error_table __cheetah_error_table[] = {
	{	CHAFSR_PERR,	CHAFSR_PERR_msg		},
	{	CHAFSR_IERR,	CHAFSR_IERR_msg		},
	{	CHAFSR_ISAP,	CHAFSR_ISAP_msg		},
	{	CHAFSR_UCU,	CHAFSR_UCU_msg		},
	{	CHAFSR_UCC,	CHAFSR_UCC_msg		},
	{	CHAFSR_UE,	CHAFSR_UE_msg		},
	{	CHAFSR_EDU,	CHAFSR_EDU_msg		},
	{	CHAFSR_EMU,	CHAFSR_EMU_msg		},
	{	CHAFSR_WDU,	CHAFSR_WDU_msg		},
	{	CHAFSR_CPU,	CHAFSR_CPU_msg		},
	{	CHAFSR_CE,	CHAFSR_CE_msg		},
	{	CHAFSR_EDC,	CHAFSR_EDC_msg		},
	{	CHAFSR_EMC,	CHAFSR_EMC_msg		},
	{	CHAFSR_WDC,	CHAFSR_WDC_msg		},
	{	CHAFSR_CPC,	CHAFSR_CPC_msg		},
	{	CHAFSR_TO,	CHAFSR_TO_msg		},
	{	CHAFSR_BERR,	CHAFSR_BERR_msg		},
	/* These two do not update the AFAR. */
	{	CHAFSR_IVC,	CHAFSR_IVC_msg		},
	{	CHAFSR_IVU,	CHAFSR_IVU_msg		},
	{	0,		NULL			},
};
static const char CHPAFSR_DTO_msg[] =
	"System bus unmapped error for prefetch/storequeue-read";
static const char CHPAFSR_DBERR_msg[] =
	"System bus error for prefetch/storequeue-read";
static const char CHPAFSR_THCE_msg[] =
	"Hardware corrected E-cache Tag ECC error";
static const char CHPAFSR_TSCE_msg[] =
	"SW handled correctable E-cache Tag ECC error";
static const char CHPAFSR_TUE_msg[] =
	"Uncorrectable E-cache Tag ECC error";
static const char CHPAFSR_DUE_msg[] =
	"System bus uncorrectable data ECC error due to prefetch/store-fill";
static struct afsr_error_table __cheetah_plus_error_table[] = {
	{	CHAFSR_PERR,	CHAFSR_PERR_msg		},
	{	CHAFSR_IERR,	CHAFSR_IERR_msg		},
	{	CHAFSR_ISAP,	CHAFSR_ISAP_msg		},
	{	CHAFSR_UCU,	CHAFSR_UCU_msg		},
	{	CHAFSR_UCC,	CHAFSR_UCC_msg		},
	{	CHAFSR_UE,	CHAFSR_UE_msg		},
	{	CHAFSR_EDU,	CHAFSR_EDU_msg		},
	{	CHAFSR_EMU,	CHAFSR_EMU_msg		},
	{	CHAFSR_WDU,	CHAFSR_WDU_msg		},
	{	CHAFSR_CPU,	CHAFSR_CPU_msg		},
	{	CHAFSR_CE,	CHAFSR_CE_msg		},
	{	CHAFSR_EDC,	CHAFSR_EDC_msg		},
	{	CHAFSR_EMC,	CHAFSR_EMC_msg		},
	{	CHAFSR_WDC,	CHAFSR_WDC_msg		},
	{	CHAFSR_CPC,	CHAFSR_CPC_msg		},
	{	CHAFSR_TO,	CHAFSR_TO_msg		},
	{	CHAFSR_BERR,	CHAFSR_BERR_msg		},
	{	CHPAFSR_DTO,	CHPAFSR_DTO_msg		},
	{	CHPAFSR_DBERR,	CHPAFSR_DBERR_msg	},
	{	CHPAFSR_THCE,	CHPAFSR_THCE_msg	},
	{	CHPAFSR_TSCE,	CHPAFSR_TSCE_msg	},
	{	CHPAFSR_TUE,	CHPAFSR_TUE_msg		},
	{	CHPAFSR_DUE,	CHPAFSR_DUE_msg		},
	/* These two do not update the AFAR. */
	{	CHAFSR_IVC,	CHAFSR_IVC_msg		},
	{	CHAFSR_IVU,	CHAFSR_IVU_msg		},
	{	0,		NULL			},
};
static const char JPAFSR_JETO_msg[] =
	"System interface protocol error, hw timeout caused";
static const char JPAFSR_SCE_msg[] =
	"Parity error on system snoop results";
static const char JPAFSR_JEIC_msg[] =
	"System interface protocol error, illegal command detected";
static const char JPAFSR_JEIT_msg[] =
	"System interface protocol error, illegal ADTYPE detected";
static const char JPAFSR_OM_msg[] =
	"Out of range memory error has occurred";
static const char JPAFSR_ETP_msg[] =
	"Parity error on L2 cache tag SRAM";
static const char JPAFSR_UMS_msg[] =
	"Error due to unsupported store";
static const char JPAFSR_RUE_msg[] =
	"Uncorrectable ECC error from remote cache/memory";
static const char JPAFSR_RCE_msg[] =
	"Correctable ECC error from remote cache/memory";
static const char JPAFSR_BP_msg[] =
	"JBUS parity error on returned read data";
static const char JPAFSR_WBP_msg[] =
	"JBUS parity error on data for writeback or block store";
static const char JPAFSR_FRC_msg[] =
	"Foreign read to DRAM incurring correctable ECC error";
static const char JPAFSR_FRU_msg[] =
	"Foreign read to DRAM incurring uncorrectable ECC error";
static struct afsr_error_table __jalapeno_error_table[] = {
	{	JPAFSR_JETO,	JPAFSR_JETO_msg		},
	{	JPAFSR_SCE,	JPAFSR_SCE_msg		},
	{	JPAFSR_JEIC,	JPAFSR_JEIC_msg		},
	{	JPAFSR_JEIT,	JPAFSR_JEIT_msg		},
	{	CHAFSR_PERR,	CHAFSR_PERR_msg		},
	{	CHAFSR_IERR,	CHAFSR_IERR_msg		},
	{	CHAFSR_ISAP,	CHAFSR_ISAP_msg		},
	{	CHAFSR_UCU,	CHAFSR_UCU_msg		},
	{	CHAFSR_UCC,	CHAFSR_UCC_msg		},
	{	CHAFSR_UE,	CHAFSR_UE_msg		},
	{	CHAFSR_EDU,	CHAFSR_EDU_msg		},
	{	JPAFSR_OM,	JPAFSR_OM_msg		},
	{	CHAFSR_WDU,	CHAFSR_WDU_msg		},
	{	CHAFSR_CPU,	CHAFSR_CPU_msg		},
	{	CHAFSR_CE,	CHAFSR_CE_msg		},
	{	CHAFSR_EDC,	CHAFSR_EDC_msg		},
	{	JPAFSR_ETP,	JPAFSR_ETP_msg		},
	{	CHAFSR_WDC,	CHAFSR_WDC_msg		},
	{	CHAFSR_CPC,	CHAFSR_CPC_msg		},
	{	CHAFSR_TO,	CHAFSR_TO_msg		},
	{	CHAFSR_BERR,	CHAFSR_BERR_msg		},
	{	JPAFSR_UMS,	JPAFSR_UMS_msg		},
	{	JPAFSR_RUE,	JPAFSR_RUE_msg		},
	{	JPAFSR_RCE,	JPAFSR_RCE_msg		},
	{	JPAFSR_BP,	JPAFSR_BP_msg		},
	{	JPAFSR_WBP,	JPAFSR_WBP_msg		},
	{	JPAFSR_FRC,	JPAFSR_FRC_msg		},
	{	JPAFSR_FRU,	JPAFSR_FRU_msg		},
	/* These two do not update the AFAR. */
	{	CHAFSR_IVU,	CHAFSR_IVU_msg		},
	{	0,		NULL			},
};
static struct afsr_error_table *cheetah_error_table;
static unsigned long cheetah_afsr_errors;

/* This is allocated at boot time based upon the largest hardware
 * cpu ID in the system.  We allocate two entries per cpu, one for
 * TL==0 logging and one for TL >= 1 logging.
 */
struct cheetah_err_info *cheetah_error_log;

static __inline__ struct cheetah_err_info *cheetah_get_error_log(unsigned long afsr)
{
	struct cheetah_err_info *p;
	int cpu = smp_processor_id();

	if (!cheetah_error_log)
		return NULL;

	p = cheetah_error_log + (cpu * 2);
	if ((afsr & CHAFSR_TL1) != 0UL)
		p++;

	return p;
}

extern unsigned int tl0_icpe[], tl1_icpe[];
extern unsigned int tl0_dcpe[], tl1_dcpe[];
extern unsigned int tl0_fecc[], tl1_fecc[];
extern unsigned int tl0_cee[], tl1_cee[];
extern unsigned int tl0_iae[], tl1_iae[];
extern unsigned int tl0_dae[], tl1_dae[];
extern unsigned int cheetah_plus_icpe_trap_vector[], cheetah_plus_icpe_trap_vector_tl1[];
extern unsigned int cheetah_plus_dcpe_trap_vector[], cheetah_plus_dcpe_trap_vector_tl1[];
extern unsigned int cheetah_fecc_trap_vector[], cheetah_fecc_trap_vector_tl1[];
extern unsigned int cheetah_cee_trap_vector[], cheetah_cee_trap_vector_tl1[];
extern unsigned int cheetah_deferred_trap_vector[], cheetah_deferred_trap_vector_tl1[];

void __init cheetah_ecache_flush_init(void)
{
	unsigned long largest_size, smallest_linesize, order, ver;
	int node, i, instance;

	/* Scan all cpu device tree nodes, note two values:
	 * 1) largest E-cache size
	 * 2) smallest E-cache line size
	 */
	largest_size = 0UL;
	smallest_linesize = ~0UL;

	instance = 0;
	while (!cpu_find_by_instance(instance, &node, NULL)) {
		unsigned long val;

		val = prom_getintdefault(node, "ecache-size",
					 (2 * 1024 * 1024));
		if (val > largest_size)
			largest_size = val;
		val = prom_getintdefault(node, "ecache-line-size", 64);
		if (val < smallest_linesize)
			smallest_linesize = val;
		instance++;
	}

	if (largest_size == 0UL || smallest_linesize == ~0UL) {
		prom_printf("cheetah_ecache_flush_init: Cannot probe cpu E-cache "
			    "parameters.\n");
		prom_halt();
	}

	ecache_flush_size = (2 * largest_size);
	ecache_flush_linesize = smallest_linesize;

	ecache_flush_physbase = find_ecache_flush_span(ecache_flush_size);

	if (ecache_flush_physbase == ~0UL) {
		prom_printf("cheetah_ecache_flush_init: Cannot find %d byte "
			    "contiguous physical memory.\n",
			    ecache_flush_size);
		prom_halt();
	}

	/* Now allocate error trap reporting scoreboard. */
	node = NR_CPUS * (2 * sizeof(struct cheetah_err_info));
	for (order = 0; order < MAX_ORDER; order++) {
		if ((PAGE_SIZE << order) >= node)
			break;
	}
	cheetah_error_log = (struct cheetah_err_info *)
		__get_free_pages(GFP_KERNEL, order);
	if (!cheetah_error_log) {
		prom_printf("cheetah_ecache_flush_init: Failed to allocate "
			    "error logging scoreboard (%d bytes).\n", node);
		prom_halt();
	}
	memset(cheetah_error_log, 0, PAGE_SIZE << order);

	/* Mark all AFSRs as invalid so that the trap handler will
	 * log new new information there.
	 */
	for (i = 0; i < 2 * NR_CPUS; i++)
		cheetah_error_log[i].afsr = CHAFSR_INVALID;

	__asm__ ("rdpr %%ver, %0" : "=r" (ver));
	if ((ver >> 32) == __JALAPENO_ID ||
	    (ver >> 32) == __SERRANO_ID) {
		cheetah_error_table = &__jalapeno_error_table[0];
		cheetah_afsr_errors = JPAFSR_ERRORS;
	} else if ((ver >> 32) == 0x003e0015) {
		cheetah_error_table = &__cheetah_plus_error_table[0];
		cheetah_afsr_errors = CHPAFSR_ERRORS;
	} else {
		cheetah_error_table = &__cheetah_error_table[0];
		cheetah_afsr_errors = CHAFSR_ERRORS;
	}

	/* Now patch trap tables. */
	memcpy(tl0_fecc, cheetah_fecc_trap_vector, (8 * 4));
	memcpy(tl1_fecc, cheetah_fecc_trap_vector_tl1, (8 * 4));
	memcpy(tl0_cee, cheetah_cee_trap_vector, (8 * 4));
	memcpy(tl1_cee, cheetah_cee_trap_vector_tl1, (8 * 4));
	memcpy(tl0_iae, cheetah_deferred_trap_vector, (8 * 4));
	memcpy(tl1_iae, cheetah_deferred_trap_vector_tl1, (8 * 4));
	memcpy(tl0_dae, cheetah_deferred_trap_vector, (8 * 4));
	memcpy(tl1_dae, cheetah_deferred_trap_vector_tl1, (8 * 4));
	if (tlb_type == cheetah_plus) {
		memcpy(tl0_dcpe, cheetah_plus_dcpe_trap_vector, (8 * 4));
		memcpy(tl1_dcpe, cheetah_plus_dcpe_trap_vector_tl1, (8 * 4));
		memcpy(tl0_icpe, cheetah_plus_icpe_trap_vector, (8 * 4));
		memcpy(tl1_icpe, cheetah_plus_icpe_trap_vector_tl1, (8 * 4));
	}
	flushi(PAGE_OFFSET);
}

static void cheetah_flush_ecache(void)
{
	unsigned long flush_base = ecache_flush_physbase;
	unsigned long flush_linesize = ecache_flush_linesize;
	unsigned long flush_size = ecache_flush_size;

	__asm__ __volatile__("1: subcc	%0, %4, %0\n\t"
			     "   bne,pt	%%xcc, 1b\n\t"
			     "    ldxa	[%2 + %0] %3, %%g0\n\t"
			     : "=&r" (flush_size)
			     : "0" (flush_size), "r" (flush_base),
			       "i" (ASI_PHYS_USE_EC), "r" (flush_linesize));
}

static void cheetah_flush_ecache_line(unsigned long physaddr)
{
	unsigned long alias;

	physaddr &= ~(8UL - 1UL);
	physaddr = (ecache_flush_physbase +
		    (physaddr & ((ecache_flush_size>>1UL) - 1UL)));
	alias = physaddr + (ecache_flush_size >> 1UL);
	__asm__ __volatile__("ldxa [%0] %2, %%g0\n\t"
			     "ldxa [%1] %2, %%g0\n\t"
			     "membar #Sync"
			     : /* no outputs */
			     : "r" (physaddr), "r" (alias),
			       "i" (ASI_PHYS_USE_EC));
}

/* Unfortunately, the diagnostic access to the I-cache tags we need to
 * use to clear the thing interferes with I-cache coherency transactions.
 *
 * So we must only flush the I-cache when it is disabled.
 */
static void __cheetah_flush_icache(void)
{
	unsigned int icache_size, icache_line_size;
	unsigned long addr;

	icache_size = local_cpu_data().icache_size;
	icache_line_size = local_cpu_data().icache_line_size;

	/* Clear the valid bits in all the tags. */
	for (addr = 0; addr < icache_size; addr += icache_line_size) {
		__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
				     "membar #Sync"
				     : /* no outputs */
				     : "r" (addr | (2 << 3)),
				       "i" (ASI_IC_TAG));
	}
}

static void cheetah_flush_icache(void)
{
	unsigned long dcu_save;

	/* Save current DCU, disable I-cache. */
	__asm__ __volatile__("ldxa [%%g0] %1, %0\n\t"
			     "or %0, %2, %%g1\n\t"
			     "stxa %%g1, [%%g0] %1\n\t"
			     "membar #Sync"
			     : "=r" (dcu_save)
			     : "i" (ASI_DCU_CONTROL_REG), "i" (DCU_IC)
			     : "g1");

	__cheetah_flush_icache();

	/* Restore DCU register */
	__asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
			     "membar #Sync"
			     : /* no outputs */
			     : "r" (dcu_save), "i" (ASI_DCU_CONTROL_REG));
}

static void cheetah_flush_dcache(void)
{
	unsigned int dcache_size, dcache_line_size;
	unsigned long addr;

	dcache_size = local_cpu_data().dcache_size;
	dcache_line_size = local_cpu_data().dcache_line_size;

	for (addr = 0; addr < dcache_size; addr += dcache_line_size) {
		__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
				     "membar #Sync"
				     : /* no outputs */
				     : "r" (addr), "i" (ASI_DCACHE_TAG));
	}
}

/* In order to make the even parity correct we must do two things.
 * First, we clear DC_data_parity and set DC_utag to an appropriate value.
 * Next, we clear out all 32-bytes of data for that line.  Data of
 * all-zero + tag parity value of zero == correct parity.
 */
static void cheetah_plus_zap_dcache_parity(void)
{
	unsigned int dcache_size, dcache_line_size;
	unsigned long addr;

	dcache_size = local_cpu_data().dcache_size;
	dcache_line_size = local_cpu_data().dcache_line_size;

	for (addr = 0; addr < dcache_size; addr += dcache_line_size) {
		unsigned long tag = (addr >> 14);
		unsigned long line;

		__asm__ __volatile__("membar	#Sync\n\t"
				     "stxa	%0, [%1] %2\n\t"
				     "membar	#Sync"
				     : /* no outputs */
				     : "r" (tag), "r" (addr),
				       "i" (ASI_DCACHE_UTAG));
		for (line = addr; line < addr + dcache_line_size; line += 8)
			__asm__ __volatile__("membar	#Sync\n\t"
					     "stxa	%%g0, [%0] %1\n\t"
					     "membar	#Sync"
					     : /* no outputs */
					     : "r" (line),
					       "i" (ASI_DCACHE_DATA));
	}
}

/* Conversion tables used to frob Cheetah AFSR syndrome values into
 * something palatable to the memory controller driver get_unumber
 * routine.
 */
#define MT0	137
#define MT1	138
#define MT2	139
#define NONE	254
#define MTC0	140
#define MTC1	141
#define MTC2	142
#define MTC3	143
#define C0	128
#define C1	129
#define C2	130
#define C3	131
#define C4	132
#define C5	133
#define C6	134
#define C7	135
#define C8	136
#define M2	144
#define M3	145
#define M4	146
#define M	147
static unsigned char cheetah_ecc_syntab[] = {
/*00*/NONE, C0, C1, M2, C2, M2, M3, 47, C3, M2, M2, 53, M2, 41, 29, M,
/*01*/C4, M, M, 50, M2, 38, 25, M2, M2, 33, 24, M2, 11, M, M2, 16,
/*02*/C5, M, M, 46, M2, 37, 19, M2, M, 31, 32, M, 7, M2, M2, 10,
/*03*/M2, 40, 13, M2, 59, M, M2, 66, M, M2, M2, 0, M2, 67, 71, M,
/*04*/C6, M, M, 43, M, 36, 18, M, M2, 49, 15, M, 63, M2, M2, 6,
/*05*/M2, 44, 28, M2, M, M2, M2, 52, 68, M2, M2, 62, M2, M3, M3, M4,
/*06*/M2, 26, 106, M2, 64, M, M2, 2, 120, M, M2, M3, M, M3, M3, M4,
/*07*/116, M2, M2, M3, M2, M3, M, M4, M2, 58, 54, M2, M, M4, M4, M3,
/*08*/C7, M2, M, 42, M, 35, 17, M2, M, 45, 14, M2, 21, M2, M2, 5,
/*09*/M, 27, M, M, 99, M, M, 3, 114, M2, M2, 20, M2, M3, M3, M,
/*0a*/M2, 23, 113, M2, 112, M2, M, 51, 95, M, M2, M3, M2, M3, M3, M2,
/*0b*/103, M, M2, M3, M2, M3, M3, M4, M2, 48, M, M, 73, M2, M, M3,
/*0c*/M2, 22, 110, M2, 109, M2, M, 9, 108, M2, M, M3, M2, M3, M3, M,
/*0d*/102, M2, M, M, M2, M3, M3, M, M2, M3, M3, M2, M, M4, M, M3,
/*0e*/98, M, M2, M3, M2, M, M3, M4, M2, M3, M3, M4, M3, M, M, M,
/*0f*/M2, M3, M3, M, M3, M, M, M, 56, M4, M, M3, M4, M, M, M,
/*10*/C8, M, M2, 39, M, 34, 105, M2, M, 30, 104, M, 101, M, M, 4,
/*11*/M, M, 100, M, 83, M, M2, 12, 87, M, M, 57, M2, M, M3, M,
/*12*/M2, 97, 82, M2, 78, M2, M2, 1, 96, M, M, M, M, M, M3, M2,
/*13*/94, M, M2, M3, M2, M, M3, M, M2, M, 79, M, 69, M, M4, M,
/*14*/M2, 93, 92, M, 91, M, M2, 8, 90, M2, M2, M, M, M, M, M4,
/*15*/89, M, M, M3, M2, M3, M3, M, M, M, M3, M2, M3, M2, M, M3,
/*16*/86, M, M2, M3, M2, M, M3, M, M2, M, M3, M, M3, M, M, M3,
/*17*/M, M, M3, M2, M3, M2, M4, M, 60, M, M2, M3, M4, M, M, M2,
/*18*/M2, 88, 85, M2, 84, M, M2, 55, 81, M2, M2, M3, M2, M3, M3, M4,
/*19*/77, M, M, M, M2, M3, M, M, M2, M3, M3, M4, M3, M2, M, M,
/*1a*/74, M, M2, M3, M, M, M3, M, M, M, M3, M, M3, M, M4, M3,
/*1b*/M2, 70, 107, M4, 65, M2, M2, M, 127, M, M, M, M2, M3, M3, M,
/*1c*/80, M2, M2, 72, M, 119, 118, M, M2, 126, 76, M, 125, M, M4, M3,
/*1d*/M2, 115, 124, M, 75, M, M, M3, 61, M, M4, M, M4, M, M, M,
/*1e*/M, 123, 122, M4, 121, M4, M, M3, 117, M2, M2, M3, M4, M3, M, M,
/*1f*/111, M, M, M, M4, M3, M3, M, M, M, M3, M, M3, M2, M, M
};
static unsigned char cheetah_mtag_syntab[] = {
       NONE, MTC0,
       MTC1, NONE,
       MTC2, NONE,
       NONE, MT0,
       MTC3, NONE,
       NONE, MT1,
       NONE, MT2,
       NONE, NONE
};

/* Return the highest priority error conditon mentioned. */
static __inline__ unsigned long cheetah_get_hipri(unsigned long afsr)
{
	unsigned long tmp = 0;
	int i;

	for (i = 0; cheetah_error_table[i].mask; i++) {
		if ((tmp = (afsr & cheetah_error_table[i].mask)) != 0UL)
			return tmp;
	}
	return tmp;
}

static const char *cheetah_get_string(unsigned long bit)
{
	int i;

	for (i = 0; cheetah_error_table[i].mask; i++) {
		if ((bit & cheetah_error_table[i].mask) != 0UL)
			return cheetah_error_table[i].name;
	}
	return "???";
}

extern int chmc_getunumber(int, unsigned long, char *, int);

static void cheetah_log_errors(struct pt_regs *regs, struct cheetah_err_info *info,
			       unsigned long afsr, unsigned long afar, int recoverable)
{
	unsigned long hipri;
	char unum[256];

	printk("%s" "ERROR(%d): Cheetah error trap taken afsr[%016lx] afar[%016lx] TL1(%d)\n",
	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
	       afsr, afar,
	       (afsr & CHAFSR_TL1) ? 1 : 0);
	printk("%s" "ERROR(%d): TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n",
	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
	       regs->tpc, regs->tnpc, regs->tstate);
	printk("%s" "ERROR(%d): M_SYND(%lx),  E_SYND(%lx)%s%s\n",
	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
	       (afsr & CHAFSR_M_SYNDROME) >> CHAFSR_M_SYNDROME_SHIFT,
	       (afsr & CHAFSR_E_SYNDROME) >> CHAFSR_E_SYNDROME_SHIFT,
	       (afsr & CHAFSR_ME) ? ", Multiple Errors" : "",
	       (afsr & CHAFSR_PRIV) ? ", Privileged" : "");
	hipri = cheetah_get_hipri(afsr);
	printk("%s" "ERROR(%d): Highest priority error (%016lx) \"%s\"\n",
	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
	       hipri, cheetah_get_string(hipri));

	/* Try to get unumber if relevant. */
#define ESYND_ERRORS	(CHAFSR_IVC | CHAFSR_IVU | \
			 CHAFSR_CPC | CHAFSR_CPU | \
			 CHAFSR_UE  | CHAFSR_CE  | \
			 CHAFSR_EDC | CHAFSR_EDU  | \
			 CHAFSR_UCC | CHAFSR_UCU  | \
			 CHAFSR_WDU | CHAFSR_WDC)
#define MSYND_ERRORS	(CHAFSR_EMC | CHAFSR_EMU)
	if (afsr & ESYND_ERRORS) {
		int syndrome;
		int ret;

		syndrome = (afsr & CHAFSR_E_SYNDROME) >> CHAFSR_E_SYNDROME_SHIFT;
		syndrome = cheetah_ecc_syntab[syndrome];
		ret = chmc_getunumber(syndrome, afar, unum, sizeof(unum));
		if (ret != -1)
			printk("%s" "ERROR(%d): AFAR E-syndrome [%s]\n",
			       (recoverable ? KERN_WARNING : KERN_CRIT),
			       smp_processor_id(), unum);
	} else if (afsr & MSYND_ERRORS) {
		int syndrome;
		int ret;

		syndrome = (afsr & CHAFSR_M_SYNDROME) >> CHAFSR_M_SYNDROME_SHIFT;
		syndrome = cheetah_mtag_syntab[syndrome];
		ret = chmc_getunumber(syndrome, afar, unum, sizeof(unum));
		if (ret != -1)
			printk("%s" "ERROR(%d): AFAR M-syndrome [%s]\n",
			       (recoverable ? KERN_WARNING : KERN_CRIT),
			       smp_processor_id(), unum);
	}

	/* Now dump the cache snapshots. */
	printk("%s" "ERROR(%d): D-cache idx[%x] tag[%016lx] utag[%016lx] stag[%016lx]\n",
	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
	       (int) info->dcache_index,
	       info->dcache_tag,
	       info->dcache_utag,
	       info->dcache_stag);
	printk("%s" "ERROR(%d): D-cache data0[%016lx] data1[%016lx] data2[%016lx] data3[%016lx]\n",
	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
	       info->dcache_data[0],
	       info->dcache_data[1],
	       info->dcache_data[2],
	       info->dcache_data[3]);
	printk("%s" "ERROR(%d): I-cache idx[%x] tag[%016lx] utag[%016lx] stag[%016lx] "
	       "u[%016lx] l[%016lx]\n",
	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
	       (int) info->icache_index,
	       info->icache_tag,
	       info->icache_utag,
	       info->icache_stag,
	       info->icache_upper,
	       info->icache_lower);
	printk("%s" "ERROR(%d): I-cache INSN0[%016lx] INSN1[%016lx] INSN2[%016lx] INSN3[%016lx]\n",
	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
	       info->icache_data[0],
	       info->icache_data[1],
	       info->icache_data[2],
	       info->icache_data[3]);
	printk("%s" "ERROR(%d): I-cache INSN4[%016lx] INSN5[%016lx] INSN6[%016lx] INSN7[%016lx]\n",
	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
	       info->icache_data[4],
	       info->icache_data[5],
	       info->icache_data[6],
	       info->icache_data[7]);
	printk("%s" "ERROR(%d): E-cache idx[%x] tag[%016lx]\n",
	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
	       (int) info->ecache_index, info->ecache_tag);
	printk("%s" "ERROR(%d): E-cache data0[%016lx] data1[%016lx] data2[%016lx] data3[%016lx]\n",
	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
	       info->ecache_data[0],
	       info->ecache_data[1],
	       info->ecache_data[2],
	       info->ecache_data[3]);

	afsr = (afsr & ~hipri) & cheetah_afsr_errors;
	while (afsr != 0UL) {
		unsigned long bit = cheetah_get_hipri(afsr);

		printk("%s" "ERROR: Multiple-error (%016lx) \"%s\"\n",
		       (recoverable ? KERN_WARNING : KERN_CRIT),
		       bit, cheetah_get_string(bit));

		afsr &= ~bit;
	}

	if (!recoverable)
		printk(KERN_CRIT "ERROR: This condition is not recoverable.\n");
}

static int cheetah_recheck_errors(struct cheetah_err_info *logp)
{
	unsigned long afsr, afar;
	int ret = 0;

	__asm__ __volatile__("ldxa [%%g0] %1, %0\n\t"
			     : "=r" (afsr)
			     : "i" (ASI_AFSR));
	if ((afsr & cheetah_afsr_errors) != 0) {
		if (logp != NULL) {
			__asm__ __volatile__("ldxa [%%g0] %1, %0\n\t"
					     : "=r" (afar)
					     : "i" (ASI_AFAR));
			logp->afsr = afsr;
			logp->afar = afar;
		}
		ret = 1;
	}
	__asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
			     "membar #Sync\n\t"
			     : : "r" (afsr), "i" (ASI_AFSR));

	return ret;
}

void cheetah_fecc_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar)
{
	struct cheetah_err_info local_snapshot, *p;
	int recoverable;

	/* Flush E-cache */
	cheetah_flush_ecache();

	p = cheetah_get_error_log(afsr);
	if (!p) {
		prom_printf("ERROR: Early Fast-ECC error afsr[%016lx] afar[%016lx]\n",
			    afsr, afar);
		prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n",
			    smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate);
		prom_halt();
	}

	/* Grab snapshot of logged error. */
	memcpy(&local_snapshot, p, sizeof(local_snapshot));

	/* If the current trap snapshot does not match what the
	 * trap handler passed along into our args, big trouble.
	 * In such a case, mark the local copy as invalid.
	 *
	 * Else, it matches and we mark the afsr in the non-local
	 * copy as invalid so we may log new error traps there.
	 */
	if (p->afsr != afsr || p->afar != afar)
		local_snapshot.afsr = CHAFSR_INVALID;
	else
		p->afsr = CHAFSR_INVALID;

	cheetah_flush_icache();
	cheetah_flush_dcache();

	/* Re-enable I-cache/D-cache */
	__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
			     "or %%g1, %1, %%g1\n\t"
			     "stxa %%g1, [%%g0] %0\n\t"
			     "membar #Sync"
			     : /* no outputs */
			     : "i" (ASI_DCU_CONTROL_REG),
			       "i" (DCU_DC | DCU_IC)
			     : "g1");

	/* Re-enable error reporting */
	__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
			     "or %%g1, %1, %%g1\n\t"
			     "stxa %%g1, [%%g0] %0\n\t"
			     "membar #Sync"
			     : /* no outputs */
			     : "i" (ASI_ESTATE_ERROR_EN),
			       "i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN)
			     : "g1");

	/* Decide if we can continue after handling this trap and
	 * logging the error.
	 */
	recoverable = 1;
	if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP))
		recoverable = 0;

	/* Re-check AFSR/AFAR.  What we are looking for here is whether a new
	 * error was logged while we had error reporting traps disabled.
	 */
	if (cheetah_recheck_errors(&local_snapshot)) {
		unsigned long new_afsr = local_snapshot.afsr;

		/* If we got a new asynchronous error, die... */
		if (new_afsr & (CHAFSR_EMU | CHAFSR_EDU |
				CHAFSR_WDU | CHAFSR_CPU |
				CHAFSR_IVU | CHAFSR_UE |
				CHAFSR_BERR | CHAFSR_TO))
			recoverable = 0;
	}

	/* Log errors. */
	cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable);

	if (!recoverable)
		panic("Irrecoverable Fast-ECC error trap.\n");

	/* Flush E-cache to kick the error trap handlers out. */
	cheetah_flush_ecache();
}

/* Try to fix a correctable error by pushing the line out from
 * the E-cache.  Recheck error reporting registers to see if the
 * problem is intermittent.
 */
static int cheetah_fix_ce(unsigned long physaddr)
{
	unsigned long orig_estate;
	unsigned long alias1, alias2;
	int ret;

	/* Make sure correctable error traps are disabled. */
	__asm__ __volatile__("ldxa	[%%g0] %2, %0\n\t"
			     "andn	%0, %1, %%g1\n\t"
			     "stxa	%%g1, [%%g0] %2\n\t"
			     "membar	#Sync"
			     : "=&r" (orig_estate)
			     : "i" (ESTATE_ERROR_CEEN),
			       "i" (ASI_ESTATE_ERROR_EN)
			     : "g1");

	/* We calculate alias addresses that will force the
	 * cache line in question out of the E-cache.  Then
	 * we bring it back in with an atomic instruction so
	 * that we get it in some modified/exclusive state,
	 * then we displace it again to try and get proper ECC
	 * pushed back into the system.
	 */
	physaddr &= ~(8UL - 1UL);
	alias1 = (ecache_flush_physbase +
		  (physaddr & ((ecache_flush_size >> 1) - 1)));
	alias2 = alias1 + (ecache_flush_size >> 1);
	__asm__ __volatile__("ldxa	[%0] %3, %%g0\n\t"
			     "ldxa	[%1] %3, %%g0\n\t"
			     "casxa	[%2] %3, %%g0, %%g0\n\t"
			     "membar	#StoreLoad | #StoreStore\n\t"
			     "ldxa	[%0] %3, %%g0\n\t"
			     "ldxa	[%1] %3, %%g0\n\t"
			     "membar	#Sync"
			     : /* no outputs */
			     : "r" (alias1), "r" (alias2),
			       "r" (physaddr), "i" (ASI_PHYS_USE_EC));

	/* Did that trigger another error? */
	if (cheetah_recheck_errors(NULL)) {
		/* Try one more time. */
		__asm__ __volatile__("ldxa [%0] %1, %%g0\n\t"
				     "membar #Sync"
				     : : "r" (physaddr), "i" (ASI_PHYS_USE_EC));
		if (cheetah_recheck_errors(NULL))
			ret = 2;
		else
			ret = 1;
	} else {
		/* No new error, intermittent problem. */
		ret = 0;
	}

	/* Restore error enables. */
	__asm__ __volatile__("stxa	%0, [%%g0] %1\n\t"
			     "membar	#Sync"
			     : : "r" (orig_estate), "i" (ASI_ESTATE_ERROR_EN));

	return ret;
}

/* Return non-zero if PADDR is a valid physical memory address. */
static int cheetah_check_main_memory(unsigned long paddr)
{
	unsigned long vaddr = PAGE_OFFSET + paddr;

	if (vaddr > (unsigned long) high_memory)
		return 0;

	return kern_addr_valid(vaddr);
}

void cheetah_cee_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar)
{
	struct cheetah_err_info local_snapshot, *p;
	int recoverable, is_memory;

	p = cheetah_get_error_log(afsr);
	if (!p) {
		prom_printf("ERROR: Early CEE error afsr[%016lx] afar[%016lx]\n",
			    afsr, afar);
		prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n",
			    smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate);
		prom_halt();
	}

	/* Grab snapshot of logged error. */
	memcpy(&local_snapshot, p, sizeof(local_snapshot));

	/* If the current trap snapshot does not match what the
	 * trap handler passed along into our args, big trouble.
	 * In such a case, mark the local copy as invalid.
	 *
	 * Else, it matches and we mark the afsr in the non-local
	 * copy as invalid so we may log new error traps there.
	 */
	if (p->afsr != afsr || p->afar != afar)
		local_snapshot.afsr = CHAFSR_INVALID;
	else
		p->afsr = CHAFSR_INVALID;

	is_memory = cheetah_check_main_memory(afar);

	if (is_memory && (afsr & CHAFSR_CE) != 0UL) {
		/* XXX Might want to log the results of this operation
		 * XXX somewhere... -DaveM
		 */
		cheetah_fix_ce(afar);
	}

	{
		int flush_all, flush_line;

		flush_all = flush_line = 0;
		if ((afsr & CHAFSR_EDC) != 0UL) {
			if ((afsr & cheetah_afsr_errors) == CHAFSR_EDC)
				flush_line = 1;
			else
				flush_all = 1;
		} else if ((afsr & CHAFSR_CPC) != 0UL) {
			if ((afsr & cheetah_afsr_errors) == CHAFSR_CPC)
				flush_line = 1;
			else
				flush_all = 1;
		}

		/* Trap handler only disabled I-cache, flush it. */
		cheetah_flush_icache();

		/* Re-enable I-cache */
		__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
				     "or %%g1, %1, %%g1\n\t"
				     "stxa %%g1, [%%g0] %0\n\t"
				     "membar #Sync"
				     : /* no outputs */
				     : "i" (ASI_DCU_CONTROL_REG),
				     "i" (DCU_IC)
				     : "g1");

		if (flush_all)
			cheetah_flush_ecache();
		else if (flush_line)
			cheetah_flush_ecache_line(afar);
	}

	/* Re-enable error reporting */
	__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
			     "or %%g1, %1, %%g1\n\t"
			     "stxa %%g1, [%%g0] %0\n\t"
			     "membar #Sync"
			     : /* no outputs */
			     : "i" (ASI_ESTATE_ERROR_EN),
			       "i" (ESTATE_ERROR_CEEN)
			     : "g1");

	/* Decide if we can continue after handling this trap and
	 * logging the error.
	 */
	recoverable = 1;
	if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP))
		recoverable = 0;

	/* Re-check AFSR/AFAR */
	(void) cheetah_recheck_errors(&local_snapshot);

	/* Log errors. */
	cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable);

	if (!recoverable)
		panic("Irrecoverable Correctable-ECC error trap.\n");
}

void cheetah_deferred_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar)
{
	struct cheetah_err_info local_snapshot, *p;
	int recoverable, is_memory;

#ifdef CONFIG_PCI
	/* Check for the special PCI poke sequence. */
	if (pci_poke_in_progress && pci_poke_cpu == smp_processor_id()) {
		cheetah_flush_icache();
		cheetah_flush_dcache();

		/* Re-enable I-cache/D-cache */
		__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
				     "or %%g1, %1, %%g1\n\t"
				     "stxa %%g1, [%%g0] %0\n\t"
				     "membar #Sync"
				     : /* no outputs */
				     : "i" (ASI_DCU_CONTROL_REG),
				       "i" (DCU_DC | DCU_IC)
				     : "g1");

		/* Re-enable error reporting */
		__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
				     "or %%g1, %1, %%g1\n\t"
				     "stxa %%g1, [%%g0] %0\n\t"
				     "membar #Sync"
				     : /* no outputs */
				     : "i" (ASI_ESTATE_ERROR_EN),
				       "i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN)
				     : "g1");

		(void) cheetah_recheck_errors(NULL);

		pci_poke_faulted = 1;
		regs->tpc += 4;
		regs->tnpc = regs->tpc + 4;
		return;
	}
#endif

	p = cheetah_get_error_log(afsr);
	if (!p) {
		prom_printf("ERROR: Early deferred error afsr[%016lx] afar[%016lx]\n",
			    afsr, afar);
		prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n",
			    smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate);
		prom_halt();
	}

	/* Grab snapshot of logged error. */
	memcpy(&local_snapshot, p, sizeof(local_snapshot));

	/* If the current trap snapshot does not match what the
	 * trap handler passed along into our args, big trouble.
	 * In such a case, mark the local copy as invalid.
	 *
	 * Else, it matches and we mark the afsr in the non-local
	 * copy as invalid so we may log new error traps there.
	 */
	if (p->afsr != afsr || p->afar != afar)
		local_snapshot.afsr = CHAFSR_INVALID;
	else
		p->afsr = CHAFSR_INVALID;

	is_memory = cheetah_check_main_memory(afar);

	{
		int flush_all, flush_line;

		flush_all = flush_line = 0;
		if ((afsr & CHAFSR_EDU) != 0UL) {
			if ((afsr & cheetah_afsr_errors) == CHAFSR_EDU)
				flush_line = 1;
			else
				flush_all = 1;
		} else if ((afsr & CHAFSR_BERR) != 0UL) {
			if ((afsr & cheetah_afsr_errors) == CHAFSR_BERR)
				flush_line = 1;
			else
				flush_all = 1;
		}

		cheetah_flush_icache();
		cheetah_flush_dcache();

		/* Re-enable I/D caches */
		__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
				     "or %%g1, %1, %%g1\n\t"
				     "stxa %%g1, [%%g0] %0\n\t"
				     "membar #Sync"
				     : /* no outputs */
				     : "i" (ASI_DCU_CONTROL_REG),
				     "i" (DCU_IC | DCU_DC)
				     : "g1");

		if (flush_all)
			cheetah_flush_ecache();
		else if (flush_line)
			cheetah_flush_ecache_line(afar);
	}

	/* Re-enable error reporting */
	__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
			     "or %%g1, %1, %%g1\n\t"
			     "stxa %%g1, [%%g0] %0\n\t"
			     "membar #Sync"
			     : /* no outputs */
			     : "i" (ASI_ESTATE_ERROR_EN),
			     "i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN)
			     : "g1");

	/* Decide if we can continue after handling this trap and
	 * logging the error.
	 */
	recoverable = 1;
	if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP))
		recoverable = 0;

	/* Re-check AFSR/AFAR.  What we are looking for here is whether a new
	 * error was logged while we had error reporting traps disabled.
	 */
	if (cheetah_recheck_errors(&local_snapshot)) {
		unsigned long new_afsr = local_snapshot.afsr;

		/* If we got a new asynchronous error, die... */
		if (new_afsr & (CHAFSR_EMU | CHAFSR_EDU |
				CHAFSR_WDU | CHAFSR_CPU |
				CHAFSR_IVU | CHAFSR_UE |
				CHAFSR_BERR | CHAFSR_TO))
			recoverable = 0;
	}

	/* Log errors. */
	cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable);

	/* "Recoverable" here means we try to yank the page from ever
	 * being newly used again.  This depends upon a few things:
	 * 1) Must be main memory, and AFAR must be valid.
	 * 2) If we trapped from user, OK.
	 * 3) Else, if we trapped from kernel we must find exception
	 *    table entry (ie. we have to have been accessing user
	 *    space).
	 *
	 * If AFAR is not in main memory, or we trapped from kernel
	 * and cannot find an exception table entry, it is unacceptable
	 * to try and continue.
	 */
	if (recoverable && is_memory) {
		if ((regs->tstate & TSTATE_PRIV) == 0UL) {
			/* OK, usermode access. */
			recoverable = 1;
		} else {
			const struct exception_table_entry *entry;

			entry = search_exception_tables(regs->tpc);
			if (entry) {
				/* OK, kernel access to userspace. */
				recoverable = 1;

			} else {
				/* BAD, privileged state is corrupted. */
				recoverable = 0;
			}

			if (recoverable) {
				if (pfn_valid(afar >> PAGE_SHIFT))
					get_page(pfn_to_page(afar >> PAGE_SHIFT));
				else
					recoverable = 0;

				/* Only perform fixup if we still have a
				 * recoverable condition.
				 */
				if (recoverable) {
					regs->tpc = entry->fixup;
					regs->tnpc = regs->tpc + 4;
				}
			}
		}
	} else {
		recoverable = 0;
	}

	if (!recoverable)
		panic("Irrecoverable deferred error trap.\n");
}

/* Handle a D/I cache parity error trap.  TYPE is encoded as:
 *
 * Bit0:	0=dcache,1=icache
 * Bit1:	0=recoverable,1=unrecoverable
 *
 * The hardware has disabled both the I-cache and D-cache in
 * the %dcr register.  
 */
void cheetah_plus_parity_error(int type, struct pt_regs *regs)
{
	if (type & 0x1)
		__cheetah_flush_icache();
	else
		cheetah_plus_zap_dcache_parity();
	cheetah_flush_dcache();

	/* Re-enable I-cache/D-cache */
	__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
			     "or %%g1, %1, %%g1\n\t"
			     "stxa %%g1, [%%g0] %0\n\t"
			     "membar #Sync"
			     : /* no outputs */
			     : "i" (ASI_DCU_CONTROL_REG),
			       "i" (DCU_DC | DCU_IC)
			     : "g1");

	if (type & 0x2) {
		printk(KERN_EMERG "CPU[%d]: Cheetah+ %c-cache parity error at TPC[%016lx]\n",
		       smp_processor_id(),
		       (type & 0x1) ? 'I' : 'D',
		       regs->tpc);
		panic("Irrecoverable Cheetah+ parity error.");
	}

	printk(KERN_WARNING "CPU[%d]: Cheetah+ %c-cache parity error at TPC[%016lx]\n",
	       smp_processor_id(),
	       (type & 0x1) ? 'I' : 'D',
	       regs->tpc);
}

struct sun4v_error_entry {
	u64		err_handle;
	u64		err_stick;

	u32		err_type;
#define SUN4V_ERR_TYPE_UNDEFINED	0
#define SUN4V_ERR_TYPE_UNCORRECTED_RES	1
#define SUN4V_ERR_TYPE_PRECISE_NONRES	2
#define SUN4V_ERR_TYPE_DEFERRED_NONRES	3
#define SUN4V_ERR_TYPE_WARNING_RES	4

	u32		err_attrs;
#define SUN4V_ERR_ATTRS_PROCESSOR	0x00000001
#define SUN4V_ERR_ATTRS_MEMORY		0x00000002
#define SUN4V_ERR_ATTRS_PIO		0x00000004
#define SUN4V_ERR_ATTRS_INT_REGISTERS	0x00000008
#define SUN4V_ERR_ATTRS_FPU_REGISTERS	0x00000010
#define SUN4V_ERR_ATTRS_USER_MODE	0x01000000
#define SUN4V_ERR_ATTRS_PRIV_MODE	0x02000000
#define SUN4V_ERR_ATTRS_RES_QUEUE_FULL	0x80000000

	u64		err_raddr;
	u32		err_size;
	u16		err_cpu;
	u16		err_pad;
};

static atomic_t sun4v_resum_oflow_cnt = ATOMIC_INIT(0);
static atomic_t sun4v_nonresum_oflow_cnt = ATOMIC_INIT(0);

static const char *sun4v_err_type_to_str(u32 type)
{
	switch (type) {
	case SUN4V_ERR_TYPE_UNDEFINED:
		return "undefined";
	case SUN4V_ERR_TYPE_UNCORRECTED_RES:
		return "uncorrected resumable";
	case SUN4V_ERR_TYPE_PRECISE_NONRES:
		return "precise nonresumable";
	case SUN4V_ERR_TYPE_DEFERRED_NONRES:
		return "deferred nonresumable";
	case SUN4V_ERR_TYPE_WARNING_RES:
		return "warning resumable";
	default:
		return "unknown";
	};
}

static void sun4v_log_error(struct sun4v_error_entry *ent, int cpu, const char *pfx, atomic_t *ocnt)
{
	int cnt;

	printk("%s: Reporting on cpu %d\n", pfx, cpu);
	printk("%s: err_handle[%lx] err_stick[%lx] err_type[%08x:%s]\n",
	       pfx,
	       ent->err_handle, ent->err_stick,
	       ent->err_type,
	       sun4v_err_type_to_str(ent->err_type));
	printk("%s: err_attrs[%08x:%s %s %s %s %s %s %s %s]\n",
	       pfx,
	       ent->err_attrs,
	       ((ent->err_attrs & SUN4V_ERR_ATTRS_PROCESSOR) ?
		"processor" : ""),
	       ((ent->err_attrs & SUN4V_ERR_ATTRS_MEMORY) ?
		"memory" : ""),
	       ((ent->err_attrs & SUN4V_ERR_ATTRS_PIO) ?
		"pio" : ""),
	       ((ent->err_attrs & SUN4V_ERR_ATTRS_INT_REGISTERS) ?
		"integer-regs" : ""),
	       ((ent->err_attrs & SUN4V_ERR_ATTRS_FPU_REGISTERS) ?
		"fpu-regs" : ""),
	       ((ent->err_attrs & SUN4V_ERR_ATTRS_USER_MODE) ?
		"user" : ""),
	       ((ent->err_attrs & SUN4V_ERR_ATTRS_PRIV_MODE) ?
		"privileged" : ""),
	       ((ent->err_attrs & SUN4V_ERR_ATTRS_RES_QUEUE_FULL) ?
		"queue-full" : ""));
	printk("%s: err_raddr[%016lx] err_size[%u] err_cpu[%u]\n",
	       pfx,
	       ent->err_raddr, ent->err_size, ent->err_cpu);

	if ((cnt = atomic_read(ocnt)) != 0) {
		atomic_set(ocnt, 0);
		wmb();
		printk("%s: Queue overflowed %d times.\n",
		       pfx, cnt);
	}
}

/* We run with %pil set to 15 and PSTATE_IE enabled in %pstate.
 * Log the event and clear the first word of the entry.
 */
void sun4v_resum_error(struct pt_regs *regs, unsigned long offset)
{
	struct sun4v_error_entry *ent, local_copy;
	struct trap_per_cpu *tb;
	unsigned long paddr;
	int cpu;

	cpu = get_cpu();

	tb = &trap_block[cpu];
	paddr = tb->resum_kernel_buf_pa + offset;
	ent = __va(paddr);

	memcpy(&local_copy, ent, sizeof(struct sun4v_error_entry));

	/* We have a local copy now, so release the entry.  */
	ent->err_handle = 0;
	wmb();

	put_cpu();

	sun4v_log_error(&local_copy, cpu,
			KERN_ERR "RESUMABLE ERROR",
			&sun4v_resum_oflow_cnt);
}

/* If we try to printk() we'll probably make matters worse, by trying
 * to retake locks this cpu already holds or causing more errors. So
 * just bump a counter, and we'll report these counter bumps above.
 */
void sun4v_resum_overflow(struct pt_regs *regs)
{
	atomic_inc(&sun4v_resum_oflow_cnt);
}

/* We run with %pil set to 15 and PSTATE_IE enabled in %pstate.
 * Log the event, clear the first word of the entry, and die.
 */
void sun4v_nonresum_error(struct pt_regs *regs, unsigned long offset)
{
	struct sun4v_error_entry *ent, local_copy;
	struct trap_per_cpu *tb;
	unsigned long paddr;
	int cpu;

	cpu = get_cpu();

	tb = &trap_block[cpu];
	paddr = tb->nonresum_kernel_buf_pa + offset;
	ent = __va(paddr);

	memcpy(&local_copy, ent, sizeof(struct sun4v_error_entry));

	/* We have a local copy now, so release the entry.  */
	ent->err_handle = 0;
	wmb();

	put_cpu();

#ifdef CONFIG_PCI
	/* Check for the special PCI poke sequence. */
	if (pci_poke_in_progress && pci_poke_cpu == cpu) {
		pci_poke_faulted = 1;
		regs->tpc += 4;
		regs->tnpc = regs->tpc + 4;
		return;
	}
#endif

	sun4v_log_error(&local_copy, cpu,
			KERN_EMERG "NON-RESUMABLE ERROR",
			&sun4v_nonresum_oflow_cnt);

	panic("Non-resumable error.");
}

/* If we try to printk() we'll probably make matters worse, by trying
 * to retake locks this cpu already holds or causing more errors. So
 * just bump a counter, and we'll report these counter bumps above.
 */
void sun4v_nonresum_overflow(struct pt_regs *regs)
{
	/* XXX Actually even this can make not that much sense.  Perhaps
	 * XXX we should just pull the plug and panic directly from here?
	 */
	atomic_inc(&sun4v_nonresum_oflow_cnt);
}

void do_fpe_common(struct pt_regs *regs)
{
	if (regs->tstate & TSTATE_PRIV) {
		regs->tpc = regs->tnpc;
		regs->tnpc += 4;
	} else {
		unsigned long fsr = current_thread_info()->xfsr[0];
		siginfo_t info;

		if (test_thread_flag(TIF_32BIT)) {
			regs->tpc &= 0xffffffff;
			regs->tnpc &= 0xffffffff;
		}
		info.si_signo = SIGFPE;
		info.si_errno = 0;
		info.si_addr = (void __user *)regs->tpc;
		info.si_trapno = 0;
		info.si_code = __SI_FAULT;
		if ((fsr & 0x1c000) == (1 << 14)) {
			if (fsr & 0x10)
				info.si_code = FPE_FLTINV;
			else if (fsr & 0x08)
				info.si_code = FPE_FLTOVF;
			else if (fsr & 0x04)
				info.si_code = FPE_FLTUND;
			else if (fsr & 0x02)
				info.si_code = FPE_FLTDIV;
			else if (fsr & 0x01)
				info.si_code = FPE_FLTRES;
		}
		force_sig_info(SIGFPE, &info, current);
	}
}

void do_fpieee(struct pt_regs *regs)
{
	if (notify_die(DIE_TRAP, "fpu exception ieee", regs,
		       0, 0x24, SIGFPE) == NOTIFY_STOP)
		return;

	do_fpe_common(regs);
}

extern int do_mathemu(struct pt_regs *, struct fpustate *);

void do_fpother(struct pt_regs *regs)
{
	struct fpustate *f = FPUSTATE;
	int ret = 0;

	if (notify_die(DIE_TRAP, "fpu exception other", regs,
		       0, 0x25, SIGFPE) == NOTIFY_STOP)
		return;

	switch ((current_thread_info()->xfsr[0] & 0x1c000)) {
	case (2 << 14): /* unfinished_FPop */
	case (3 << 14): /* unimplemented_FPop */
		ret = do_mathemu(regs, f);
		break;
	}
	if (ret)
		return;
	do_fpe_common(regs);
}

void do_tof(struct pt_regs *regs)
{
	siginfo_t info;

	if (notify_die(DIE_TRAP, "tagged arithmetic overflow", regs,
		       0, 0x26, SIGEMT) == NOTIFY_STOP)
		return;

	if (regs->tstate & TSTATE_PRIV)
		die_if_kernel("Penguin overflow trap from kernel mode", regs);
	if (test_thread_flag(TIF_32BIT)) {
		regs->tpc &= 0xffffffff;
		regs->tnpc &= 0xffffffff;
	}
	info.si_signo = SIGEMT;
	info.si_errno = 0;
	info.si_code = EMT_TAGOVF;
	info.si_addr = (void __user *)regs->tpc;
	info.si_trapno = 0;
	force_sig_info(SIGEMT, &info, current);
}

void do_div0(struct pt_regs *regs)
{
	siginfo_t info;

	if (notify_die(DIE_TRAP, "integer division by zero", regs,
		       0, 0x28, SIGFPE) == NOTIFY_STOP)
		return;

	if (regs->tstate & TSTATE_PRIV)
		die_if_kernel("TL0: Kernel divide by zero.", regs);
	if (test_thread_flag(TIF_32BIT)) {
		regs->tpc &= 0xffffffff;
		regs->tnpc &= 0xffffffff;
	}
	info.si_signo = SIGFPE;
	info.si_errno = 0;
	info.si_code = FPE_INTDIV;
	info.si_addr = (void __user *)regs->tpc;
	info.si_trapno = 0;
	force_sig_info(SIGFPE, &info, current);
}

void instruction_dump (unsigned int *pc)
{
	int i;

	if ((((unsigned long) pc) & 3))
		return;

	printk("Instruction DUMP:");
	for (i = -3; i < 6; i++)
		printk("%c%08x%c",i?' ':'<',pc[i],i?' ':'>');
	printk("\n");
}

static void user_instruction_dump (unsigned int __user *pc)
{
	int i;
	unsigned int buf[9];
	
	if ((((unsigned long) pc) & 3))
		return;
		
	if (copy_from_user(buf, pc - 3, sizeof(buf)))
		return;

	printk("Instruction DUMP:");
	for (i = 0; i < 9; i++)
		printk("%c%08x%c",i==3?' ':'<',buf[i],i==3?' ':'>');
	printk("\n");
}

void show_stack(struct task_struct *tsk, unsigned long *_ksp)
{
	unsigned long pc, fp, thread_base, ksp;
	void *tp = task_stack_page(tsk);
	struct reg_window *rw;
	int count = 0;

	ksp = (unsigned long) _ksp;

	if (tp == current_thread_info())
		flushw_all();

	fp = ksp + STACK_BIAS;
	thread_base = (unsigned long) tp;

	printk("Call Trace:");
#ifdef CONFIG_KALLSYMS
	printk("\n");
#endif
	do {
		/* Bogus frame pointer? */
		if (fp < (thread_base + sizeof(struct thread_info)) ||
		    fp >= (thread_base + THREAD_SIZE))
			break;
		rw = (struct reg_window *)fp;
		pc = rw->ins[7];
		printk(" [%016lx] ", pc);
		print_symbol("%s\n", pc);
		fp = rw->ins[6] + STACK_BIAS;
	} while (++count < 16);
#ifndef CONFIG_KALLSYMS
	printk("\n");
#endif
}

void dump_stack(void)
{
	unsigned long *ksp;

	__asm__ __volatile__("mov	%%fp, %0"
			     : "=r" (ksp));
	show_stack(current, ksp);
}

EXPORT_SYMBOL(dump_stack);

static inline int is_kernel_stack(struct task_struct *task,
				  struct reg_window *rw)
{
	unsigned long rw_addr = (unsigned long) rw;
	unsigned long thread_base, thread_end;

	if (rw_addr < PAGE_OFFSET) {
		if (task != &init_task)
			return 0;
	}

	thread_base = (unsigned long) task_stack_page(task);
	thread_end = thread_base + sizeof(union thread_union);
	if (rw_addr >= thread_base &&
	    rw_addr < thread_end &&
	    !(rw_addr & 0x7UL))
		return 1;

	return 0;
}

static inline struct reg_window *kernel_stack_up(struct reg_window *rw)
{
	unsigned long fp = rw->ins[6];

	if (!fp)
		return NULL;

	return (struct reg_window *) (fp + STACK_BIAS);
}

void die_if_kernel(char *str, struct pt_regs *regs)
{
	static int die_counter;
	extern void __show_regs(struct pt_regs * regs);
	extern void smp_report_regs(void);
	int count = 0;
	
	/* Amuse the user. */
	printk(
"              \\|/ ____ \\|/\n"
"              \"@'/ .. \\`@\"\n"
"              /_| \\__/ |_\\\n"
"                 \\__U_/\n");

	printk("%s(%d): %s [#%d]\n", current->comm, current->pid, str, ++die_counter);
	notify_die(DIE_OOPS, str, regs, 0, 255, SIGSEGV);
	__asm__ __volatile__("flushw");
	__show_regs(regs);
	if (regs->tstate & TSTATE_PRIV) {
		struct reg_window *rw = (struct reg_window *)
			(regs->u_regs[UREG_FP] + STACK_BIAS);

		/* Stop the back trace when we hit userland or we
		 * find some badly aligned kernel stack.
		 */
		while (rw &&
		       count++ < 30&&
		       is_kernel_stack(current, rw)) {
			printk("Caller[%016lx]", rw->ins[7]);
			print_symbol(": %s", rw->ins[7]);
			printk("\n");

			rw = kernel_stack_up(rw);
		}
		instruction_dump ((unsigned int *) regs->tpc);
	} else {
		if (test_thread_flag(TIF_32BIT)) {
			regs->tpc &= 0xffffffff;
			regs->tnpc &= 0xffffffff;
		}
		user_instruction_dump ((unsigned int __user *) regs->tpc);
	}
#ifdef CONFIG_SMP
	smp_report_regs();
#endif
                                                	
	if (regs->tstate & TSTATE_PRIV)
		do_exit(SIGKILL);
	do_exit(SIGSEGV);
}

extern int handle_popc(u32 insn, struct pt_regs *regs);
extern int handle_ldf_stq(u32 insn, struct pt_regs *regs);

void do_illegal_instruction(struct pt_regs *regs)
{
	unsigned long pc = regs->tpc;
	unsigned long tstate = regs->tstate;
	u32 insn;
	siginfo_t info;

	if (notify_die(DIE_TRAP, "illegal instruction", regs,
		       0, 0x10, SIGILL) == NOTIFY_STOP)
		return;

	if (tstate & TSTATE_PRIV)
		die_if_kernel("Kernel illegal instruction", regs);
	if (test_thread_flag(TIF_32BIT))
		pc = (u32)pc;
	if (get_user(insn, (u32 __user *) pc) != -EFAULT) {
		if ((insn & 0xc1ffc000) == 0x81700000) /* POPC */ {
			if (handle_popc(insn, regs))
				return;
		} else if ((insn & 0xc1580000) == 0xc1100000) /* LDQ/STQ */ {
			if (handle_ldf_stq(insn, regs))
				return;
		}
	}
	info.si_signo = SIGILL;
	info.si_errno = 0;
	info.si_code = ILL_ILLOPC;
	info.si_addr = (void __user *)pc;
	info.si_trapno = 0;
	force_sig_info(SIGILL, &info, current);
}

extern void kernel_unaligned_trap(struct pt_regs *regs, unsigned int insn);

void mem_address_unaligned(struct pt_regs *regs, unsigned long sfar, unsigned long sfsr)
{
	siginfo_t info;

	if (notify_die(DIE_TRAP, "memory address unaligned", regs,
		       0, 0x34, SIGSEGV) == NOTIFY_STOP)
		return;

	if (regs->tstate & TSTATE_PRIV) {
		kernel_unaligned_trap(regs, *((unsigned int *)regs->tpc));
		return;
	}
	info.si_signo = SIGBUS;
	info.si_errno = 0;
	info.si_code = BUS_ADRALN;
	info.si_addr = (void __user *)sfar;
	info.si_trapno = 0;
	force_sig_info(SIGBUS, &info, current);
}

void sun4v_do_mna(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
{
	siginfo_t info;

	if (notify_die(DIE_TRAP, "memory address unaligned", regs,
		       0, 0x34, SIGSEGV) == NOTIFY_STOP)
		return;

	if (regs->tstate & TSTATE_PRIV) {
		kernel_unaligned_trap(regs, *((unsigned int *)regs->tpc));
		return;
	}
	info.si_signo = SIGBUS;
	info.si_errno = 0;
	info.si_code = BUS_ADRALN;
	info.si_addr = (void __user *) addr;
	info.si_trapno = 0;
	force_sig_info(SIGBUS, &info, current);
}

void do_privop(struct pt_regs *regs)
{
	siginfo_t info;

	if (notify_die(DIE_TRAP, "privileged operation", regs,
		       0, 0x11, SIGILL) == NOTIFY_STOP)
		return;

	if (test_thread_flag(TIF_32BIT)) {
		regs->tpc &= 0xffffffff;
		regs->tnpc &= 0xffffffff;
	}
	info.si_signo = SIGILL;
	info.si_errno = 0;
	info.si_code = ILL_PRVOPC;
	info.si_addr = (void __user *)regs->tpc;
	info.si_trapno = 0;
	force_sig_info(SIGILL, &info, current);
}

void do_privact(struct pt_regs *regs)
{
	do_privop(regs);
}

/* Trap level 1 stuff or other traps we should never see... */
void do_cee(struct pt_regs *regs)
{
	die_if_kernel("TL0: Cache Error Exception", regs);
}

void do_cee_tl1(struct pt_regs *regs)
{
	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
	die_if_kernel("TL1: Cache Error Exception", regs);
}

void do_dae_tl1(struct pt_regs *regs)
{
	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
	die_if_kernel("TL1: Data Access Exception", regs);
}

void do_iae_tl1(struct pt_regs *regs)
{
	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
	die_if_kernel("TL1: Instruction Access Exception", regs);
}

void do_div0_tl1(struct pt_regs *regs)
{
	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
	die_if_kernel("TL1: DIV0 Exception", regs);
}

void do_fpdis_tl1(struct pt_regs *regs)
{
	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
	die_if_kernel("TL1: FPU Disabled", regs);
}

void do_fpieee_tl1(struct pt_regs *regs)
{
	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
	die_if_kernel("TL1: FPU IEEE Exception", regs);
}

void do_fpother_tl1(struct pt_regs *regs)
{
	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
	die_if_kernel("TL1: FPU Other Exception", regs);
}

void do_ill_tl1(struct pt_regs *regs)
{
	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
	die_if_kernel("TL1: Illegal Instruction Exception", regs);
}

void do_irq_tl1(struct pt_regs *regs)
{
	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
	die_if_kernel("TL1: IRQ Exception", regs);
}

void do_lddfmna_tl1(struct pt_regs *regs)
{
	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
	die_if_kernel("TL1: LDDF Exception", regs);
}

void do_stdfmna_tl1(struct pt_regs *regs)
{
	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
	die_if_kernel("TL1: STDF Exception", regs);
}

void do_paw(struct pt_regs *regs)
{
	die_if_kernel("TL0: Phys Watchpoint Exception", regs);
}

void do_paw_tl1(struct pt_regs *regs)
{
	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
	die_if_kernel("TL1: Phys Watchpoint Exception", regs);
}

void do_vaw(struct pt_regs *regs)
{
	die_if_kernel("TL0: Virt Watchpoint Exception", regs);
}

void do_vaw_tl1(struct pt_regs *regs)
{
	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
	die_if_kernel("TL1: Virt Watchpoint Exception", regs);
}

void do_tof_tl1(struct pt_regs *regs)
{
	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
	die_if_kernel("TL1: Tag Overflow Exception", regs);
}

void do_getpsr(struct pt_regs *regs)
{
	regs->u_regs[UREG_I0] = tstate_to_psr(regs->tstate);
	regs->tpc   = regs->tnpc;
	regs->tnpc += 4;
	if (test_thread_flag(TIF_32BIT)) {
		regs->tpc &= 0xffffffff;
		regs->tnpc &= 0xffffffff;
	}
}

struct trap_per_cpu trap_block[NR_CPUS];

/* This can get invoked before sched_init() so play it super safe
 * and use hard_smp_processor_id().
 */
void init_cur_cpu_trap(void)
{
	int cpu = hard_smp_processor_id();
	struct trap_per_cpu *p = &trap_block[cpu];

	p->thread = current_thread_info();
	p->pgd_paddr = 0;
}

extern void thread_info_offsets_are_bolixed_dave(void);
extern void trap_per_cpu_offsets_are_bolixed_dave(void);

/* Only invoked on boot processor. */
void __init trap_init(void)
{
	/* Compile time sanity check. */
	if (TI_TASK != offsetof(struct thread_info, task) ||
	    TI_FLAGS != offsetof(struct thread_info, flags) ||
	    TI_CPU != offsetof(struct thread_info, cpu) ||
	    TI_FPSAVED != offsetof(struct thread_info, fpsaved) ||
	    TI_KSP != offsetof(struct thread_info, ksp) ||
	    TI_FAULT_ADDR != offsetof(struct thread_info, fault_address) ||
	    TI_KREGS != offsetof(struct thread_info, kregs) ||
	    TI_UTRAPS != offsetof(struct thread_info, utraps) ||
	    TI_EXEC_DOMAIN != offsetof(struct thread_info, exec_domain) ||
	    TI_REG_WINDOW != offsetof(struct thread_info, reg_window) ||
	    TI_RWIN_SPTRS != offsetof(struct thread_info, rwbuf_stkptrs) ||
	    TI_GSR != offsetof(struct thread_info, gsr) ||
	    TI_XFSR != offsetof(struct thread_info, xfsr) ||
	    TI_USER_CNTD0 != offsetof(struct thread_info, user_cntd0) ||
	    TI_USER_CNTD1 != offsetof(struct thread_info, user_cntd1) ||
	    TI_KERN_CNTD0 != offsetof(struct thread_info, kernel_cntd0) ||
	    TI_KERN_CNTD1 != offsetof(struct thread_info, kernel_cntd1) ||
	    TI_PCR != offsetof(struct thread_info, pcr_reg) ||
	    TI_PRE_COUNT != offsetof(struct thread_info, preempt_count) ||
	    TI_NEW_CHILD != offsetof(struct thread_info, new_child) ||
	    TI_SYS_NOERROR != offsetof(struct thread_info, syscall_noerror) ||
	    TI_RESTART_BLOCK != offsetof(struct thread_info, restart_block) ||
	    TI_KUNA_REGS != offsetof(struct thread_info, kern_una_regs) ||
	    TI_KUNA_INSN != offsetof(struct thread_info, kern_una_insn) ||
	    TI_FPREGS != offsetof(struct thread_info, fpregs) ||
	    (TI_FPREGS & (64 - 1)))
		thread_info_offsets_are_bolixed_dave();

	if (TRAP_PER_CPU_THREAD != offsetof(struct trap_per_cpu, thread) ||
	    (TRAP_PER_CPU_PGD_PADDR !=
	     offsetof(struct trap_per_cpu, pgd_paddr)) ||
	    (TRAP_PER_CPU_CPU_MONDO_PA !=
	     offsetof(struct trap_per_cpu, cpu_mondo_pa)) ||
	    (TRAP_PER_CPU_DEV_MONDO_PA !=
	     offsetof(struct trap_per_cpu, dev_mondo_pa)) ||
	    (TRAP_PER_CPU_RESUM_MONDO_PA !=
	     offsetof(struct trap_per_cpu, resum_mondo_pa)) ||
	    (TRAP_PER_CPU_RESUM_KBUF_PA !=
	     offsetof(struct trap_per_cpu, resum_kernel_buf_pa)) ||
	    (TRAP_PER_CPU_NONRESUM_MONDO_PA !=
	     offsetof(struct trap_per_cpu, nonresum_mondo_pa)) ||
	    (TRAP_PER_CPU_NONRESUM_KBUF_PA !=
	     offsetof(struct trap_per_cpu, nonresum_kernel_buf_pa)) ||
	    (TRAP_PER_CPU_FAULT_INFO !=
	     offsetof(struct trap_per_cpu, fault_info)) ||
	    (TRAP_PER_CPU_CPU_MONDO_BLOCK_PA !=
	     offsetof(struct trap_per_cpu, cpu_mondo_block_pa)) ||
	    (TRAP_PER_CPU_CPU_LIST_PA !=
	     offsetof(struct trap_per_cpu, cpu_list_pa)))
		trap_per_cpu_offsets_are_bolixed_dave();

	/* Attach to the address space of init_task.  On SMP we
	 * do this in smp.c:smp_callin for other cpus.
	 */
	atomic_inc(&init_mm.mm_count);
	current->active_mm = &init_mm;
}