/*
* srmmu.c: SRMMU specific routines for memory management.
*
* Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
* Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com)
* Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be)
* Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
* Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org)
*/
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <linux/pagemap.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/bootmem.h>
#include <linux/fs.h>
#include <linux/seq_file.h>
#include <linux/kdebug.h>
#include <linux/log2.h>
#include <asm/bitext.h>
#include <asm/page.h>
#include <asm/pgalloc.h>
#include <asm/pgtable.h>
#include <asm/io.h>
#include <asm/vaddrs.h>
#include <asm/traps.h>
#include <asm/smp.h>
#include <asm/mbus.h>
#include <asm/cache.h>
#include <asm/oplib.h>
#include <asm/asi.h>
#include <asm/msi.h>
#include <asm/mmu_context.h>
#include <asm/io-unit.h>
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
/* Now the cpu specific definitions. */
#include <asm/viking.h>
#include <asm/mxcc.h>
#include <asm/ross.h>
#include <asm/tsunami.h>
#include <asm/swift.h>
#include <asm/turbosparc.h>
#include <asm/leon.h>
#include <asm/btfixup.h>
enum mbus_module srmmu_modtype;
static unsigned int hwbug_bitmask;
int vac_cache_size;
int vac_line_size;
extern struct resource sparc_iomap;
extern unsigned long last_valid_pfn;
extern unsigned long page_kernel;
static pgd_t *srmmu_swapper_pg_dir;
#ifdef CONFIG_SMP
#define FLUSH_BEGIN(mm)
#define FLUSH_END
#else
#define FLUSH_BEGIN(mm) if((mm)->context != NO_CONTEXT) {
#define FLUSH_END }
#endif
BTFIXUPDEF_CALL(void, flush_page_for_dma, unsigned long)
#define flush_page_for_dma(page) BTFIXUP_CALL(flush_page_for_dma)(page)
int flush_page_for_dma_global = 1;
#ifdef CONFIG_SMP
BTFIXUPDEF_CALL(void, local_flush_page_for_dma, unsigned long)
#define local_flush_page_for_dma(page) BTFIXUP_CALL(local_flush_page_for_dma)(page)
#endif
char *srmmu_name;
ctxd_t *srmmu_ctx_table_phys;
static ctxd_t *srmmu_context_table;
int viking_mxcc_present;
static DEFINE_SPINLOCK(srmmu_context_spinlock);
static int is_hypersparc;
/*
* In general all page table modifications should use the V8 atomic
* swap instruction. This insures the mmu and the cpu are in sync
* with respect to ref/mod bits in the page tables.
*/
static inline unsigned long srmmu_swap(unsigned long *addr, unsigned long value)
{
__asm__ __volatile__("swap [%2], %0" : "=&r" (value) : "0" (value), "r" (addr));
return value;
}
static inline void srmmu_set_pte(pte_t *ptep, pte_t pteval)
{
srmmu_swap((unsigned long *)ptep, pte_val(pteval));
}
/* The very generic SRMMU page table operations. */
static inline int srmmu_device_memory(unsigned long x)
{
return ((x & 0xF0000000) != 0);
}
static int srmmu_cache_pagetables;
/* these will be initialized in srmmu_nocache_calcsize() */
static unsigned long srmmu_nocache_size;
static unsigned long srmmu_nocache_end;
/* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */
#define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4)
/* The context table is a nocache user with the biggest alignment needs. */
#define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS)
void *srmmu_nocache_pool;
void *srmmu_nocache_bitmap;
static struct bit_map srmmu_nocache_map;
static unsigned long srmmu_pte_pfn(pte_t pte)
{
if (srmmu_device_memory(pte_val(pte))) {
/* Just return something that will cause
* pfn_valid() to return false. This makes
* copy_one_pte() to just directly copy to
* PTE over.
*/
return ~0UL;
}
return (pte_val(pte) & SRMMU_PTE_PMASK) >> (PAGE_SHIFT-4);
}
static struct page *srmmu_pmd_page(pmd_t pmd)
{
if (srmmu_device_memory(pmd_val(pmd)))
BUG();
return pfn_to_page((pmd_val(pmd) & SRMMU_PTD_PMASK) >> (PAGE_SHIFT-4));
}
static inline unsigned long srmmu_pgd_page(pgd_t pgd)
{ return srmmu_device_memory(pgd_val(pgd))?~0:(unsigned long)__nocache_va((pgd_val(pgd) & SRMMU_PTD_PMASK) << 4); }
static inline int srmmu_pte_none(pte_t pte)
{ return !(pte_val(pte) & 0xFFFFFFF); }
static inline int srmmu_pte_present(pte_t pte)
{ return ((pte_val(pte) & SRMMU_ET_MASK) == SRMMU_ET_PTE); }
static inline void srmmu_pte_clear(pte_t *ptep)
{ srmmu_set_pte(ptep, __pte(0)); }
static inline int srmmu_pmd_none(pmd_t pmd)
{ return !(pmd_val(pmd) & 0xFFFFFFF); }
static inline int srmmu_pmd_bad(pmd_t pmd)
{ return (pmd_val(pmd) & SRMMU_ET_MASK) != SRMMU_ET_PTD; }
static inline int srmmu_pmd_present(pmd_t pmd)
{ return ((pmd_val(pmd) & SRMMU_ET_MASK) == SRMMU_ET_PTD); }
static inline void srmmu_pmd_clear(pmd_t *pmdp) {
int i;
for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++)
srmmu_set_pte((pte_t *)&pmdp->pmdv[i], __pte(0));
}
static inline int srmmu_pgd_none(pgd_t pgd)
{ return !(pgd_val(pgd) & 0xFFFFFFF); }
static inline int srmmu_pgd_bad(pgd_t pgd)
{ return (pgd_val(pgd) & SRMMU_ET_MASK) != SRMMU_ET_PTD; }
static inline int srmmu_pgd_present(pgd_t pgd)
{ return ((pgd_val(pgd) & SRMMU_ET_MASK) == SRMMU_ET_PTD); }
static inline void srmmu_pgd_clear(pgd_t * pgdp)
{ srmmu_set_pte((pte_t *)pgdp, __pte(0)); }
static inline pte_t srmmu_pte_wrprotect(pte_t pte)
{ return __pte(pte_val(pte) & ~SRMMU_WRITE);}
static inline pte_t srmmu_pte_mkclean(pte_t pte)
{ return __pte(pte_val(pte) & ~SRMMU_DIRTY);}
static inline pte_t srmmu_pte_mkold(pte_t pte)
{ return __pte(pte_val(pte) & ~SRMMU_REF);}
static inline pte_t srmmu_pte_mkwrite(pte_t pte)
{ return __pte(pte_val(pte) | SRMMU_WRITE);}
static inline pte_t srmmu_pte_mkdirty(pte_t pte)
{ return __pte(pte_val(pte) | SRMMU_DIRTY);}
static inline pte_t srmmu_pte_mkyoung(pte_t pte)
{ return __pte(pte_val(pte) | SRMMU_REF);}
/*
* Conversion functions: convert a page and protection to a page entry,
* and a page entry and page directory to the page they refer to.
*/
static pte_t srmmu_mk_pte(struct page *page, pgprot_t pgprot)
{ return __pte((page_to_pfn(page) << (PAGE_SHIFT-4)) | pgprot_val(pgprot)); }
static pte_t srmmu_mk_pte_phys(unsigned long page, pgprot_t pgprot)
{ return __pte(((page) >> 4) | pgprot_val(pgprot)); }
static pte_t srmmu_mk_pte_io(unsigned long page, pgprot_t pgprot, int space)
{ return __pte(((page) >> 4) | (space << 28) | pgprot_val(pgprot)); }
/* XXX should we hyper_flush_whole_icache here - Anton */
static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp)
{ srmmu_set_pte((pte_t *)ctxp, (SRMMU_ET_PTD | (__nocache_pa((unsigned long) pgdp) >> 4))); }
static inline void srmmu_pgd_set(pgd_t * pgdp, pmd_t * pmdp)
{ srmmu_set_pte((pte_t *)pgdp, (SRMMU_ET_PTD | (__nocache_pa((unsigned long) pmdp) >> 4))); }
static void srmmu_pmd_set(pmd_t *pmdp, pte_t *ptep)
{
unsigned long ptp; /* Physical address, shifted right by 4 */
int i;
ptp = __nocache_pa((unsigned long) ptep) >> 4;
for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
srmmu_set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp);
ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4);
}
}
static void srmmu_pmd_populate(pmd_t *pmdp, struct page *ptep)
{
unsigned long ptp; /* Physical address, shifted right by 4 */
int i;
ptp = page_to_pfn(ptep) << (PAGE_SHIFT-4); /* watch for overflow */
for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
srmmu_set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp);
ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4);
}
}
static inline pte_t srmmu_pte_modify(pte_t pte, pgprot_t newprot)
{ return __pte((pte_val(pte) & SRMMU_CHG_MASK) | pgprot_val(newprot)); }
/* to find an entry in a top-level page table... */
static inline pgd_t *srmmu_pgd_offset(struct mm_struct * mm, unsigned long address)
{ return mm->pgd + (address >> SRMMU_PGDIR_SHIFT); }
/* Find an entry in the second-level page table.. */
static inline pmd_t *srmmu_pmd_offset(pgd_t * dir, unsigned long address)
{
return (pmd_t *) srmmu_pgd_page(*dir) +
((address >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
}
/* Find an entry in the third-level page table.. */
static inline pte_t *srmmu_pte_offset(pmd_t * dir, unsigned long address)
{
void *pte;
pte = __nocache_va((dir->pmdv[0] & SRMMU_PTD_PMASK) << 4);
return (pte_t *) pte +
((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
}
static unsigned long srmmu_swp_type(swp_entry_t entry)
{
return (entry.val >> SRMMU_SWP_TYPE_SHIFT) & SRMMU_SWP_TYPE_MASK;
}
static unsigned long srmmu_swp_offset(swp_entry_t entry)
{
return (entry.val >> SRMMU_SWP_OFF_SHIFT) & SRMMU_SWP_OFF_MASK;
}
static swp_entry_t srmmu_swp_entry(unsigned long type, unsigned long offset)
{
return (swp_entry_t) {
(type & SRMMU_SWP_TYPE_MASK) << SRMMU_SWP_TYPE_SHIFT
| (offset & SRMMU_SWP_OFF_MASK) << SRMMU_SWP_OFF_SHIFT };
}
/*
* size: bytes to allocate in the nocache area.
* align: bytes, number to align at.
* Returns the virtual address of the allocated area.
*/
static unsigned long __srmmu_get_nocache(int size, int align)
{
int offset;
if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
printk("Size 0x%x too small for nocache request\n", size);
size = SRMMU_NOCACHE_BITMAP_SHIFT;
}
if (size & (SRMMU_NOCACHE_BITMAP_SHIFT-1)) {
printk("Size 0x%x unaligned int nocache request\n", size);
size += SRMMU_NOCACHE_BITMAP_SHIFT-1;
}
BUG_ON(align > SRMMU_NOCACHE_ALIGN_MAX);
offset = bit_map_string_get(&srmmu_nocache_map,
size >> SRMMU_NOCACHE_BITMAP_SHIFT,
align >> SRMMU_NOCACHE_BITMAP_SHIFT);
if (offset == -1) {
printk("srmmu: out of nocache %d: %d/%d\n",
size, (int) srmmu_nocache_size,
srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
return 0;
}
return (SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT));
}
static unsigned long srmmu_get_nocache(int size, int align)
{
unsigned long tmp;
tmp = __srmmu_get_nocache(size, align);
if (tmp)
memset((void *)tmp, 0, size);
return tmp;
}
static void srmmu_free_nocache(unsigned long vaddr, int size)
{
int offset;
if (vaddr < SRMMU_NOCACHE_VADDR) {
printk("Vaddr %lx is smaller than nocache base 0x%lx\n",
vaddr, (unsigned long)SRMMU_NOCACHE_VADDR);
BUG();
}
if (vaddr+size > srmmu_nocache_end) {
printk("Vaddr %lx is bigger than nocache end 0x%lx\n",
vaddr, srmmu_nocache_end);
BUG();
}
if (!is_power_of_2(size)) {
printk("Size 0x%x is not a power of 2\n", size);
BUG();
}
if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
printk("Size 0x%x is too small\n", size);
BUG();
}
if (vaddr & (size-1)) {
printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr, size);
BUG();
}
offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT;
size = size >> SRMMU_NOCACHE_BITMAP_SHIFT;
bit_map_clear(&srmmu_nocache_map, offset, size);
}
static void srmmu_early_allocate_ptable_skeleton(unsigned long start,
unsigned long end);
extern unsigned long probe_memory(void); /* in fault.c */
/*
* Reserve nocache dynamically proportionally to the amount of
* system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002
*/
static void srmmu_nocache_calcsize(void)
{
unsigned long sysmemavail = probe_memory() / 1024;
int srmmu_nocache_npages;
srmmu_nocache_npages =
sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256;
/* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */
// if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256;
if (srmmu_nocache_npages < SRMMU_MIN_NOCACHE_PAGES)
srmmu_nocache_npages = SRMMU_MIN_NOCACHE_PAGES;
/* anything above 1280 blows up */
if (srmmu_nocache_npages > SRMMU_MAX_NOCACHE_PAGES)
srmmu_nocache_npages = SRMMU_MAX_NOCACHE_PAGES;
srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE;
srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size;
}
static void __init srmmu_nocache_init(void)
{
unsigned int bitmap_bits;
pgd_t *pgd;
pmd_t *pmd;
pte_t *pte;
unsigned long paddr, vaddr;
unsigned long pteval;
bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT;
srmmu_nocache_pool = __alloc_bootmem(srmmu_nocache_size,
SRMMU_NOCACHE_ALIGN_MAX, 0UL);
memset(srmmu_nocache_pool, 0, srmmu_nocache_size);
srmmu_nocache_bitmap = __alloc_bootmem(bitmap_bits >> 3, SMP_CACHE_BYTES, 0UL);
bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits);
srmmu_swapper_pg_dir = (pgd_t *)__srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE);
init_mm.pgd = srmmu_swapper_pg_dir;
srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end);
paddr = __pa((unsigned long)srmmu_nocache_pool);
vaddr = SRMMU_NOCACHE_VADDR;
while (vaddr < srmmu_nocache_end) {
pgd = pgd_offset_k(vaddr);
pmd = srmmu_pmd_offset(__nocache_fix(pgd), vaddr);
pte = srmmu_pte_offset(__nocache_fix(pmd), vaddr);
pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV);
if (srmmu_cache_pagetables)
pteval |= SRMMU_CACHE;
srmmu_set_pte(__nocache_fix(pte), __pte(pteval));
vaddr += PAGE_SIZE;
paddr += PAGE_SIZE;
}
flush_cache_all();
flush_tlb_all();
}
static inline pgd_t *srmmu_get_pgd_fast(void)
{
pgd_t *pgd = NULL;
pgd = (pgd_t *)__srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
if (pgd) {
pgd_t *init = pgd_offset_k(0);
memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t));
memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD,
(PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));
}
return pgd;
}
static void srmmu_free_pgd_fast(pgd_t *pgd)
{
srmmu_free_nocache((unsigned long)pgd, SRMMU_PGD_TABLE_SIZE);
}
static pmd_t *srmmu_pmd_alloc_one(struct mm_struct *mm, unsigned long address)
{
return (pmd_t *)srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
}
static void srmmu_pmd_free(pmd_t * pmd)
{
srmmu_free_nocache((unsigned long)pmd, SRMMU_PMD_TABLE_SIZE);
}
/*
* Hardware needs alignment to 256 only, but we align to whole page size
* to reduce fragmentation problems due to the buddy principle.
* XXX Provide actual fragmentation statistics in /proc.
*
* Alignments up to the page size are the same for physical and virtual
* addresses of the nocache area.
*/
static pte_t *
srmmu_pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
{
return (pte_t *)srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
}
static pgtable_t
srmmu_pte_alloc_one(struct mm_struct *mm, unsigned long address)
{
unsigned long pte;
struct page *page;
if ((pte = (unsigned long)srmmu_pte_alloc_one_kernel(mm, address)) == 0)
return NULL;
page = pfn_to_page( __nocache_pa(pte) >> PAGE_SHIFT );
pgtable_page_ctor(page);
return page;
}
static void srmmu_free_pte_fast(pte_t *pte)
{
srmmu_free_nocache((unsigned long)pte, PTE_SIZE);
}
static void srmmu_pte_free(pgtable_t pte)
{
unsigned long p;
pgtable_page_dtor(pte);
p = (unsigned long)page_address(pte); /* Cached address (for test) */
if (p == 0)
BUG();
p = page_to_pfn(pte) << PAGE_SHIFT; /* Physical address */
p = (unsigned long) __nocache_va(p); /* Nocached virtual */
srmmu_free_nocache(p, PTE_SIZE);
}
/*
*/
static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm)
{
struct ctx_list *ctxp;
ctxp = ctx_free.next;
if(ctxp != &ctx_free) {
remove_from_ctx_list(ctxp);
add_to_used_ctxlist(ctxp);
mm->context = ctxp->ctx_number;
ctxp->ctx_mm = mm;
return;
}
ctxp = ctx_used.next;
if(ctxp->ctx_mm == old_mm)
ctxp = ctxp->next;
if(ctxp == &ctx_used)
panic("out of mmu contexts");
flush_cache_mm(ctxp->ctx_mm);
flush_tlb_mm(ctxp->ctx_mm);
remove_from_ctx_list(ctxp);
add_to_used_ctxlist(ctxp);
ctxp->ctx_mm->context = NO_CONTEXT;
ctxp->ctx_mm = mm;
mm->context = ctxp->ctx_number;
}
static inline void free_context(int context)
{
struct ctx_list *ctx_old;
ctx_old = ctx_list_pool + context;
remove_from_ctx_list(ctx_old);
add_to_free_ctxlist(ctx_old);
}
static void srmmu_switch_mm(struct mm_struct *old_mm, struct mm_struct *mm,
struct task_struct *tsk, int cpu)
{
if(mm->context == NO_CONTEXT) {
spin_lock(&srmmu_context_spinlock);
alloc_context(old_mm, mm);
spin_unlock(&srmmu_context_spinlock);
srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd);
}
if (sparc_cpu_model == sparc_leon)
leon_switch_mm();
if (is_hypersparc)
hyper_flush_whole_icache();
srmmu_set_context(mm->context);
}
/* Low level IO area allocation on the SRMMU. */
static inline void srmmu_mapioaddr(unsigned long physaddr,
unsigned long virt_addr, int bus_type)
{
pgd_t *pgdp;
pmd_t *pmdp;
pte_t *ptep;
unsigned long tmp;
physaddr &= PAGE_MASK;
pgdp = pgd_offset_k(virt_addr);
pmdp = srmmu_pmd_offset(pgdp, virt_addr);
ptep = srmmu_pte_offset(pmdp, virt_addr);
tmp = (physaddr >> 4) | SRMMU_ET_PTE;
/*
* I need to test whether this is consistent over all
* sun4m's. The bus_type represents the upper 4 bits of
* 36-bit physical address on the I/O space lines...
*/
tmp |= (bus_type << 28);
tmp |= SRMMU_PRIV;
__flush_page_to_ram(virt_addr);
srmmu_set_pte(ptep, __pte(tmp));
}
static void srmmu_mapiorange(unsigned int bus, unsigned long xpa,
unsigned long xva, unsigned int len)
{
while (len != 0) {
len -= PAGE_SIZE;
srmmu_mapioaddr(xpa, xva, bus);
xva += PAGE_SIZE;
xpa += PAGE_SIZE;
}
flush_tlb_all();
}
static inline void srmmu_unmapioaddr(unsigned long virt_addr)
{
pgd_t *pgdp;
pmd_t *pmdp;
pte_t *ptep;
pgdp = pgd_offset_k(virt_addr);
pmdp = srmmu_pmd_offset(pgdp, virt_addr);
ptep = srmmu_pte_offset(pmdp, virt_addr);
/* No need to flush uncacheable page. */
srmmu_pte_clear(ptep);
}
static void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len)
{
while (len != 0) {
len -= PAGE_SIZE;
srmmu_unmapioaddr(virt_addr);
virt_addr += PAGE_SIZE;
}
flush_tlb_all();
}
/*
* On the SRMMU we do not have the problems with limited tlb entries
* for mapping kernel pages, so we just take things from the free page
* pool. As a side effect we are putting a little too much pressure
* on the gfp() subsystem. This setup also makes the logic of the
* iommu mapping code a lot easier as we can transparently handle
* mappings on the kernel stack without any special code as we did
* need on the sun4c.
*/
static struct thread_info *srmmu_alloc_thread_info(void)
{
struct thread_info *ret;
ret = (struct thread_info *)__get_free_pages(GFP_KERNEL,
THREAD_INFO_ORDER);
#ifdef CONFIG_DEBUG_STACK_USAGE
if (ret)
memset(ret, 0, PAGE_SIZE << THREAD_INFO_ORDER);
#endif /* DEBUG_STACK_USAGE */
return ret;
}
static void srmmu_free_thread_info(struct thread_info *ti)
{
free_pages((unsigned long)ti, THREAD_INFO_ORDER);
}
/* tsunami.S */
extern void tsunami_flush_cache_all(void);
extern void tsunami_flush_cache_mm(struct mm_struct *mm);
extern void tsunami_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
extern void tsunami_flush_page_to_ram(unsigned long page);
extern void tsunami_flush_page_for_dma(unsigned long page);
extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
extern void tsunami_flush_tlb_all(void);
extern void tsunami_flush_tlb_mm(struct mm_struct *mm);
extern void tsunami_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
extern void tsunami_setup_blockops(void);
/*
* Workaround, until we find what's going on with Swift. When low on memory,
* it sometimes loops in fault/handle_mm_fault incl. flush_tlb_page to find
* out it is already in page tables/ fault again on the same instruction.
* I really don't understand it, have checked it and contexts
* are right, flush_tlb_all is done as well, and it faults again...
* Strange. -jj
*
* The following code is a deadwood that may be necessary when
* we start to make precise page flushes again. --zaitcev
*/
static void swift_update_mmu_cache(struct vm_area_struct * vma, unsigned long address, pte_t pte)
{
#if 0
static unsigned long last;
unsigned int val;
/* unsigned int n; */
if (address == last) {
val = srmmu_hwprobe(address);
if (val != 0 && pte_val(pte) != val) {
printk("swift_update_mmu_cache: "
"addr %lx put %08x probed %08x from %p\n",
address, pte_val(pte), val,
__builtin_return_address(0));
srmmu_flush_whole_tlb();
}
}
last = address;
#endif
}
/* swift.S */
extern void swift_flush_cache_all(void);
extern void swift_flush_cache_mm(struct mm_struct *mm);
extern void swift_flush_cache_range(struct vm_area_struct *vma,
unsigned long start, unsigned long end);
extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
extern void swift_flush_page_to_ram(unsigned long page);
extern void swift_flush_page_for_dma(unsigned long page);
extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
extern void swift_flush_tlb_all(void);
extern void swift_flush_tlb_mm(struct mm_struct *mm);
extern void swift_flush_tlb_range(struct vm_area_struct *vma,
unsigned long start, unsigned long end);
extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
#if 0 /* P3: deadwood to debug precise flushes on Swift. */
void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
{
int cctx, ctx1;
page &= PAGE_MASK;
if ((ctx1 = vma->vm_mm->context) != -1) {
cctx = srmmu_get_context();
/* Is context # ever different from current context? P3 */
if (cctx != ctx1) {
printk("flush ctx %02x curr %02x\n", ctx1, cctx);
srmmu_set_context(ctx1);
swift_flush_page(page);
__asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
"r" (page), "i" (ASI_M_FLUSH_PROBE));
srmmu_set_context(cctx);
} else {
/* Rm. prot. bits from virt. c. */
/* swift_flush_cache_all(); */
/* swift_flush_cache_page(vma, page); */
swift_flush_page(page);
__asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
"r" (page), "i" (ASI_M_FLUSH_PROBE));
/* same as above: srmmu_flush_tlb_page() */
}
}
}
#endif
/*
* The following are all MBUS based SRMMU modules, and therefore could
* be found in a multiprocessor configuration. On the whole, these
* chips seems to be much more touchy about DVMA and page tables
* with respect to cache coherency.
*/
/* Cypress flushes. */
static void cypress_flush_cache_all(void)
{
volatile unsigned long cypress_sucks;
unsigned long faddr, tagval;
flush_user_windows();
for(faddr = 0; faddr < 0x10000; faddr += 0x20) {
__asm__ __volatile__("lda [%1 + %2] %3, %0\n\t" :
"=r" (tagval) :
"r" (faddr), "r" (0x40000),
"i" (ASI_M_DATAC_TAG));
/* If modified and valid, kick it. */
if((tagval & 0x60) == 0x60)
cypress_sucks = *(unsigned long *)(0xf0020000 + faddr);
}
}
static void cypress_flush_cache_mm(struct mm_struct *mm)
{
register unsigned long a, b, c, d, e, f, g;
unsigned long flags, faddr;
int octx;
FLUSH_BEGIN(mm)
flush_user_windows();
local_irq_save(flags);
octx = srmmu_get_context();
srmmu_set_context(mm->context);
a = 0x20; b = 0x40; c = 0x60;
d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
faddr = (0x10000 - 0x100);
goto inside;
do {
faddr -= 0x100;
inside:
__asm__ __volatile__("sta %%g0, [%0] %1\n\t"
"sta %%g0, [%0 + %2] %1\n\t"
"sta %%g0, [%0 + %3] %1\n\t"
"sta %%g0, [%0 + %4] %1\n\t"
"sta %%g0, [%0 + %5] %1\n\t"
"sta %%g0, [%0 + %6] %1\n\t"
"sta %%g0, [%0 + %7] %1\n\t"
"sta %%g0, [%0 + %8] %1\n\t" : :
"r" (faddr), "i" (ASI_M_FLUSH_CTX),
"r" (a), "r" (b), "r" (c), "r" (d),
"r" (e), "r" (f), "r" (g));
} while(faddr);
srmmu_set_context(octx);
local_irq_restore(flags);
FLUSH_END
}
static void cypress_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
{
struct mm_struct *mm = vma->vm_mm;
register unsigned long a, b, c, d, e, f, g;
unsigned long flags, faddr;
int octx;
FLUSH_BEGIN(mm)
flush_user_windows();
local_irq_save(flags);
octx = srmmu_get_context();
srmmu_set_context(mm->context);
a = 0x20; b = 0x40; c = 0x60;
d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
start &= SRMMU_REAL_PMD_MASK;
while(start < end) {
faddr = (start + (0x10000 - 0x100));
goto inside;
do {
faddr -= 0x100;
inside:
__asm__ __volatile__("sta %%g0, [%0] %1\n\t"
"sta %%g0, [%0 + %2] %1\n\t"
"sta %%g0, [%0 + %3] %1\n\t"
"sta %%g0, [%0 + %4] %1\n\t"
"sta %%g0, [%0 + %5] %1\n\t"
"sta %%g0, [%0 + %6] %1\n\t"
"sta %%g0, [%0 + %7] %1\n\t"
"sta %%g0, [%0 + %8] %1\n\t" : :
"r" (faddr),
"i" (ASI_M_FLUSH_SEG),
"r" (a), "r" (b), "r" (c), "r" (d),
"r" (e), "r" (f), "r" (g));
} while (faddr != start);
start += SRMMU_REAL_PMD_SIZE;
}
srmmu_set_context(octx);
local_irq_restore(flags);
FLUSH_END
}
static void cypress_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
{
register unsigned long a, b, c, d, e, f, g;
struct mm_struct *mm = vma->vm_mm;
unsigned long flags, line;
int octx;
FLUSH_BEGIN(mm)
flush_user_windows();
local_irq_save(flags);
octx = srmmu_get_context();
srmmu_set_context(mm->context);
a = 0x20; b = 0x40; c = 0x60;
d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
page &= PAGE_MASK;
line = (page + PAGE_SIZE) - 0x100;
goto inside;
do {
line -= 0x100;
inside:
__asm__ __volatile__("sta %%g0, [%0] %1\n\t"
"sta %%g0, [%0 + %2] %1\n\t"
"sta %%g0, [%0 + %3] %1\n\t"
"sta %%g0, [%0 + %4] %1\n\t"
"sta %%g0, [%0 + %5] %1\n\t"
"sta %%g0, [%0 + %6] %1\n\t"
"sta %%g0, [%0 + %7] %1\n\t"
"sta %%g0, [%0 + %8] %1\n\t" : :
"r" (line),
"i" (ASI_M_FLUSH_PAGE),
"r" (a), "r" (b), "r" (c), "r" (d),
"r" (e), "r" (f), "r" (g));
} while(line != page);
srmmu_set_context(octx);
local_irq_restore(flags);
FLUSH_END
}
/* Cypress is copy-back, at least that is how we configure it. */
static void cypress_flush_page_to_ram(unsigned long page)
{
register unsigned long a, b, c, d, e, f, g;
unsigned long line;
a = 0x20; b = 0x40; c = 0x60; d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
page &= PAGE_MASK;
line = (page + PAGE_SIZE) - 0x100;
goto inside;
do {
line -= 0x100;
inside:
__asm__ __volatile__("sta %%g0, [%0] %1\n\t"
"sta %%g0, [%0 + %2] %1\n\t"
"sta %%g0, [%0 + %3] %1\n\t"
"sta %%g0, [%0 + %4] %1\n\t"
"sta %%g0, [%0 + %5] %1\n\t"
"sta %%g0, [%0 + %6] %1\n\t"
"sta %%g0, [%0 + %7] %1\n\t"
"sta %%g0, [%0 + %8] %1\n\t" : :
"r" (line),
"i" (ASI_M_FLUSH_PAGE),
"r" (a), "r" (b), "r" (c), "r" (d),
"r" (e), "r" (f), "r" (g));
} while(line != page);
}
/* Cypress is also IO cache coherent. */
static void cypress_flush_page_for_dma(unsigned long page)
{
}
/* Cypress has unified L2 VIPT, from which both instructions and data
* are stored. It does not have an onboard icache of any sort, therefore
* no flush is necessary.
*/
static void cypress_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
{
}
static void cypress_flush_tlb_all(void)
{
srmmu_flush_whole_tlb();
}
static void cypress_flush_tlb_mm(struct mm_struct *mm)
{
FLUSH_BEGIN(mm)
__asm__ __volatile__(
"lda [%0] %3, %%g5\n\t"
"sta %2, [%0] %3\n\t"
"sta %%g0, [%1] %4\n\t"
"sta %%g5, [%0] %3\n"
: /* no outputs */
: "r" (SRMMU_CTX_REG), "r" (0x300), "r" (mm->context),
"i" (ASI_M_MMUREGS), "i" (ASI_M_FLUSH_PROBE)
: "g5");
FLUSH_END
}
static void cypress_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
{
struct mm_struct *mm = vma->vm_mm;
unsigned long size;
FLUSH_BEGIN(mm)
start &= SRMMU_PGDIR_MASK;
size = SRMMU_PGDIR_ALIGN(end) - start;
__asm__ __volatile__(
"lda [%0] %5, %%g5\n\t"
"sta %1, [%0] %5\n"
"1:\n\t"
"subcc %3, %4, %3\n\t"
"bne 1b\n\t"
" sta %%g0, [%2 + %3] %6\n\t"
"sta %%g5, [%0] %5\n"
: /* no outputs */
: "r" (SRMMU_CTX_REG), "r" (mm->context), "r" (start | 0x200),
"r" (size), "r" (SRMMU_PGDIR_SIZE), "i" (ASI_M_MMUREGS),
"i" (ASI_M_FLUSH_PROBE)
: "g5", "cc");
FLUSH_END
}
static void cypress_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
{
struct mm_struct *mm = vma->vm_mm;
FLUSH_BEGIN(mm)
__asm__ __volatile__(
"lda [%0] %3, %%g5\n\t"
"sta %1, [%0] %3\n\t"
"sta %%g0, [%2] %4\n\t"
"sta %%g5, [%0] %3\n"
: /* no outputs */
: "r" (SRMMU_CTX_REG), "r" (mm->context), "r" (page & PAGE_MASK),
"i" (ASI_M_MMUREGS), "i" (ASI_M_FLUSH_PROBE)
: "g5");
FLUSH_END
}
/* viking.S */
extern void viking_flush_cache_all(void);
extern void viking_flush_cache_mm(struct mm_struct *mm);
extern void viking_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
unsigned long end);
extern void viking_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
extern void viking_flush_page_to_ram(unsigned long page);
extern void viking_flush_page_for_dma(unsigned long page);
extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr);
extern void viking_flush_page(unsigned long page);
extern void viking_mxcc_flush_page(unsigned long page);
extern void viking_flush_tlb_all(void);
extern void viking_flush_tlb_mm(struct mm_struct *mm);
extern void viking_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
unsigned long end);
extern void viking_flush_tlb_page(struct vm_area_struct *vma,
unsigned long page);
extern void sun4dsmp_flush_tlb_all(void);
extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm);
extern void sun4dsmp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
unsigned long end);
extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma,
unsigned long page);
/* hypersparc.S */
extern void hypersparc_flush_cache_all(void);
extern void hypersparc_flush_cache_mm(struct mm_struct *mm);
extern void hypersparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
extern void hypersparc_flush_page_to_ram(unsigned long page);
extern void hypersparc_flush_page_for_dma(unsigned long page);
extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
extern void hypersparc_flush_tlb_all(void);
extern void hypersparc_flush_tlb_mm(struct mm_struct *mm);
extern void hypersparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
extern void hypersparc_setup_blockops(void);
/*
* NOTE: All of this startup code assumes the low 16mb (approx.) of
* kernel mappings are done with one single contiguous chunk of
* ram. On small ram machines (classics mainly) we only get
* around 8mb mapped for us.
*/
static void __init early_pgtable_allocfail(char *type)
{
prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type);
prom_halt();
}
static void __init srmmu_early_allocate_ptable_skeleton(unsigned long start,
unsigned long end)
{
pgd_t *pgdp;
pmd_t *pmdp;
pte_t *ptep;
while(start < end) {
pgdp = pgd_offset_k(start);
if(srmmu_pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
pmdp = (pmd_t *) __srmmu_get_nocache(
SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
if (pmdp == NULL)
early_pgtable_allocfail("pmd");
memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
srmmu_pgd_set(__nocache_fix(pgdp), pmdp);
}
pmdp = srmmu_pmd_offset(__nocache_fix(pgdp), start);
if(srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
ptep = (pte_t *)__srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
if (ptep == NULL)
early_pgtable_allocfail("pte");
memset(__nocache_fix(ptep), 0, PTE_SIZE);
srmmu_pmd_set(__nocache_fix(pmdp), ptep);
}
if (start > (0xffffffffUL - PMD_SIZE))
break;
start = (start + PMD_SIZE) & PMD_MASK;
}
}
static void __init srmmu_allocate_ptable_skeleton(unsigned long start,
unsigned long end)
{
pgd_t *pgdp;
pmd_t *pmdp;
pte_t *ptep;
while(start < end) {
pgdp = pgd_offset_k(start);
if(srmmu_pgd_none(*pgdp)) {
pmdp = (pmd_t *)__srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
if (pmdp == NULL)
early_pgtable_allocfail("pmd");
memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE);
srmmu_pgd_set(pgdp, pmdp);
}
pmdp = srmmu_pmd_offset(pgdp, start);
if(srmmu_pmd_none(*pmdp)) {
ptep = (pte_t *) __srmmu_get_nocache(PTE_SIZE,
PTE_SIZE);
if (ptep == NULL)
early_pgtable_allocfail("pte");
memset(ptep, 0, PTE_SIZE);
srmmu_pmd_set(pmdp, ptep);
}
if (start > (0xffffffffUL - PMD_SIZE))
break;
start = (start + PMD_SIZE) & PMD_MASK;
}
}
/*
* This is much cleaner than poking around physical address space
* looking at the prom's page table directly which is what most
* other OS's do. Yuck... this is much better.
*/
static void __init srmmu_inherit_prom_mappings(unsigned long start,
unsigned long end)
{
pgd_t *pgdp;
pmd_t *pmdp;
pte_t *ptep;
int what = 0; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */
unsigned long prompte;
while(start <= end) {
if (start == 0)
break; /* probably wrap around */
if(start == 0xfef00000)
start = KADB_DEBUGGER_BEGVM;
if(!(prompte = srmmu_hwprobe(start))) {
start += PAGE_SIZE;
continue;
}
/* A red snapper, see what it really is. */
what = 0;
if(!(start & ~(SRMMU_REAL_PMD_MASK))) {
if(srmmu_hwprobe((start-PAGE_SIZE) + SRMMU_REAL_PMD_SIZE) == prompte)
what = 1;
}
if(!(start & ~(SRMMU_PGDIR_MASK))) {
if(srmmu_hwprobe((start-PAGE_SIZE) + SRMMU_PGDIR_SIZE) ==
prompte)
what = 2;
}
pgdp = pgd_offset_k(start);
if(what == 2) {
*(pgd_t *)__nocache_fix(pgdp) = __pgd(prompte);
start += SRMMU_PGDIR_SIZE;
continue;
}
if(srmmu_pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
pmdp = (pmd_t *)__srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
if (pmdp == NULL)
early_pgtable_allocfail("pmd");
memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
srmmu_pgd_set(__nocache_fix(pgdp), pmdp);
}
pmdp = srmmu_pmd_offset(__nocache_fix(pgdp), start);
if(srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
ptep = (pte_t *) __srmmu_get_nocache(PTE_SIZE,
PTE_SIZE);
if (ptep == NULL)
early_pgtable_allocfail("pte");
memset(__nocache_fix(ptep), 0, PTE_SIZE);
srmmu_pmd_set(__nocache_fix(pmdp), ptep);
}
if(what == 1) {
/*
* We bend the rule where all 16 PTPs in a pmd_t point
* inside the same PTE page, and we leak a perfectly
* good hardware PTE piece. Alternatives seem worse.
*/
unsigned int x; /* Index of HW PMD in soft cluster */
x = (start >> PMD_SHIFT) & 15;
*(unsigned long *)__nocache_fix(&pmdp->pmdv[x]) = prompte;
start += SRMMU_REAL_PMD_SIZE;
continue;
}
ptep = srmmu_pte_offset(__nocache_fix(pmdp), start);
*(pte_t *)__nocache_fix(ptep) = __pte(prompte);
start += PAGE_SIZE;
}
}
#define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID)
/* Create a third-level SRMMU 16MB page mapping. */
static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base)
{
pgd_t *pgdp = pgd_offset_k(vaddr);
unsigned long big_pte;
big_pte = KERNEL_PTE(phys_base >> 4);
*(pgd_t *)__nocache_fix(pgdp) = __pgd(big_pte);
}
/* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */
static unsigned long __init map_spbank(unsigned long vbase, int sp_entry)
{
unsigned long pstart = (sp_banks[sp_entry].base_addr & SRMMU_PGDIR_MASK);
unsigned long vstart = (vbase & SRMMU_PGDIR_MASK);
unsigned long vend = SRMMU_PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes);
/* Map "low" memory only */
const unsigned long min_vaddr = PAGE_OFFSET;
const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM;
if (vstart < min_vaddr || vstart >= max_vaddr)
return vstart;
if (vend > max_vaddr || vend < min_vaddr)
vend = max_vaddr;
while(vstart < vend) {
do_large_mapping(vstart, pstart);
vstart += SRMMU_PGDIR_SIZE; pstart += SRMMU_PGDIR_SIZE;
}
return vstart;
}
static inline void memprobe_error(char *msg)
{
prom_printf(msg);
prom_printf("Halting now...\n");
prom_halt();
}
static inline void map_kernel(void)
{
int i;
if (phys_base > 0) {
do_large_mapping(PAGE_OFFSET, phys_base);
}
for (i = 0; sp_banks[i].num_bytes != 0; i++) {
map_spbank((unsigned long)__va(sp_banks[i].base_addr), i);
}
BTFIXUPSET_SIMM13(user_ptrs_per_pgd, PAGE_OFFSET / SRMMU_PGDIR_SIZE);
}
/* Paging initialization on the Sparc Reference MMU. */
extern void sparc_context_init(int);
void (*poke_srmmu)(void) __cpuinitdata = NULL;
extern unsigned long bootmem_init(unsigned long *pages_avail);
void __init srmmu_paging_init(void)
{
int i, cpunode;
char node_str[128];
pgd_t *pgd;
pmd_t *pmd;
pte_t *pte;
unsigned long pages_avail;
sparc_iomap.start = SUN4M_IOBASE_VADDR; /* 16MB of IOSPACE on all sun4m's. */
if (sparc_cpu_model == sun4d)
num_contexts = 65536; /* We know it is Viking */
else {
/* Find the number of contexts on the srmmu. */
cpunode = prom_getchild(prom_root_node);
num_contexts = 0;
while(cpunode != 0) {
prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
if(!strcmp(node_str, "cpu")) {
num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8);
break;
}
cpunode = prom_getsibling(cpunode);
}
}
if(!num_contexts) {
prom_printf("Something wrong, can't find cpu node in paging_init.\n");
prom_halt();
}
pages_avail = 0;
last_valid_pfn = bootmem_init(&pages_avail);
srmmu_nocache_calcsize();
srmmu_nocache_init();
srmmu_inherit_prom_mappings(0xfe400000,(LINUX_OPPROM_ENDVM-PAGE_SIZE));
map_kernel();
/* ctx table has to be physically aligned to its size */
srmmu_context_table = (ctxd_t *)__srmmu_get_nocache(num_contexts*sizeof(ctxd_t), num_contexts*sizeof(ctxd_t));
srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa((unsigned long)srmmu_context_table);
for(i = 0; i < num_contexts; i++)
srmmu_ctxd_set((ctxd_t *)__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir);
flush_cache_all();
srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys);
#ifdef CONFIG_SMP
/* Stop from hanging here... */
local_flush_tlb_all();
#else
flush_tlb_all();
#endif
poke_srmmu();
srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END);
srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END);
srmmu_allocate_ptable_skeleton(
__fix_to_virt(__end_of_fixed_addresses - 1), FIXADDR_TOP);
srmmu_allocate_ptable_skeleton(PKMAP_BASE, PKMAP_END);
pgd = pgd_offset_k(PKMAP_BASE);
pmd = srmmu_pmd_offset(pgd, PKMAP_BASE);
pte = srmmu_pte_offset(pmd, PKMAP_BASE);
pkmap_page_table = pte;
flush_cache_all();
flush_tlb_all();
sparc_context_init(num_contexts);
kmap_init();
{
unsigned long zones_size[MAX_NR_ZONES];
unsigned long zholes_size[MAX_NR_ZONES];
unsigned long npages;
int znum;
for (znum = 0; znum < MAX_NR_ZONES; znum++)
zones_size[znum] = zholes_size[znum] = 0;
npages = max_low_pfn - pfn_base;
zones_size[ZONE_DMA] = npages;
zholes_size[ZONE_DMA] = npages - pages_avail;
npages = highend_pfn - max_low_pfn;
zones_size[ZONE_HIGHMEM] = npages;
zholes_size[ZONE_HIGHMEM] = npages - calc_highpages();
free_area_init_node(0, zones_size, pfn_base, zholes_size);
}
}
static void srmmu_mmu_info(struct seq_file *m)
{
seq_printf(m,
"MMU type\t: %s\n"
"contexts\t: %d\n"
"nocache total\t: %ld\n"
"nocache used\t: %d\n",
srmmu_name,
num_contexts,
srmmu_nocache_size,
srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
}
static void srmmu_update_mmu_cache(struct vm_area_struct * vma, unsigned long address, pte_t pte)
{
}
static void srmmu_destroy_context(struct mm_struct *mm)
{
if(mm->context != NO_CONTEXT) {
flush_cache_mm(mm);
srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir);
flush_tlb_mm(mm);
spin_lock(&srmmu_context_spinlock);
free_context(mm->context);
spin_unlock(&srmmu_context_spinlock);
mm->context = NO_CONTEXT;
}
}
/* Init various srmmu chip types. */
static void __init srmmu_is_bad(void)
{
prom_printf("Could not determine SRMMU chip type.\n");
prom_halt();
}
static void __init init_vac_layout(void)
{
int nd, cache_lines;
char node_str[128];
#ifdef CONFIG_SMP
int cpu = 0;
unsigned long max_size = 0;
unsigned long min_line_size = 0x10000000;
#endif
nd = prom_getchild(prom_root_node);
while((nd = prom_getsibling(nd)) != 0) {
prom_getstring(nd, "device_type", node_str, sizeof(node_str));
if(!strcmp(node_str, "cpu")) {
vac_line_size = prom_getint(nd, "cache-line-size");
if (vac_line_size == -1) {
prom_printf("can't determine cache-line-size, "
"halting.\n");
prom_halt();
}
cache_lines = prom_getint(nd, "cache-nlines");
if (cache_lines == -1) {
prom_printf("can't determine cache-nlines, halting.\n");
prom_halt();
}
vac_cache_size = cache_lines * vac_line_size;
#ifdef CONFIG_SMP
if(vac_cache_size > max_size)
max_size = vac_cache_size;
if(vac_line_size < min_line_size)
min_line_size = vac_line_size;
//FIXME: cpus not contiguous!!
cpu++;
if (cpu >= nr_cpu_ids || !cpu_online(cpu))
break;
#else
break;
#endif
}
}
if(nd == 0) {
prom_printf("No CPU nodes found, halting.\n");
prom_halt();
}
#ifdef CONFIG_SMP
vac_cache_size = max_size;
vac_line_size = min_line_size;
#endif
printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n",
(int)vac_cache_size, (int)vac_line_size);
}
static void __cpuinit poke_hypersparc(void)
{
volatile unsigned long clear;
unsigned long mreg = srmmu_get_mmureg();
hyper_flush_unconditional_combined();
mreg &= ~(HYPERSPARC_CWENABLE);
mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE);
mreg |= (HYPERSPARC_CMODE);
srmmu_set_mmureg(mreg);
#if 0 /* XXX I think this is bad news... -DaveM */
hyper_clear_all_tags();
#endif
put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE);
hyper_flush_whole_icache();
clear = srmmu_get_faddr();
clear = srmmu_get_fstatus();
}
static void __init init_hypersparc(void)
{
srmmu_name = "ROSS HyperSparc";
srmmu_modtype = HyperSparc;
init_vac_layout();
is_hypersparc = 1;
BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(flush_cache_all, hypersparc_flush_cache_all, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(flush_cache_mm, hypersparc_flush_cache_mm, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(flush_cache_range, hypersparc_flush_cache_range, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(flush_cache_page, hypersparc_flush_cache_page, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(flush_tlb_all, hypersparc_flush_tlb_all, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(flush_tlb_mm, hypersparc_flush_tlb_mm, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(flush_tlb_range, hypersparc_flush_tlb_range, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(flush_tlb_page, hypersparc_flush_tlb_page, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(__flush_page_to_ram, hypersparc_flush_page_to_ram, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(flush_sig_insns, hypersparc_flush_sig_insns, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(flush_page_for_dma, hypersparc_flush_page_for_dma, BTFIXUPCALL_NOP);
poke_srmmu = poke_hypersparc;
hypersparc_setup_blockops();
}
static void __cpuinit poke_cypress(void)
{
unsigned long mreg = srmmu_get_mmureg();
unsigned long faddr, tagval;
volatile unsigned long cypress_sucks;
volatile unsigned long clear;
clear = srmmu_get_faddr();
clear = srmmu_get_fstatus();
if (!(mreg & CYPRESS_CENABLE)) {
for(faddr = 0x0; faddr < 0x10000; faddr += 20) {
__asm__ __volatile__("sta %%g0, [%0 + %1] %2\n\t"
"sta %%g0, [%0] %2\n\t" : :
"r" (faddr), "r" (0x40000),
"i" (ASI_M_DATAC_TAG));
}
} else {
for(faddr = 0; faddr < 0x10000; faddr += 0x20) {
__asm__ __volatile__("lda [%1 + %2] %3, %0\n\t" :
"=r" (tagval) :
"r" (faddr), "r" (0x40000),
"i" (ASI_M_DATAC_TAG));
/* If modified and valid, kick it. */
if((tagval & 0x60) == 0x60)
cypress_sucks = *(unsigned long *)
(0xf0020000 + faddr);
}
}
/* And one more, for our good neighbor, Mr. Broken Cypress. */
clear = srmmu_get_faddr();
clear = srmmu_get_fstatus();
mreg |= (CYPRESS_CENABLE | CYPRESS_CMODE);
srmmu_set_mmureg(mreg);
}
static void __init init_cypress_common(void)
{
init_vac_layout();
BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(flush_cache_all, cypress_flush_cache_all, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(flush_cache_mm, cypress_flush_cache_mm, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(flush_cache_range, cypress_flush_cache_range, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(flush_cache_page, cypress_flush_cache_page, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(flush_tlb_all, cypress_flush_tlb_all, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(flush_tlb_mm, cypress_flush_tlb_mm, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(flush_tlb_page, cypress_flush_tlb_page, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(flush_tlb_range, cypress_flush_tlb_range, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(__flush_page_to_ram, cypress_flush_page_to_ram, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(flush_sig_insns, cypress_flush_sig_insns, BTFIXUPCALL_NOP);
BTFIXUPSET_CALL(flush_page_for_dma, cypress_flush_page_for_dma, BTFIXUPCALL_NOP);
poke_srmmu = poke_cypress;
}
static void __init init_cypress_604(void)
{
srmmu_name = "ROSS Cypress-604(UP)";
srmmu_modtype = Cypress;
init_cypress_common();
}
static void __init init_cypress_605(unsigned long mrev)
{
srmmu_name = "ROSS Cypress-605(MP)";
if(mrev == 0xe) {
srmmu_modtype = Cypress_vE;
hwbug_bitmask |= HWBUG_COPYBACK_BROKEN;
} else {
if(mrev == 0xd) {
srmmu_modtype = Cypress_vD;
hwbug_bitmask |= HWBUG_ASIFLUSH_BROKEN;
} else {
srmmu_modtype = Cypress;
}
}
init_cypress_common();
}
static void __cpuinit poke_swift(void)
{
unsigned long mreg;
/* Clear any crap from the cache or else... */
swift_flush_cache_all();
/* Enable I & D caches */
mreg = srmmu_get_mmureg();
mreg |= (SWIFT_IE | SWIFT_DE);
/*
* The Swift branch folding logic is completely broken. At
* trap time, if things are just right, if can mistakenly
* think that a trap is coming from kernel mode when in fact
* it is coming from user mode (it mis-executes the branch in
* the trap code). So you see things like crashme completely
* hosing your machine which is completely unacceptable. Turn
* this shit off... nice job Fujitsu.
*/
mreg &= ~(SWIFT_BF);
srmmu_set_mmureg(mreg);
}
#define SWIFT_MASKID_ADDR 0x10003018
static void __init init_swift(void)
{
unsigned long swift_rev;
__asm__ __volatile__("lda [%1] %2, %0\n\t"
"srl %0, 0x18, %0\n\t" :
"=r" (swift_rev) :
"r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS));
srmmu_name = "Fujitsu Swift";
switch(swift_rev) {
case 0x11:
case 0x20:
case 0x23:
case 0x30:
srmmu_modtype = Swift_lots_o_bugs;
hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN);
/*
* Gee george, I wonder why Sun is so hush hush about
* this hardware bug... really braindamage stuff going
* on here. However I think we can find a way to avoid
* all of the workaround overhead under Linux. Basically,
* any page fault can cause kernel pages to become user
* accessible (the mmu gets confused and clears some of
* the ACC bits in kernel ptes). Aha, sounds pretty
* horrible eh? But wait, after extensive testing it appears
* that if you use pgd_t level large kernel pte's (like the
* 4MB pages on the Pentium) the bug does not get tripped
* at all. This avoids almost all of the major overhead.
* Welcome to a world where your vendor tells you to,
* "apply this kernel patch" instead of "sorry for the
* broken hardware, send it back and we'll give you
* properly functioning parts"
*/
break;
case 0x25:
case 0x31:
srmmu_modtype = Swift_bad_c;
hwbug_bitmask |= HWBUG_KERN_CBITBROKEN;
/*
* You see Sun allude to this hardware bug but never
* admit things directly, they'll say things like,
* "the Swift chip cache problems" or similar.
*/
break;
default:
srmmu_modtype = Swift_ok;
break;
};
BTFIXUPSET_CALL(flush_cache_all, swift_flush_cache_all, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(flush_cache_mm, swift_flush_cache_mm, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(flush_cache_page, swift_flush_cache_page, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(flush_cache_range, swift_flush_cache_range, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(flush_tlb_all, swift_flush_tlb_all, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(flush_tlb_mm, swift_flush_tlb_mm, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(flush_tlb_page, swift_flush_tlb_page, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(flush_tlb_range, swift_flush_tlb_range, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(__flush_page_to_ram, swift_flush_page_to_ram, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(flush_sig_insns, swift_flush_sig_insns, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(flush_page_for_dma, swift_flush_page_for_dma, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(update_mmu_cache, swift_update_mmu_cache, BTFIXUPCALL_NORM);
flush_page_for_dma_global = 0;
/*
* Are you now convinced that the Swift is one of the
* biggest VLSI abortions of all time? Bravo Fujitsu!
* Fujitsu, the !#?!%$'d up processor people. I bet if
* you examined the microcode of the Swift you'd find
* XXX's all over the place.
*/
poke_srmmu = poke_swift;
}
static void turbosparc_flush_cache_all(void)
{
flush_user_windows();
turbosparc_idflash_clear();
}
static void turbosparc_flush_cache_mm(struct mm_struct *mm)
{
FLUSH_BEGIN(mm)
flush_user_windows();
turbosparc_idflash_clear();
FLUSH_END
}
static void turbosparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
{
FLUSH_BEGIN(vma->vm_mm)
flush_user_windows();
turbosparc_idflash_clear();
FLUSH_END
}
static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
{
FLUSH_BEGIN(vma->vm_mm)
flush_user_windows();
if (vma->vm_flags & VM_EXEC)
turbosparc_flush_icache();
turbosparc_flush_dcache();
FLUSH_END
}
/* TurboSparc is copy-back, if we turn it on, but this does not work. */
static void turbosparc_flush_page_to_ram(unsigned long page)
{
#ifdef TURBOSPARC_WRITEBACK
volatile unsigned long clear;
if (srmmu_hwprobe(page))
turbosparc_flush_page_cache(page);
clear = srmmu_get_fstatus();
#endif
}
static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
{
}
static void turbosparc_flush_page_for_dma(unsigned long page)
{
turbosparc_flush_dcache();
}
static void turbosparc_flush_tlb_all(void)
{
srmmu_flush_whole_tlb();
}
static void turbosparc_flush_tlb_mm(struct mm_struct *mm)
{
FLUSH_BEGIN(mm)
srmmu_flush_whole_tlb();
FLUSH_END
}
static void turbosparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
{
FLUSH_BEGIN(vma->vm_mm)
srmmu_flush_whole_tlb();
FLUSH_END
}
static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
{
FLUSH_BEGIN(vma->vm_mm)
srmmu_flush_whole_tlb();
FLUSH_END
}
static void __cpuinit poke_turbosparc(void)
{
unsigned long mreg = srmmu_get_mmureg();
unsigned long ccreg;
/* Clear any crap from the cache or else... */
turbosparc_flush_cache_all();
mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* Temporarily disable I & D caches */
mreg &= ~(TURBOSPARC_PCENABLE); /* Don't check parity */
srmmu_set_mmureg(mreg);
ccreg = turbosparc_get_ccreg();
#ifdef TURBOSPARC_WRITEBACK
ccreg |= (TURBOSPARC_SNENABLE); /* Do DVMA snooping in Dcache */
ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE);
/* Write-back D-cache, emulate VLSI
* abortion number three, not number one */
#else
/* For now let's play safe, optimize later */
ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE);
/* Do DVMA snooping in Dcache, Write-thru D-cache */
ccreg &= ~(TURBOSPARC_uS2);
/* Emulate VLSI abortion number three, not number one */
#endif
switch (ccreg & 7) {
case 0: /* No SE cache */
case 7: /* Test mode */
break;
default:
ccreg |= (TURBOSPARC_SCENABLE);
}
turbosparc_set_ccreg (ccreg);
mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */
mreg |= (TURBOSPARC_ICSNOOP); /* Icache snooping on */
srmmu_set_mmureg(mreg);
}
static void __init init_turbosparc(void)
{
srmmu_name = "Fujitsu TurboSparc";
srmmu_modtype = TurboSparc;
BTFIXUPSET_CALL(flush_cache_all, turbosparc_flush_cache_all, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(flush_cache_mm, turbosparc_flush_cache_mm, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(flush_cache_page, turbosparc_flush_cache_page, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(flush_cache_range, turbosparc_flush_cache_range, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(flush_tlb_all, turbosparc_flush_tlb_all, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(flush_tlb_mm, turbosparc_flush_tlb_mm, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(flush_tlb_page, turbosparc_flush_tlb_page, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(flush_tlb_range, turbosparc_flush_tlb_range, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(__flush_page_to_ram, turbosparc_flush_page_to_ram, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(flush_sig_insns, turbosparc_flush_sig_insns, BTFIXUPCALL_NOP);
BTFIXUPSET_CALL(flush_page_for_dma, turbosparc_flush_page_for_dma, BTFIXUPCALL_NORM);
poke_srmmu = poke_turbosparc;
}
static void __cpuinit poke_tsunami(void)
{
unsigned long mreg = srmmu_get_mmureg();
tsunami_flush_icache();
tsunami_flush_dcache();
mreg &= ~TSUNAMI_ITD;
mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB);
srmmu_set_mmureg(mreg);
}
static void __init init_tsunami(void)
{
/*
* Tsunami's pretty sane, Sun and TI actually got it
* somewhat right this time. Fujitsu should have
* taken some lessons from them.
*/
srmmu_name = "TI Tsunami";
srmmu_modtype = Tsunami;
BTFIXUPSET_CALL(flush_cache_all, tsunami_flush_cache_all, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(flush_cache_mm, tsunami_flush_cache_mm, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(flush_cache_page, tsunami_flush_cache_page, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(flush_cache_range, tsunami_flush_cache_range, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(flush_tlb_all, tsunami_flush_tlb_all, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(flush_tlb_mm, tsunami_flush_tlb_mm, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(flush_tlb_page, tsunami_flush_tlb_page, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(flush_tlb_range, tsunami_flush_tlb_range, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(__flush_page_to_ram, tsunami_flush_page_to_ram, BTFIXUPCALL_NOP);
BTFIXUPSET_CALL(flush_sig_insns, tsunami_flush_sig_insns, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(flush_page_for_dma, tsunami_flush_page_for_dma, BTFIXUPCALL_NORM);
poke_srmmu = poke_tsunami;
tsunami_setup_blockops();
}
static void __cpuinit poke_viking(void)
{
unsigned long mreg = srmmu_get_mmureg();
static int smp_catch;
if(viking_mxcc_present) {
unsigned long mxcc_control = mxcc_get_creg();
mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE);
mxcc_control &= ~(MXCC_CTL_RRC);
mxcc_set_creg(mxcc_control);
/*
* We don't need memory parity checks.
* XXX This is a mess, have to dig out later. ecd.
viking_mxcc_turn_off_parity(&mreg, &mxcc_control);
*/
/* We do cache ptables on MXCC. */
mreg |= VIKING_TCENABLE;
} else {
unsigned long bpreg;
mreg &= ~(VIKING_TCENABLE);
if(smp_catch++) {
/* Must disable mixed-cmd mode here for other cpu's. */
bpreg = viking_get_bpreg();
bpreg &= ~(VIKING_ACTION_MIX);
viking_set_bpreg(bpreg);
/* Just in case PROM does something funny. */
msi_set_sync();
}
}
mreg |= VIKING_SPENABLE;
mreg |= (VIKING_ICENABLE | VIKING_DCENABLE);
mreg |= VIKING_SBENABLE;
mreg &= ~(VIKING_ACENABLE);
srmmu_set_mmureg(mreg);
}
static void __init init_viking(void)
{
unsigned long mreg = srmmu_get_mmureg();
/* Ahhh, the viking. SRMMU VLSI abortion number two... */
if(mreg & VIKING_MMODE) {
srmmu_name = "TI Viking";
viking_mxcc_present = 0;
msi_set_sync();
BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_NORM);
/*
* We need this to make sure old viking takes no hits
* on it's cache for dma snoops to workaround the
* "load from non-cacheable memory" interrupt bug.
* This is only necessary because of the new way in
* which we use the IOMMU.
*/
BTFIXUPSET_CALL(flush_page_for_dma, viking_flush_page, BTFIXUPCALL_NORM);
flush_page_for_dma_global = 0;
} else {
srmmu_name = "TI Viking/MXCC";
viking_mxcc_present = 1;
srmmu_cache_pagetables = 1;
/* MXCC vikings lack the DMA snooping bug. */
BTFIXUPSET_CALL(flush_page_for_dma, viking_flush_page_for_dma, BTFIXUPCALL_NOP);
}
BTFIXUPSET_CALL(flush_cache_all, viking_flush_cache_all, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(flush_cache_mm, viking_flush_cache_mm, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(flush_cache_page, viking_flush_cache_page, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(flush_cache_range, viking_flush_cache_range, BTFIXUPCALL_NORM);
#ifdef CONFIG_SMP
if (sparc_cpu_model == sun4d) {
BTFIXUPSET_CALL(flush_tlb_all, sun4dsmp_flush_tlb_all, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(flush_tlb_mm, sun4dsmp_flush_tlb_mm, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(flush_tlb_page, sun4dsmp_flush_tlb_page, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(flush_tlb_range, sun4dsmp_flush_tlb_range, BTFIXUPCALL_NORM);
} else
#endif
{
BTFIXUPSET_CALL(flush_tlb_all, viking_flush_tlb_all, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(flush_tlb_mm, viking_flush_tlb_mm, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(flush_tlb_page, viking_flush_tlb_page, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(flush_tlb_range, viking_flush_tlb_range, BTFIXUPCALL_NORM);
}
BTFIXUPSET_CALL(__flush_page_to_ram, viking_flush_page_to_ram, BTFIXUPCALL_NOP);
BTFIXUPSET_CALL(flush_sig_insns, viking_flush_sig_insns, BTFIXUPCALL_NOP);
poke_srmmu = poke_viking;
}
#ifdef CONFIG_SPARC_LEON
void __init poke_leonsparc(void)
{
}
void __init init_leon(void)
{
srmmu_name = "LEON";
BTFIXUPSET_CALL(flush_cache_all, leon_flush_cache_all,
BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(flush_cache_mm, leon_flush_cache_all,
BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(flush_cache_page, leon_flush_pcache_all,
BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(flush_cache_range, leon_flush_cache_all,
BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(flush_page_for_dma, leon_flush_dcache_all,
BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(flush_tlb_all, leon_flush_tlb_all, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(flush_tlb_mm, leon_flush_tlb_all, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(flush_tlb_page, leon_flush_tlb_all, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(flush_tlb_range, leon_flush_tlb_all, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(__flush_page_to_ram, leon_flush_cache_all,
BTFIXUPCALL_NOP);
BTFIXUPSET_CALL(flush_sig_insns, leon_flush_cache_all, BTFIXUPCALL_NOP);
poke_srmmu = poke_leonsparc;
srmmu_cache_pagetables = 0;
leon_flush_during_switch = leon_flush_needed();
}
#endif
/* Probe for the srmmu chip version. */
static void __init get_srmmu_type(void)
{
unsigned long mreg, psr;
unsigned long mod_typ, mod_rev, psr_typ, psr_vers;
srmmu_modtype = SRMMU_INVAL_MOD;
hwbug_bitmask = 0;
mreg = srmmu_get_mmureg(); psr = get_psr();
mod_typ = (mreg & 0xf0000000) >> 28;
mod_rev = (mreg & 0x0f000000) >> 24;
psr_typ = (psr >> 28) & 0xf;
psr_vers = (psr >> 24) & 0xf;
/* First, check for sparc-leon. */
if (sparc_cpu_model == sparc_leon) {
init_leon();
return;
}
/* Second, check for HyperSparc or Cypress. */
if(mod_typ == 1) {
switch(mod_rev) {
case 7:
/* UP or MP Hypersparc */
init_hypersparc();
break;
case 0:
case 2:
/* Uniprocessor Cypress */
init_cypress_604();
break;
case 10:
case 11:
case 12:
/* _REALLY OLD_ Cypress MP chips... */
case 13:
case 14:
case 15:
/* MP Cypress mmu/cache-controller */
init_cypress_605(mod_rev);
break;
default:
/* Some other Cypress revision, assume a 605. */
init_cypress_605(mod_rev);
break;
};
return;
}
/*
* Now Fujitsu TurboSparc. It might happen that it is
* in Swift emulation mode, so we will check later...
*/
if (psr_typ == 0 && psr_vers == 5) {
init_turbosparc();
return;
}
/* Next check for Fujitsu Swift. */
if(psr_typ == 0 && psr_vers == 4) {
int cpunode;
char node_str[128];
/* Look if it is not a TurboSparc emulating Swift... */
cpunode = prom_getchild(prom_root_node);
while((cpunode = prom_getsibling(cpunode)) != 0) {
prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
if(!strcmp(node_str, "cpu")) {
if (!prom_getintdefault(cpunode, "psr-implementation", 1) &&
prom_getintdefault(cpunode, "psr-version", 1) == 5) {
init_turbosparc();
return;
}
break;
}
}
init_swift();
return;
}
/* Now the Viking family of srmmu. */
if(psr_typ == 4 &&
((psr_vers == 0) ||
((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) {
init_viking();
return;
}
/* Finally the Tsunami. */
if(psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) {
init_tsunami();
return;
}
/* Oh well */
srmmu_is_bad();
}
/* don't laugh, static pagetables */
static void srmmu_check_pgt_cache(int low, int high)
{
}
extern unsigned long spwin_mmu_patchme, fwin_mmu_patchme,
tsetup_mmu_patchme, rtrap_mmu_patchme;
extern unsigned long spwin_srmmu_stackchk, srmmu_fwin_stackchk,
tsetup_srmmu_stackchk, srmmu_rett_stackchk;
extern unsigned long srmmu_fault;
#define PATCH_BRANCH(insn, dest) do { \
iaddr = &(insn); \
daddr = &(dest); \
*iaddr = SPARC_BRANCH((unsigned long) daddr, (unsigned long) iaddr); \
} while(0)
static void __init patch_window_trap_handlers(void)
{
unsigned long *iaddr, *daddr;
PATCH_BRANCH(spwin_mmu_patchme, spwin_srmmu_stackchk);
PATCH_BRANCH(fwin_mmu_patchme, srmmu_fwin_stackchk);
PATCH_BRANCH(tsetup_mmu_patchme, tsetup_srmmu_stackchk);
PATCH_BRANCH(rtrap_mmu_patchme, srmmu_rett_stackchk);
PATCH_BRANCH(sparc_ttable[SP_TRAP_TFLT].inst_three, srmmu_fault);
PATCH_BRANCH(sparc_ttable[SP_TRAP_DFLT].inst_three, srmmu_fault);
PATCH_BRANCH(sparc_ttable[SP_TRAP_DACC].inst_three, srmmu_fault);
}
#ifdef CONFIG_SMP
/* Local cross-calls. */
static void smp_flush_page_for_dma(unsigned long page)
{
xc1((smpfunc_t) BTFIXUP_CALL(local_flush_page_for_dma), page);
local_flush_page_for_dma(page);
}
#endif
static pte_t srmmu_pgoff_to_pte(unsigned long pgoff)
{
return __pte((pgoff << SRMMU_PTE_FILE_SHIFT) | SRMMU_FILE);
}
static unsigned long srmmu_pte_to_pgoff(pte_t pte)
{
return pte_val(pte) >> SRMMU_PTE_FILE_SHIFT;
}
static pgprot_t srmmu_pgprot_noncached(pgprot_t prot)
{
prot &= ~__pgprot(SRMMU_CACHE);
return prot;
}
/* Load up routines and constants for sun4m and sun4d mmu */
void __init ld_mmu_srmmu(void)
{
extern void ld_mmu_iommu(void);
extern void ld_mmu_iounit(void);
extern void ___xchg32_sun4md(void);
BTFIXUPSET_SIMM13(pgdir_shift, SRMMU_PGDIR_SHIFT);
BTFIXUPSET_SETHI(pgdir_size, SRMMU_PGDIR_SIZE);
BTFIXUPSET_SETHI(pgdir_mask, SRMMU_PGDIR_MASK);
BTFIXUPSET_SIMM13(ptrs_per_pmd, SRMMU_PTRS_PER_PMD);
BTFIXUPSET_SIMM13(ptrs_per_pgd, SRMMU_PTRS_PER_PGD);
BTFIXUPSET_INT(page_none, pgprot_val(SRMMU_PAGE_NONE));
PAGE_SHARED = pgprot_val(SRMMU_PAGE_SHARED);
BTFIXUPSET_INT(page_copy, pgprot_val(SRMMU_PAGE_COPY));
BTFIXUPSET_INT(page_readonly, pgprot_val(SRMMU_PAGE_RDONLY));
BTFIXUPSET_INT(page_kernel, pgprot_val(SRMMU_PAGE_KERNEL));
page_kernel = pgprot_val(SRMMU_PAGE_KERNEL);
/* Functions */
BTFIXUPSET_CALL(pgprot_noncached, srmmu_pgprot_noncached, BTFIXUPCALL_NORM);
#ifndef CONFIG_SMP
BTFIXUPSET_CALL(___xchg32, ___xchg32_sun4md, BTFIXUPCALL_SWAPG1G2);
#endif
BTFIXUPSET_CALL(do_check_pgt_cache, srmmu_check_pgt_cache, BTFIXUPCALL_NOP);
BTFIXUPSET_CALL(set_pte, srmmu_set_pte, BTFIXUPCALL_SWAPO0O1);
BTFIXUPSET_CALL(switch_mm, srmmu_switch_mm, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(pte_pfn, srmmu_pte_pfn, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(pmd_page, srmmu_pmd_page, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(pgd_page_vaddr, srmmu_pgd_page, BTFIXUPCALL_NORM);
BTFIXUPSET_SETHI(none_mask, 0xF0000000);
BTFIXUPSET_CALL(pte_present, srmmu_pte_present, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_SWAPO0G0);
BTFIXUPSET_CALL(pmd_bad, srmmu_pmd_bad, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(pmd_present, srmmu_pmd_present, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_SWAPO0G0);
BTFIXUPSET_CALL(pgd_none, srmmu_pgd_none, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(pgd_bad, srmmu_pgd_bad, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(pgd_present, srmmu_pgd_present, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_SWAPO0G0);
BTFIXUPSET_CALL(mk_pte, srmmu_mk_pte, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(mk_pte_phys, srmmu_mk_pte_phys, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(mk_pte_io, srmmu_mk_pte_io, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(pgd_set, srmmu_pgd_set, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(pmd_set, srmmu_pmd_set, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(pmd_populate, srmmu_pmd_populate, BTFIXUPCALL_NORM);
BTFIXUPSET_INT(pte_modify_mask, SRMMU_CHG_MASK);
BTFIXUPSET_CALL(pmd_offset, srmmu_pmd_offset, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(pte_offset_kernel, srmmu_pte_offset, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(free_pte_fast, srmmu_free_pte_fast, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(pte_free, srmmu_pte_free, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(pte_alloc_one_kernel, srmmu_pte_alloc_one_kernel, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(pte_alloc_one, srmmu_pte_alloc_one, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(free_pmd_fast, srmmu_pmd_free, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(pmd_alloc_one, srmmu_pmd_alloc_one, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(free_pgd_fast, srmmu_free_pgd_fast, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(get_pgd_fast, srmmu_get_pgd_fast, BTFIXUPCALL_NORM);
BTFIXUPSET_HALF(pte_writei, SRMMU_WRITE);
BTFIXUPSET_HALF(pte_dirtyi, SRMMU_DIRTY);
BTFIXUPSET_HALF(pte_youngi, SRMMU_REF);
BTFIXUPSET_HALF(pte_filei, SRMMU_FILE);
BTFIXUPSET_HALF(pte_wrprotecti, SRMMU_WRITE);
BTFIXUPSET_HALF(pte_mkcleani, SRMMU_DIRTY);
BTFIXUPSET_HALF(pte_mkoldi, SRMMU_REF);
BTFIXUPSET_CALL(pte_mkwrite, srmmu_pte_mkwrite, BTFIXUPCALL_ORINT(SRMMU_WRITE));
BTFIXUPSET_CALL(pte_mkdirty, srmmu_pte_mkdirty, BTFIXUPCALL_ORINT(SRMMU_DIRTY));
BTFIXUPSET_CALL(pte_mkyoung, srmmu_pte_mkyoung, BTFIXUPCALL_ORINT(SRMMU_REF));
BTFIXUPSET_CALL(update_mmu_cache, srmmu_update_mmu_cache, BTFIXUPCALL_NOP);
BTFIXUPSET_CALL(destroy_context, srmmu_destroy_context, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(sparc_mapiorange, srmmu_mapiorange, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(sparc_unmapiorange, srmmu_unmapiorange, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(__swp_type, srmmu_swp_type, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(__swp_offset, srmmu_swp_offset, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(__swp_entry, srmmu_swp_entry, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(mmu_info, srmmu_mmu_info, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(alloc_thread_info, srmmu_alloc_thread_info, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(free_thread_info, srmmu_free_thread_info, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(pte_to_pgoff, srmmu_pte_to_pgoff, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(pgoff_to_pte, srmmu_pgoff_to_pte, BTFIXUPCALL_NORM);
get_srmmu_type();
patch_window_trap_handlers();
#ifdef CONFIG_SMP
/* El switcheroo... */
BTFIXUPCOPY_CALL(local_flush_cache_all, flush_cache_all);
BTFIXUPCOPY_CALL(local_flush_cache_mm, flush_cache_mm);
BTFIXUPCOPY_CALL(local_flush_cache_range, flush_cache_range);
BTFIXUPCOPY_CALL(local_flush_cache_page, flush_cache_page);
BTFIXUPCOPY_CALL(local_flush_tlb_all, flush_tlb_all);
BTFIXUPCOPY_CALL(local_flush_tlb_mm, flush_tlb_mm);
BTFIXUPCOPY_CALL(local_flush_tlb_range, flush_tlb_range);
BTFIXUPCOPY_CALL(local_flush_tlb_page, flush_tlb_page);
BTFIXUPCOPY_CALL(local_flush_page_to_ram, __flush_page_to_ram);
BTFIXUPCOPY_CALL(local_flush_sig_insns, flush_sig_insns);
BTFIXUPCOPY_CALL(local_flush_page_for_dma, flush_page_for_dma);
BTFIXUPSET_CALL(flush_cache_all, smp_flush_cache_all, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(flush_cache_mm, smp_flush_cache_mm, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(flush_cache_range, smp_flush_cache_range, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(flush_cache_page, smp_flush_cache_page, BTFIXUPCALL_NORM);
if (sparc_cpu_model != sun4d &&
sparc_cpu_model != sparc_leon) {
BTFIXUPSET_CALL(flush_tlb_all, smp_flush_tlb_all, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(flush_tlb_mm, smp_flush_tlb_mm, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(flush_tlb_range, smp_flush_tlb_range, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(flush_tlb_page, smp_flush_tlb_page, BTFIXUPCALL_NORM);
}
BTFIXUPSET_CALL(__flush_page_to_ram, smp_flush_page_to_ram, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(flush_sig_insns, smp_flush_sig_insns, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(flush_page_for_dma, smp_flush_page_for_dma, BTFIXUPCALL_NORM);
if (poke_srmmu == poke_viking) {
/* Avoid unnecessary cross calls. */
BTFIXUPCOPY_CALL(flush_cache_all, local_flush_cache_all);
BTFIXUPCOPY_CALL(flush_cache_mm, local_flush_cache_mm);
BTFIXUPCOPY_CALL(flush_cache_range, local_flush_cache_range);
BTFIXUPCOPY_CALL(flush_cache_page, local_flush_cache_page);
BTFIXUPCOPY_CALL(__flush_page_to_ram, local_flush_page_to_ram);
BTFIXUPCOPY_CALL(flush_sig_insns, local_flush_sig_insns);
BTFIXUPCOPY_CALL(flush_page_for_dma, local_flush_page_for_dma);
}
#endif
if (sparc_cpu_model == sun4d)
ld_mmu_iounit();
else
ld_mmu_iommu();
#ifdef CONFIG_SMP
if (sparc_cpu_model == sun4d)
sun4d_init_smp();
else if (sparc_cpu_model == sparc_leon)
leon_init_smp();
else
sun4m_init_smp();
#endif
}