summaryrefslogblamecommitdiff
path: root/arch/sh64/kernel/process.c
blob: db475b7833fb86c97b77d70d8c45f9200905dfdf (plain) (tree)
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748




































                                                                             














































































































































































































































































                                                                                     





                                                      
                   



                                                       

                                               









                                                    
                                            
                           
                                  
         
 




















                                             


                                               



































































































































































































































































































































































































                                                                                      
                                                                             






                                            
                                                                                      





















                                                                






























































































































































                                                                                          
/*
 * This file is subject to the terms and conditions of the GNU General Public
 * License.  See the file "COPYING" in the main directory of this archive
 * for more details.
 *
 * arch/sh64/kernel/process.c
 *
 * Copyright (C) 2000, 2001  Paolo Alberelli
 * Copyright (C) 2003  Paul Mundt
 * Copyright (C) 2003, 2004 Richard Curnow
 *
 * Started from SH3/4 version:
 *   Copyright (C) 1999, 2000  Niibe Yutaka & Kaz Kojima
 *
 *   In turn started from i386 version:
 *     Copyright (C) 1995  Linus Torvalds
 *
 */

/*
 * This file handles the architecture-dependent parts of process handling..
 */

/* Temporary flags/tests. All to be removed/undefined. BEGIN */
#define IDLE_TRACE
#define VM_SHOW_TABLES
#define VM_TEST_FAULT
#define VM_TEST_RTLBMISS
#define VM_TEST_WTLBMISS

#undef VM_SHOW_TABLES
#undef IDLE_TRACE
/* Temporary flags/tests. All to be removed/undefined. END */

#define __KERNEL_SYSCALLS__
#include <stdarg.h>

#include <linux/kernel.h>
#include <linux/rwsem.h>
#include <linux/mm.h>
#include <linux/smp.h>
#include <linux/smp_lock.h>
#include <linux/ptrace.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <linux/user.h>
#include <linux/a.out.h>
#include <linux/interrupt.h>
#include <linux/unistd.h>
#include <linux/delay.h>
#include <linux/reboot.h>
#include <linux/init.h>

#include <asm/uaccess.h>
#include <asm/pgtable.h>
#include <asm/system.h>
#include <asm/io.h>
#include <asm/processor.h>		/* includes also <asm/registers.h> */
#include <asm/mmu_context.h>
#include <asm/elf.h>
#include <asm/page.h>

#include <linux/irq.h>

struct task_struct *last_task_used_math = NULL;

#ifdef IDLE_TRACE
#ifdef VM_SHOW_TABLES
/* For testing */
static void print_PTE(long base)
{
	int i, skip=0;
	long long x, y, *p = (long long *) base;

	for (i=0; i< 512; i++, p++){
		if (*p == 0) {
			if (!skip) {
				skip++;
				printk("(0s) ");
			}
		} else {
			skip=0;
			x = (*p) >> 32;
			y = (*p) & 0xffffffff;
			printk("%08Lx%08Lx ", x, y);
			if (!((i+1)&0x3)) printk("\n");
		}
	}
}

/* For testing */
static void print_DIR(long base)
{
	int i, skip=0;
	long *p = (long *) base;

	for (i=0; i< 512; i++, p++){
		if (*p == 0) {
			if (!skip) {
				skip++;
				printk("(0s) ");
			}
		} else {
			skip=0;
			printk("%08lx ", *p);
			if (!((i+1)&0x7)) printk("\n");
		}
	}
}

/* For testing */
static void print_vmalloc_first_tables(void)
{

#define PRESENT	0x800	/* Bit 11 */

	/*
	 * Do it really dirty by looking at raw addresses,
         * raw offsets, no types. If we used pgtable/pgalloc
	 * macros/definitions we could hide potential bugs.
	 *
	 * Note that pointers are 32-bit for CDC.
	 */
	long pgdt, pmdt, ptet;

	pgdt = (long) &swapper_pg_dir;
	printk("-->PGD (0x%08lx):\n", pgdt);
	print_DIR(pgdt);
	printk("\n");

	/* VMALLOC pool is mapped at 0xc0000000, second (pointer) entry in PGD */
	pgdt += 4;
	pmdt = (long) (* (long *) pgdt);
	if (!(pmdt & PRESENT)) {
		printk("No PMD\n");
		return;
	} else pmdt &= 0xfffff000;

	printk("-->PMD (0x%08lx):\n", pmdt);
	print_DIR(pmdt);
	printk("\n");

	/* Get the pmdt displacement for 0xc0000000 */
	pmdt += 2048;

	/* just look at first two address ranges ... */
        /* ... 0xc0000000 ... */
	ptet = (long) (* (long *) pmdt);
	if (!(ptet & PRESENT)) {
		printk("No PTE0\n");
		return;
	} else ptet &= 0xfffff000;

	printk("-->PTE0 (0x%08lx):\n", ptet);
	print_PTE(ptet);
	printk("\n");

        /* ... 0xc0001000 ... */
	ptet += 4;
	if (!(ptet & PRESENT)) {
		printk("No PTE1\n");
		return;
	} else ptet &= 0xfffff000;
	printk("-->PTE1 (0x%08lx):\n", ptet);
	print_PTE(ptet);
	printk("\n");
}
#else
#define print_vmalloc_first_tables()
#endif	/* VM_SHOW_TABLES */

static void test_VM(void)
{
	void *a, *b, *c;

#ifdef VM_SHOW_TABLES
	printk("Initial PGD/PMD/PTE\n");
#endif
        print_vmalloc_first_tables();

	printk("Allocating 2 bytes\n");
	a = vmalloc(2);
        print_vmalloc_first_tables();

	printk("Allocating 4100 bytes\n");
	b = vmalloc(4100);
        print_vmalloc_first_tables();

	printk("Allocating 20234 bytes\n");
	c = vmalloc(20234);
        print_vmalloc_first_tables();

#ifdef VM_TEST_FAULT
	/* Here you may want to fault ! */

#ifdef VM_TEST_RTLBMISS
	printk("Ready to fault upon read.\n");
	if (* (char *) a) {
		printk("RTLBMISSed on area a !\n");
	}
	printk("RTLBMISSed on area a !\n");
#endif

#ifdef VM_TEST_WTLBMISS
	printk("Ready to fault upon write.\n");
	*((char *) b) = 'L';
	printk("WTLBMISSed on area b !\n");
#endif

#endif	/* VM_TEST_FAULT */

	printk("Deallocating the 4100 byte chunk\n");
	vfree(b);
        print_vmalloc_first_tables();

	printk("Deallocating the 2 byte chunk\n");
	vfree(a);
        print_vmalloc_first_tables();

	printk("Deallocating the last chunk\n");
	vfree(c);
        print_vmalloc_first_tables();
}

extern unsigned long volatile jiffies;
int once = 0;
unsigned long old_jiffies;
int pid = -1, pgid = -1;

void idle_trace(void)
{

	_syscall0(int, getpid)
	_syscall1(int, getpgid, int, pid)

	if (!once) {
        	/* VM allocation/deallocation simple test */
		test_VM();
		pid = getpid();

        	printk("Got all through to Idle !!\n");
        	printk("I'm now going to loop forever ...\n");
        	printk("Any ! below is a timer tick.\n");
		printk("Any . below is a getpgid system call from pid = %d.\n", pid);


        	old_jiffies = jiffies;
		once++;
	}

	if (old_jiffies != jiffies) {
		old_jiffies = jiffies - old_jiffies;
		switch (old_jiffies) {
		case 1:
			printk("!");
			break;
		case 2:
			printk("!!");
			break;
		case 3:
			printk("!!!");
			break;
		case 4:
			printk("!!!!");
			break;
		default:
			printk("(%d!)", (int) old_jiffies);
		}
		old_jiffies = jiffies;
	}
	pgid = getpgid(pid);
	printk(".");
}
#else
#define idle_trace()	do { } while (0)
#endif	/* IDLE_TRACE */

static int hlt_counter = 1;

#define HARD_IDLE_TIMEOUT (HZ / 3)

void disable_hlt(void)
{
	hlt_counter++;
}

void enable_hlt(void)
{
	hlt_counter--;
}

static int __init nohlt_setup(char *__unused)
{
	hlt_counter = 1;
	return 1;
}

static int __init hlt_setup(char *__unused)
{
	hlt_counter = 0;
	return 1;
}

__setup("nohlt", nohlt_setup);
__setup("hlt", hlt_setup);

static inline void hlt(void)
{
	__asm__ __volatile__ ("sleep" : : : "memory");
}

/*
 * The idle loop on a uniprocessor SH..
 */
void cpu_idle(void)
{
	/* endless idle loop with no priority at all */
	while (1) {
		if (hlt_counter) {
			while (!need_resched())
				cpu_relax();
		} else {
			local_irq_disable();
			while (!need_resched()) {
				local_irq_enable();
				idle_trace();
				hlt();
				local_irq_disable();
			}
			local_irq_enable();
		}
		preempt_enable_no_resched();
		schedule();
		preempt_disable();
	}

}

void machine_restart(char * __unused)
{
	extern void phys_stext(void);

	phys_stext();
}

void machine_halt(void)
{
	for (;;);
}

void machine_power_off(void)
{
	extern void enter_deep_standby(void);

	enter_deep_standby();
}

void (*pm_power_off)(void) = machine_power_off;
EXPORT_SYMBOL(pm_power_off);

void show_regs(struct pt_regs * regs)
{
	unsigned long long ah, al, bh, bl, ch, cl;

	printk("\n");

	ah = (regs->pc) >> 32;
	al = (regs->pc) & 0xffffffff;
	bh = (regs->regs[18]) >> 32;
	bl = (regs->regs[18]) & 0xffffffff;
	ch = (regs->regs[15]) >> 32;
	cl = (regs->regs[15]) & 0xffffffff;
	printk("PC  : %08Lx%08Lx LINK: %08Lx%08Lx SP  : %08Lx%08Lx\n",
	       ah, al, bh, bl, ch, cl);

	ah = (regs->sr) >> 32;
	al = (regs->sr) & 0xffffffff;
        asm volatile ("getcon   " __TEA ", %0" : "=r" (bh));
        asm volatile ("getcon   " __TEA ", %0" : "=r" (bl));
	bh = (bh) >> 32;
	bl = (bl) & 0xffffffff;
        asm volatile ("getcon   " __KCR0 ", %0" : "=r" (ch));
        asm volatile ("getcon   " __KCR0 ", %0" : "=r" (cl));
	ch = (ch) >> 32;
	cl = (cl) & 0xffffffff;
	printk("SR  : %08Lx%08Lx TEA : %08Lx%08Lx KCR0: %08Lx%08Lx\n",
	       ah, al, bh, bl, ch, cl);

	ah = (regs->regs[0]) >> 32;
	al = (regs->regs[0]) & 0xffffffff;
	bh = (regs->regs[1]) >> 32;
	bl = (regs->regs[1]) & 0xffffffff;
	ch = (regs->regs[2]) >> 32;
	cl = (regs->regs[2]) & 0xffffffff;
	printk("R0  : %08Lx%08Lx R1  : %08Lx%08Lx R2  : %08Lx%08Lx\n",
	       ah, al, bh, bl, ch, cl);

	ah = (regs->regs[3]) >> 32;
	al = (regs->regs[3]) & 0xffffffff;
	bh = (regs->regs[4]) >> 32;
	bl = (regs->regs[4]) & 0xffffffff;
	ch = (regs->regs[5]) >> 32;
	cl = (regs->regs[5]) & 0xffffffff;
	printk("R3  : %08Lx%08Lx R4  : %08Lx%08Lx R5  : %08Lx%08Lx\n",
	       ah, al, bh, bl, ch, cl);

	ah = (regs->regs[6]) >> 32;
	al = (regs->regs[6]) & 0xffffffff;
	bh = (regs->regs[7]) >> 32;
	bl = (regs->regs[7]) & 0xffffffff;
	ch = (regs->regs[8]) >> 32;
	cl = (regs->regs[8]) & 0xffffffff;
	printk("R6  : %08Lx%08Lx R7  : %08Lx%08Lx R8  : %08Lx%08Lx\n",
	       ah, al, bh, bl, ch, cl);

	ah = (regs->regs[9]) >> 32;
	al = (regs->regs[9]) & 0xffffffff;
	bh = (regs->regs[10]) >> 32;
	bl = (regs->regs[10]) & 0xffffffff;
	ch = (regs->regs[11]) >> 32;
	cl = (regs->regs[11]) & 0xffffffff;
	printk("R9  : %08Lx%08Lx R10 : %08Lx%08Lx R11 : %08Lx%08Lx\n",
	       ah, al, bh, bl, ch, cl);

	ah = (regs->regs[12]) >> 32;
	al = (regs->regs[12]) & 0xffffffff;
	bh = (regs->regs[13]) >> 32;
	bl = (regs->regs[13]) & 0xffffffff;
	ch = (regs->regs[14]) >> 32;
	cl = (regs->regs[14]) & 0xffffffff;
	printk("R12 : %08Lx%08Lx R13 : %08Lx%08Lx R14 : %08Lx%08Lx\n",
	       ah, al, bh, bl, ch, cl);

	ah = (regs->regs[16]) >> 32;
	al = (regs->regs[16]) & 0xffffffff;
	bh = (regs->regs[17]) >> 32;
	bl = (regs->regs[17]) & 0xffffffff;
	ch = (regs->regs[19]) >> 32;
	cl = (regs->regs[19]) & 0xffffffff;
	printk("R16 : %08Lx%08Lx R17 : %08Lx%08Lx R19 : %08Lx%08Lx\n",
	       ah, al, bh, bl, ch, cl);

	ah = (regs->regs[20]) >> 32;
	al = (regs->regs[20]) & 0xffffffff;
	bh = (regs->regs[21]) >> 32;
	bl = (regs->regs[21]) & 0xffffffff;
	ch = (regs->regs[22]) >> 32;
	cl = (regs->regs[22]) & 0xffffffff;
	printk("R20 : %08Lx%08Lx R21 : %08Lx%08Lx R22 : %08Lx%08Lx\n",
	       ah, al, bh, bl, ch, cl);

	ah = (regs->regs[23]) >> 32;
	al = (regs->regs[23]) & 0xffffffff;
	bh = (regs->regs[24]) >> 32;
	bl = (regs->regs[24]) & 0xffffffff;
	ch = (regs->regs[25]) >> 32;
	cl = (regs->regs[25]) & 0xffffffff;
	printk("R23 : %08Lx%08Lx R24 : %08Lx%08Lx R25 : %08Lx%08Lx\n",
	       ah, al, bh, bl, ch, cl);

	ah = (regs->regs[26]) >> 32;
	al = (regs->regs[26]) & 0xffffffff;
	bh = (regs->regs[27]) >> 32;
	bl = (regs->regs[27]) & 0xffffffff;
	ch = (regs->regs[28]) >> 32;
	cl = (regs->regs[28]) & 0xffffffff;
	printk("R26 : %08Lx%08Lx R27 : %08Lx%08Lx R28 : %08Lx%08Lx\n",
	       ah, al, bh, bl, ch, cl);

	ah = (regs->regs[29]) >> 32;
	al = (regs->regs[29]) & 0xffffffff;
	bh = (regs->regs[30]) >> 32;
	bl = (regs->regs[30]) & 0xffffffff;
	ch = (regs->regs[31]) >> 32;
	cl = (regs->regs[31]) & 0xffffffff;
	printk("R29 : %08Lx%08Lx R30 : %08Lx%08Lx R31 : %08Lx%08Lx\n",
	       ah, al, bh, bl, ch, cl);

	ah = (regs->regs[32]) >> 32;
	al = (regs->regs[32]) & 0xffffffff;
	bh = (regs->regs[33]) >> 32;
	bl = (regs->regs[33]) & 0xffffffff;
	ch = (regs->regs[34]) >> 32;
	cl = (regs->regs[34]) & 0xffffffff;
	printk("R32 : %08Lx%08Lx R33 : %08Lx%08Lx R34 : %08Lx%08Lx\n",
	       ah, al, bh, bl, ch, cl);

	ah = (regs->regs[35]) >> 32;
	al = (regs->regs[35]) & 0xffffffff;
	bh = (regs->regs[36]) >> 32;
	bl = (regs->regs[36]) & 0xffffffff;
	ch = (regs->regs[37]) >> 32;
	cl = (regs->regs[37]) & 0xffffffff;
	printk("R35 : %08Lx%08Lx R36 : %08Lx%08Lx R37 : %08Lx%08Lx\n",
	       ah, al, bh, bl, ch, cl);

	ah = (regs->regs[38]) >> 32;
	al = (regs->regs[38]) & 0xffffffff;
	bh = (regs->regs[39]) >> 32;
	bl = (regs->regs[39]) & 0xffffffff;
	ch = (regs->regs[40]) >> 32;
	cl = (regs->regs[40]) & 0xffffffff;
	printk("R38 : %08Lx%08Lx R39 : %08Lx%08Lx R40 : %08Lx%08Lx\n",
	       ah, al, bh, bl, ch, cl);

	ah = (regs->regs[41]) >> 32;
	al = (regs->regs[41]) & 0xffffffff;
	bh = (regs->regs[42]) >> 32;
	bl = (regs->regs[42]) & 0xffffffff;
	ch = (regs->regs[43]) >> 32;
	cl = (regs->regs[43]) & 0xffffffff;
	printk("R41 : %08Lx%08Lx R42 : %08Lx%08Lx R43 : %08Lx%08Lx\n",
	       ah, al, bh, bl, ch, cl);

	ah = (regs->regs[44]) >> 32;
	al = (regs->regs[44]) & 0xffffffff;
	bh = (regs->regs[45]) >> 32;
	bl = (regs->regs[45]) & 0xffffffff;
	ch = (regs->regs[46]) >> 32;
	cl = (regs->regs[46]) & 0xffffffff;
	printk("R44 : %08Lx%08Lx R45 : %08Lx%08Lx R46 : %08Lx%08Lx\n",
	       ah, al, bh, bl, ch, cl);

	ah = (regs->regs[47]) >> 32;
	al = (regs->regs[47]) & 0xffffffff;
	bh = (regs->regs[48]) >> 32;
	bl = (regs->regs[48]) & 0xffffffff;
	ch = (regs->regs[49]) >> 32;
	cl = (regs->regs[49]) & 0xffffffff;
	printk("R47 : %08Lx%08Lx R48 : %08Lx%08Lx R49 : %08Lx%08Lx\n",
	       ah, al, bh, bl, ch, cl);

	ah = (regs->regs[50]) >> 32;
	al = (regs->regs[50]) & 0xffffffff;
	bh = (regs->regs[51]) >> 32;
	bl = (regs->regs[51]) & 0xffffffff;
	ch = (regs->regs[52]) >> 32;
	cl = (regs->regs[52]) & 0xffffffff;
	printk("R50 : %08Lx%08Lx R51 : %08Lx%08Lx R52 : %08Lx%08Lx\n",
	       ah, al, bh, bl, ch, cl);

	ah = (regs->regs[53]) >> 32;
	al = (regs->regs[53]) & 0xffffffff;
	bh = (regs->regs[54]) >> 32;
	bl = (regs->regs[54]) & 0xffffffff;
	ch = (regs->regs[55]) >> 32;
	cl = (regs->regs[55]) & 0xffffffff;
	printk("R53 : %08Lx%08Lx R54 : %08Lx%08Lx R55 : %08Lx%08Lx\n",
	       ah, al, bh, bl, ch, cl);

	ah = (regs->regs[56]) >> 32;
	al = (regs->regs[56]) & 0xffffffff;
	bh = (regs->regs[57]) >> 32;
	bl = (regs->regs[57]) & 0xffffffff;
	ch = (regs->regs[58]) >> 32;
	cl = (regs->regs[58]) & 0xffffffff;
	printk("R56 : %08Lx%08Lx R57 : %08Lx%08Lx R58 : %08Lx%08Lx\n",
	       ah, al, bh, bl, ch, cl);

	ah = (regs->regs[59]) >> 32;
	al = (regs->regs[59]) & 0xffffffff;
	bh = (regs->regs[60]) >> 32;
	bl = (regs->regs[60]) & 0xffffffff;
	ch = (regs->regs[61]) >> 32;
	cl = (regs->regs[61]) & 0xffffffff;
	printk("R59 : %08Lx%08Lx R60 : %08Lx%08Lx R61 : %08Lx%08Lx\n",
	       ah, al, bh, bl, ch, cl);

	ah = (regs->regs[62]) >> 32;
	al = (regs->regs[62]) & 0xffffffff;
	bh = (regs->tregs[0]) >> 32;
	bl = (regs->tregs[0]) & 0xffffffff;
	ch = (regs->tregs[1]) >> 32;
	cl = (regs->tregs[1]) & 0xffffffff;
	printk("R62 : %08Lx%08Lx T0  : %08Lx%08Lx T1  : %08Lx%08Lx\n",
	       ah, al, bh, bl, ch, cl);

	ah = (regs->tregs[2]) >> 32;
	al = (regs->tregs[2]) & 0xffffffff;
	bh = (regs->tregs[3]) >> 32;
	bl = (regs->tregs[3]) & 0xffffffff;
	ch = (regs->tregs[4]) >> 32;
	cl = (regs->tregs[4]) & 0xffffffff;
	printk("T2  : %08Lx%08Lx T3  : %08Lx%08Lx T4  : %08Lx%08Lx\n",
	       ah, al, bh, bl, ch, cl);

	ah = (regs->tregs[5]) >> 32;
	al = (regs->tregs[5]) & 0xffffffff;
	bh = (regs->tregs[6]) >> 32;
	bl = (regs->tregs[6]) & 0xffffffff;
	ch = (regs->tregs[7]) >> 32;
	cl = (regs->tregs[7]) & 0xffffffff;
	printk("T5  : %08Lx%08Lx T6  : %08Lx%08Lx T7  : %08Lx%08Lx\n",
	       ah, al, bh, bl, ch, cl);

	/*
	 * If we're in kernel mode, dump the stack too..
	 */
	if (!user_mode(regs)) {
		void show_stack(struct task_struct *tsk, unsigned long *sp);
		unsigned long sp = regs->regs[15] & 0xffffffff;
		struct task_struct *tsk = get_current();

		tsk->thread.kregs = regs;

		show_stack(tsk, (unsigned long *)sp);
	}
}

struct task_struct * alloc_task_struct(void)
{
	/* Get task descriptor pages */
	return (struct task_struct *)
		__get_free_pages(GFP_KERNEL, get_order(THREAD_SIZE));
}

void free_task_struct(struct task_struct *p)
{
	free_pages((unsigned long) p, get_order(THREAD_SIZE));
}

/*
 * Create a kernel thread
 */

/*
 * This is the mechanism for creating a new kernel thread.
 *
 * NOTE! Only a kernel-only process(ie the swapper or direct descendants
 * who haven't done an "execve()") should use this: it will work within
 * a system call from a "real" process, but the process memory space will
 * not be free'd until both the parent and the child have exited.
 */
int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
{
	/* A bit less processor dependent than older sh ... */
	unsigned int reply;

static __inline__ _syscall2(int,clone,unsigned long,flags,unsigned long,newsp)
static __inline__ _syscall1(int,exit,int,ret)

	reply = clone(flags | CLONE_VM, 0);
	if (!reply) {
		/* Child */
		reply = exit(fn(arg));
	}

	return reply;
}

/*
 * Free current thread data structures etc..
 */
void exit_thread(void)
{
	/* See arch/sparc/kernel/process.c for the precedent for doing this -- RPC.

	   The SH-5 FPU save/restore approach relies on last_task_used_math
	   pointing to a live task_struct.  When another task tries to use the
	   FPU for the 1st time, the FPUDIS trap handling (see
	   arch/sh64/kernel/fpu.c) will save the existing FPU state to the
	   FP regs field within last_task_used_math before re-loading the new
	   task's FPU state (or initialising it if the FPU has been used
	   before).  So if last_task_used_math is stale, and its page has already been
	   re-allocated for another use, the consequences are rather grim. Unless we
	   null it here, there is no other path through which it would get safely
	   nulled. */

#ifdef CONFIG_SH_FPU
	if (last_task_used_math == current) {
		last_task_used_math = NULL;
	}
#endif
}

void flush_thread(void)
{

	/* Called by fs/exec.c (flush_old_exec) to remove traces of a
	 * previously running executable. */
#ifdef CONFIG_SH_FPU
	if (last_task_used_math == current) {
		last_task_used_math = NULL;
	}
	/* Force FPU state to be reinitialised after exec */
	clear_used_math();
#endif

	/* if we are a kernel thread, about to change to user thread,
         * update kreg
         */
	if(current->thread.kregs==&fake_swapper_regs) {
          current->thread.kregs =
             ((struct pt_regs *)(THREAD_SIZE + (unsigned long) current) - 1);
	  current->thread.uregs = current->thread.kregs;
	}
}

void release_thread(struct task_struct *dead_task)
{
	/* do nothing */
}

/* Fill in the fpu structure for a core dump.. */
int dump_fpu(struct pt_regs *regs, elf_fpregset_t *fpu)
{
#ifdef CONFIG_SH_FPU
	int fpvalid;
	struct task_struct *tsk = current;

	fpvalid = !!tsk_used_math(tsk);
	if (fpvalid) {
		if (current == last_task_used_math) {
			grab_fpu();
			fpsave(&tsk->thread.fpu.hard);
			release_fpu();
			last_task_used_math = 0;
			regs->sr |= SR_FD;
		}

		memcpy(fpu, &tsk->thread.fpu.hard, sizeof(*fpu));
	}

	return fpvalid;
#else
	return 0; /* Task didn't use the fpu at all. */
#endif
}

asmlinkage void ret_from_fork(void);

int copy_thread(int nr, unsigned long clone_flags, unsigned long usp,
		unsigned long unused,
		struct task_struct *p, struct pt_regs *regs)
{
	struct pt_regs *childregs;
	unsigned long long se;			/* Sign extension */

#ifdef CONFIG_SH_FPU
	if(last_task_used_math == current) {
		grab_fpu();
		fpsave(&current->thread.fpu.hard);
		release_fpu();
		last_task_used_math = NULL;
		regs->sr |= SR_FD;
	}
#endif
	/* Copy from sh version */
	childregs = (struct pt_regs *)(THREAD_SIZE + task_stack_page(p)) - 1;

	*childregs = *regs;

	if (user_mode(regs)) {
		childregs->regs[15] = usp;
		p->thread.uregs = childregs;
	} else {
		childregs->regs[15] = (unsigned long)task_stack_page(p) + THREAD_SIZE;
	}

	childregs->regs[9] = 0; /* Set return value for child */
	childregs->sr |= SR_FD; /* Invalidate FPU flag */

	p->thread.sp = (unsigned long) childregs;
	p->thread.pc = (unsigned long) ret_from_fork;

	/*
	 * Sign extend the edited stack.
         * Note that thread.pc and thread.pc will stay
	 * 32-bit wide and context switch must take care
	 * of NEFF sign extension.
	 */

	se = childregs->regs[15];
	se = (se & NEFF_SIGN) ? (se | NEFF_MASK) : se;
	childregs->regs[15] = se;

	return 0;
}

asmlinkage int sys_fork(unsigned long r2, unsigned long r3,
			unsigned long r4, unsigned long r5,
			unsigned long r6, unsigned long r7,
			struct pt_regs *pregs)
{
	return do_fork(SIGCHLD, pregs->regs[15], pregs, 0, 0, 0);
}

asmlinkage int sys_clone(unsigned long clone_flags, unsigned long newsp,
			 unsigned long r4, unsigned long r5,
			 unsigned long r6, unsigned long r7,
			 struct pt_regs *pregs)
{
	if (!newsp)
		newsp = pregs->regs[15];
	return do_fork(clone_flags, newsp, pregs, 0, 0, 0);
}

/*
 * This is trivial, and on the face of it looks like it
 * could equally well be done in user mode.
 *
 * Not so, for quite unobvious reasons - register pressure.
 * In user mode vfork() cannot have a stack frame, and if
 * done by calling the "clone()" system call directly, you
 * do not have enough call-clobbered registers to hold all
 * the information you need.
 */
asmlinkage int sys_vfork(unsigned long r2, unsigned long r3,
			 unsigned long r4, unsigned long r5,
			 unsigned long r6, unsigned long r7,
			 struct pt_regs *pregs)
{
	return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, pregs->regs[15], pregs, 0, 0, 0);
}

/*
 * sys_execve() executes a new program.
 */
asmlinkage int sys_execve(char *ufilename, char **uargv,
			  char **uenvp, unsigned long r5,
			  unsigned long r6, unsigned long r7,
			  struct pt_regs *pregs)
{
	int error;
	char *filename;

	lock_kernel();
	filename = getname((char __user *)ufilename);
	error = PTR_ERR(filename);
	if (IS_ERR(filename))
		goto out;

	error = do_execve(filename,
			  (char __user * __user *)uargv,
			  (char __user * __user *)uenvp,
			  pregs);
	if (error == 0) {
		task_lock(current);
		current->ptrace &= ~PT_DTRACE;
		task_unlock(current);
	}
	putname(filename);
out:
	unlock_kernel();
	return error;
}

/*
 * These bracket the sleeping functions..
 */
extern void interruptible_sleep_on(wait_queue_head_t *q);

#define mid_sched	((unsigned long) interruptible_sleep_on)

static int in_sh64_switch_to(unsigned long pc)
{
	extern char __sh64_switch_to_end;
	/* For a sleeping task, the PC is somewhere in the middle of the function,
	   so we don't have to worry about masking the LSB off */
	return (pc >= (unsigned long) sh64_switch_to) &&
	       (pc < (unsigned long) &__sh64_switch_to_end);
}

unsigned long get_wchan(struct task_struct *p)
{
	unsigned long schedule_fp;
	unsigned long sh64_switch_to_fp;
	unsigned long schedule_caller_pc;
	unsigned long pc;

	if (!p || p == current || p->state == TASK_RUNNING)
		return 0;

	/*
	 * The same comment as on the Alpha applies here, too ...
	 */
	pc = thread_saved_pc(p);

#ifdef CONFIG_FRAME_POINTER
	if (in_sh64_switch_to(pc)) {
		sh64_switch_to_fp = (long) p->thread.sp;
		/* r14 is saved at offset 4 in the sh64_switch_to frame */
		schedule_fp = *(unsigned long *) (long)(sh64_switch_to_fp + 4);

		/* and the caller of 'schedule' is (currently!) saved at offset 24
		   in the frame of schedule (from disasm) */
		schedule_caller_pc = *(unsigned long *) (long)(schedule_fp + 24);
		return schedule_caller_pc;
	}
#endif
	return pc;
}

/* Provide a /proc/asids file that lists out the
   ASIDs currently associated with the processes.  (If the DM.PC register is
   examined through the debug link, this shows ASID + PC.  To make use of this,
   the PID->ASID relationship needs to be known.  This is primarily for
   debugging.)
   */

#if defined(CONFIG_SH64_PROC_ASIDS)
#include <linux/init.h>
#include <linux/proc_fs.h>

static int
asids_proc_info(char *buf, char **start, off_t fpos, int length, int *eof, void *data)
{
	int len=0;
	struct task_struct *p;
	read_lock(&tasklist_lock);
	for_each_process(p) {
		int pid = p->pid;
		struct mm_struct *mm;
		if (!pid) continue;
		mm = p->mm;
		if (mm) {
			unsigned long asid, context;
			context = mm->context;
			asid = (context & 0xff);
			len += sprintf(buf+len, "%5d : %02lx\n", pid, asid);
		} else {
			len += sprintf(buf+len, "%5d : (none)\n", pid);
		}
	}
	read_unlock(&tasklist_lock);
	*eof = 1;
	return len;
}

static int __init register_proc_asids(void)
{
  create_proc_read_entry("asids", 0, NULL, asids_proc_info, NULL);
  return 0;
}

__initcall(register_proc_asids);
#endif