summaryrefslogblamecommitdiff
path: root/arch/ppc64/kernel/rtas.c
blob: 5575603def277d5ff3360b4c2c14115cb0c7b89c (plain) (tree)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
















































































































































































































































































































































































































































































































































































































































































                                                                                                                          
/*
 *
 * Procedures for interfacing to the RTAS on CHRP machines.
 *
 * Peter Bergner, IBM	March 2001.
 * Copyright (C) 2001 IBM.
 *
 *      This program is free software; you can redistribute it and/or
 *      modify it under the terms of the GNU General Public License
 *      as published by the Free Software Foundation; either version
 *      2 of the License, or (at your option) any later version.
 */

#include <stdarg.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/spinlock.h>
#include <linux/module.h>
#include <linux/init.h>

#include <asm/prom.h>
#include <asm/rtas.h>
#include <asm/semaphore.h>
#include <asm/machdep.h>
#include <asm/page.h>
#include <asm/param.h>
#include <asm/system.h>
#include <asm/abs_addr.h>
#include <asm/udbg.h>
#include <asm/delay.h>
#include <asm/uaccess.h>
#include <asm/systemcfg.h>

struct flash_block_list_header rtas_firmware_flash_list = {0, NULL};

struct rtas_t rtas = { 
	.lock = SPIN_LOCK_UNLOCKED
};

EXPORT_SYMBOL(rtas);

char rtas_err_buf[RTAS_ERROR_LOG_MAX];

DEFINE_SPINLOCK(rtas_data_buf_lock);
char rtas_data_buf[RTAS_DATA_BUF_SIZE]__page_aligned;
unsigned long rtas_rmo_buf;

void
call_rtas_display_status(unsigned char c)
{
	struct rtas_args *args = &rtas.args;
	unsigned long s;

	if (!rtas.base)
		return;
	spin_lock_irqsave(&rtas.lock, s);

	args->token = 10;
	args->nargs = 1;
	args->nret  = 1;
	args->rets  = (rtas_arg_t *)&(args->args[1]);
	args->args[0] = (int)c;

	enter_rtas(__pa(args));

	spin_unlock_irqrestore(&rtas.lock, s);
}

void
call_rtas_display_status_delay(unsigned char c)
{
	static int pending_newline = 0;  /* did last write end with unprinted newline? */
	static int width = 16;

	if (c == '\n') {	
		while (width-- > 0)
			call_rtas_display_status(' ');
		width = 16;
		udelay(500000);
		pending_newline = 1;
	} else {
		if (pending_newline) {
			call_rtas_display_status('\r');
			call_rtas_display_status('\n');
		} 
		pending_newline = 0;
		if (width--) {
			call_rtas_display_status(c);
			udelay(10000);
		}
	}
}

int
rtas_token(const char *service)
{
	int *tokp;
	if (rtas.dev == NULL) {
		PPCDBG(PPCDBG_RTAS,"\tNo rtas device in device-tree...\n");
		return RTAS_UNKNOWN_SERVICE;
	}
	tokp = (int *) get_property(rtas.dev, service, NULL);
	return tokp ? *tokp : RTAS_UNKNOWN_SERVICE;
}

/*
 * Return the firmware-specified size of the error log buffer
 *  for all rtas calls that require an error buffer argument.
 *  This includes 'check-exception' and 'rtas-last-error'.
 */
int rtas_get_error_log_max(void)
{
	static int rtas_error_log_max;
	if (rtas_error_log_max)
		return rtas_error_log_max;

	rtas_error_log_max = rtas_token ("rtas-error-log-max");
	if ((rtas_error_log_max == RTAS_UNKNOWN_SERVICE) ||
	    (rtas_error_log_max > RTAS_ERROR_LOG_MAX)) {
		printk (KERN_WARNING "RTAS: bad log buffer size %d\n", rtas_error_log_max);
		rtas_error_log_max = RTAS_ERROR_LOG_MAX;
	}
	return rtas_error_log_max;
}


/** Return a copy of the detailed error text associated with the
 *  most recent failed call to rtas.  Because the error text
 *  might go stale if there are any other intervening rtas calls,
 *  this routine must be called atomically with whatever produced
 *  the error (i.e. with rtas.lock still held from the previous call).
 */
static int
__fetch_rtas_last_error(void)
{
	struct rtas_args err_args, save_args;
	u32 bufsz;

	bufsz = rtas_get_error_log_max();

	err_args.token = rtas_token("rtas-last-error");
	err_args.nargs = 2;
	err_args.nret = 1;

	err_args.args[0] = (rtas_arg_t)__pa(rtas_err_buf);
	err_args.args[1] = bufsz;
	err_args.args[2] = 0;

	save_args = rtas.args;
	rtas.args = err_args;

	enter_rtas(__pa(&rtas.args));

	err_args = rtas.args;
	rtas.args = save_args;

	return err_args.args[2];
}

int rtas_call(int token, int nargs, int nret, int *outputs, ...)
{
	va_list list;
	int i, logit = 0;
	unsigned long s;
	struct rtas_args *rtas_args;
	char * buff_copy = NULL;
	int ret;

	PPCDBG(PPCDBG_RTAS, "Entering rtas_call\n");
	PPCDBG(PPCDBG_RTAS, "\ttoken    = 0x%x\n", token);
	PPCDBG(PPCDBG_RTAS, "\tnargs    = %d\n", nargs);
	PPCDBG(PPCDBG_RTAS, "\tnret     = %d\n", nret);
	PPCDBG(PPCDBG_RTAS, "\t&outputs = 0x%lx\n", outputs);
	if (token == RTAS_UNKNOWN_SERVICE)
		return -1;

	/* Gotta do something different here, use global lock for now... */
	spin_lock_irqsave(&rtas.lock, s);
	rtas_args = &rtas.args;

	rtas_args->token = token;
	rtas_args->nargs = nargs;
	rtas_args->nret  = nret;
	rtas_args->rets  = (rtas_arg_t *)&(rtas_args->args[nargs]);
	va_start(list, outputs);
	for (i = 0; i < nargs; ++i) {
		rtas_args->args[i] = va_arg(list, rtas_arg_t);
		PPCDBG(PPCDBG_RTAS, "\tnarg[%d] = 0x%x\n", i, rtas_args->args[i]);
	}
	va_end(list);

	for (i = 0; i < nret; ++i)
		rtas_args->rets[i] = 0;

	PPCDBG(PPCDBG_RTAS, "\tentering rtas with 0x%lx\n",
		__pa(rtas_args));
	enter_rtas(__pa(rtas_args));
	PPCDBG(PPCDBG_RTAS, "\treturned from rtas ...\n");

	/* A -1 return code indicates that the last command couldn't
	   be completed due to a hardware error. */
	if (rtas_args->rets[0] == -1)
		logit = (__fetch_rtas_last_error() == 0);

	ifppcdebug(PPCDBG_RTAS) {
		for(i=0; i < nret ;i++)
			udbg_printf("\tnret[%d] = 0x%lx\n", i, (ulong)rtas_args->rets[i]);
	}

	if (nret > 1 && outputs != NULL)
		for (i = 0; i < nret-1; ++i)
			outputs[i] = rtas_args->rets[i+1];
	ret = (nret > 0)? rtas_args->rets[0]: 0;

	/* Log the error in the unlikely case that there was one. */
	if (unlikely(logit)) {
		buff_copy = rtas_err_buf;
		if (mem_init_done) {
			buff_copy = kmalloc(RTAS_ERROR_LOG_MAX, GFP_ATOMIC);
			if (buff_copy)
				memcpy(buff_copy, rtas_err_buf,
				       RTAS_ERROR_LOG_MAX);
		}
	}

	/* Gotta do something different here, use global lock for now... */
	spin_unlock_irqrestore(&rtas.lock, s);

	if (buff_copy) {
		log_error(buff_copy, ERR_TYPE_RTAS_LOG, 0);
		if (mem_init_done)
			kfree(buff_copy);
	}
	return ret;
}

/* Given an RTAS status code of 990n compute the hinted delay of 10^n
 * (last digit) milliseconds.  For now we bound at n=5 (100 sec).
 */
unsigned int
rtas_extended_busy_delay_time(int status)
{
	int order = status - 9900;
	unsigned long ms;

	if (order < 0)
		order = 0;	/* RTC depends on this for -2 clock busy */
	else if (order > 5)
		order = 5;	/* bound */

	/* Use microseconds for reasonable accuracy */
	for (ms=1; order > 0; order--)
		ms *= 10;

	return ms; 
}

int rtas_error_rc(int rtas_rc)
{
	int rc;

	switch (rtas_rc) {
		case -1: 		/* Hardware Error */
			rc = -EIO;
			break;
		case -3:		/* Bad indicator/domain/etc */
			rc = -EINVAL;
			break;
		case -9000:		/* Isolation error */
			rc = -EFAULT;
			break;
		case -9001:		/* Outstanding TCE/PTE */
			rc = -EEXIST;
			break;
		case -9002:		/* No usable slot */
			rc = -ENODEV;
			break;
		default:
			printk(KERN_ERR "%s: unexpected RTAS error %d\n",
					__FUNCTION__, rtas_rc);
			rc = -ERANGE;
			break;
	}
	return rc;
}

int rtas_get_power_level(int powerdomain, int *level)
{
	int token = rtas_token("get-power-level");
	int rc;

	if (token == RTAS_UNKNOWN_SERVICE)
		return -ENOENT;

	while ((rc = rtas_call(token, 1, 2, level, powerdomain)) == RTAS_BUSY)
		udelay(1);

	if (rc < 0)
		return rtas_error_rc(rc);
	return rc;
}

int rtas_set_power_level(int powerdomain, int level, int *setlevel)
{
	int token = rtas_token("set-power-level");
	unsigned int wait_time;
	int rc;

	if (token == RTAS_UNKNOWN_SERVICE)
		return -ENOENT;

	while (1) {
		rc = rtas_call(token, 2, 2, setlevel, powerdomain, level);
		if (rc == RTAS_BUSY)
			udelay(1);
		else if (rtas_is_extended_busy(rc)) {
			wait_time = rtas_extended_busy_delay_time(rc);
			udelay(wait_time * 1000);
		} else
			break;
	}

	if (rc < 0)
		return rtas_error_rc(rc);
	return rc;
}

int rtas_get_sensor(int sensor, int index, int *state)
{
	int token = rtas_token("get-sensor-state");
	unsigned int wait_time;
	int rc;

	if (token == RTAS_UNKNOWN_SERVICE)
		return -ENOENT;

	while (1) {
		rc = rtas_call(token, 2, 2, state, sensor, index);
		if (rc == RTAS_BUSY)
			udelay(1);
		else if (rtas_is_extended_busy(rc)) {
			wait_time = rtas_extended_busy_delay_time(rc);
			udelay(wait_time * 1000);
		} else
			break;
	}

	if (rc < 0)
		return rtas_error_rc(rc);
	return rc;
}

int rtas_set_indicator(int indicator, int index, int new_value)
{
	int token = rtas_token("set-indicator");
	unsigned int wait_time;
	int rc;

	if (token == RTAS_UNKNOWN_SERVICE)
		return -ENOENT;

	while (1) {
		rc = rtas_call(token, 3, 1, NULL, indicator, index, new_value);
		if (rc == RTAS_BUSY)
			udelay(1);
		else if (rtas_is_extended_busy(rc)) {
			wait_time = rtas_extended_busy_delay_time(rc);
			udelay(wait_time * 1000);
		}
		else
			break;
	}

	if (rc < 0)
		return rtas_error_rc(rc);
	return rc;
}

#define FLASH_BLOCK_LIST_VERSION (1UL)
static void
rtas_flash_firmware(void)
{
	unsigned long image_size;
	struct flash_block_list *f, *next, *flist;
	unsigned long rtas_block_list;
	int i, status, update_token;

	update_token = rtas_token("ibm,update-flash-64-and-reboot");
	if (update_token == RTAS_UNKNOWN_SERVICE) {
		printk(KERN_ALERT "FLASH: ibm,update-flash-64-and-reboot is not available -- not a service partition?\n");
		printk(KERN_ALERT "FLASH: firmware will not be flashed\n");
		return;
	}

	/* NOTE: the "first" block list is a global var with no data
	 * blocks in the kernel data segment.  We do this because
	 * we want to ensure this block_list addr is under 4GB.
	 */
	rtas_firmware_flash_list.num_blocks = 0;
	flist = (struct flash_block_list *)&rtas_firmware_flash_list;
	rtas_block_list = virt_to_abs(flist);
	if (rtas_block_list >= 4UL*1024*1024*1024) {
		printk(KERN_ALERT "FLASH: kernel bug...flash list header addr above 4GB\n");
		return;
	}

	printk(KERN_ALERT "FLASH: preparing saved firmware image for flash\n");
	/* Update the block_list in place. */
	image_size = 0;
	for (f = flist; f; f = next) {
		/* Translate data addrs to absolute */
		for (i = 0; i < f->num_blocks; i++) {
			f->blocks[i].data = (char *)virt_to_abs(f->blocks[i].data);
			image_size += f->blocks[i].length;
		}
		next = f->next;
		/* Don't translate NULL pointer for last entry */
		if (f->next)
			f->next = (struct flash_block_list *)virt_to_abs(f->next);
		else
			f->next = NULL;
		/* make num_blocks into the version/length field */
		f->num_blocks = (FLASH_BLOCK_LIST_VERSION << 56) | ((f->num_blocks+1)*16);
	}

	printk(KERN_ALERT "FLASH: flash image is %ld bytes\n", image_size);
	printk(KERN_ALERT "FLASH: performing flash and reboot\n");
	ppc_md.progress("Flashing        \n", 0x0);
	ppc_md.progress("Please Wait...  ", 0x0);
	printk(KERN_ALERT "FLASH: this will take several minutes.  Do not power off!\n");
	status = rtas_call(update_token, 1, 1, NULL, rtas_block_list);
	switch (status) {	/* should only get "bad" status */
	    case 0:
		printk(KERN_ALERT "FLASH: success\n");
		break;
	    case -1:
		printk(KERN_ALERT "FLASH: hardware error.  Firmware may not be not flashed\n");
		break;
	    case -3:
		printk(KERN_ALERT "FLASH: image is corrupt or not correct for this platform.  Firmware not flashed\n");
		break;
	    case -4:
		printk(KERN_ALERT "FLASH: flash failed when partially complete.  System may not reboot\n");
		break;
	    default:
		printk(KERN_ALERT "FLASH: unknown flash return code %d\n", status);
		break;
	}
}

void rtas_flash_bypass_warning(void)
{
	printk(KERN_ALERT "FLASH: firmware flash requires a reboot\n");
	printk(KERN_ALERT "FLASH: the firmware image will NOT be flashed\n");
}


void
rtas_restart(char *cmd)
{
	if (rtas_firmware_flash_list.next)
		rtas_flash_firmware();

	printk("RTAS system-reboot returned %d\n",
	       rtas_call(rtas_token("system-reboot"), 0, 1, NULL));
	for (;;);
}

void
rtas_power_off(void)
{
	if (rtas_firmware_flash_list.next)
		rtas_flash_bypass_warning();
	/* allow power on only with power button press */
	printk("RTAS power-off returned %d\n",
	       rtas_call(rtas_token("power-off"), 2, 1, NULL, -1, -1));
	for (;;);
}

void
rtas_halt(void)
{
	if (rtas_firmware_flash_list.next)
		rtas_flash_bypass_warning();
	rtas_power_off();
}

/* Must be in the RMO region, so we place it here */
static char rtas_os_term_buf[2048];

void rtas_os_term(char *str)
{
	int status;

	if (RTAS_UNKNOWN_SERVICE == rtas_token("ibm,os-term"))
		return;

	snprintf(rtas_os_term_buf, 2048, "OS panic: %s", str);

	do {
		status = rtas_call(rtas_token("ibm,os-term"), 1, 1, NULL,
				   __pa(rtas_os_term_buf));

		if (status == RTAS_BUSY)
			udelay(1);
		else if (status != 0)
			printk(KERN_EMERG "ibm,os-term call failed %d\n",
			       status);
	} while (status == RTAS_BUSY);
}


asmlinkage int ppc_rtas(struct rtas_args __user *uargs)
{
	struct rtas_args args;
	unsigned long flags;
	char * buff_copy;
	int nargs;
	int err_rc = 0;

	if (!capable(CAP_SYS_ADMIN))
		return -EPERM;

	if (copy_from_user(&args, uargs, 3 * sizeof(u32)) != 0)
		return -EFAULT;

	nargs = args.nargs;
	if (nargs > ARRAY_SIZE(args.args)
	    || args.nret > ARRAY_SIZE(args.args)
	    || nargs + args.nret > ARRAY_SIZE(args.args))
		return -EINVAL;

	/* Copy in args. */
	if (copy_from_user(args.args, uargs->args,
			   nargs * sizeof(rtas_arg_t)) != 0)
		return -EFAULT;

	buff_copy = kmalloc(RTAS_ERROR_LOG_MAX, GFP_KERNEL);

	spin_lock_irqsave(&rtas.lock, flags);

	rtas.args = args;
	enter_rtas(__pa(&rtas.args));
	args = rtas.args;

	args.rets = &args.args[nargs];

	/* A -1 return code indicates that the last command couldn't
	   be completed due to a hardware error. */
	if (args.rets[0] == -1) {
		err_rc = __fetch_rtas_last_error();
		if ((err_rc == 0) && buff_copy) {
			memcpy(buff_copy, rtas_err_buf, RTAS_ERROR_LOG_MAX);
		}
	}

	spin_unlock_irqrestore(&rtas.lock, flags);

	if (buff_copy) {
		if ((args.rets[0] == -1) && (err_rc == 0)) {
			log_error(buff_copy, ERR_TYPE_RTAS_LOG, 0);
		}
		kfree(buff_copy);
	}

	/* Copy out args. */
	if (copy_to_user(uargs->args + nargs,
			 args.args + nargs,
			 args.nret * sizeof(rtas_arg_t)) != 0)
		return -EFAULT;

	return 0;
}

/* This version can't take the spinlock, because it never returns */

struct rtas_args rtas_stop_self_args = {
	/* The token is initialized for real in setup_system() */
	.token = RTAS_UNKNOWN_SERVICE,
	.nargs = 0,
	.nret = 1,
	.rets = &rtas_stop_self_args.args[0],
};

void rtas_stop_self(void)
{
	struct rtas_args *rtas_args = &rtas_stop_self_args;

	local_irq_disable();

	BUG_ON(rtas_args->token == RTAS_UNKNOWN_SERVICE);

	printk("cpu %u (hwid %u) Ready to die...\n",
	       smp_processor_id(), hard_smp_processor_id());
	enter_rtas(__pa(rtas_args));

	panic("Alas, I survived.\n");
}

/*
 * Call early during boot, before mem init or bootmem, to retreive the RTAS
 * informations from the device-tree and allocate the RMO buffer for userland
 * accesses.
 */
void __init rtas_initialize(void)
{
	/* Get RTAS dev node and fill up our "rtas" structure with infos
	 * about it.
	 */
	rtas.dev = of_find_node_by_name(NULL, "rtas");
	if (rtas.dev) {
		u32 *basep, *entryp;
		u32 *sizep;

		basep = (u32 *)get_property(rtas.dev, "linux,rtas-base", NULL);
		sizep = (u32 *)get_property(rtas.dev, "rtas-size", NULL);
		if (basep != NULL && sizep != NULL) {
			rtas.base = *basep;
			rtas.size = *sizep;
			entryp = (u32 *)get_property(rtas.dev, "linux,rtas-entry", NULL);
			if (entryp == NULL) /* Ugh */
				rtas.entry = rtas.base;
			else
				rtas.entry = *entryp;
		} else
			rtas.dev = NULL;
	}
	/* If RTAS was found, allocate the RMO buffer for it and look for
	 * the stop-self token if any
	 */
	if (rtas.dev) {
		unsigned long rtas_region = RTAS_INSTANTIATE_MAX;
		if (systemcfg->platform == PLATFORM_PSERIES_LPAR)
			rtas_region = min(lmb.rmo_size, RTAS_INSTANTIATE_MAX);

		rtas_rmo_buf = lmb_alloc_base(RTAS_RMOBUF_MAX, PAGE_SIZE,
							rtas_region);

#ifdef CONFIG_HOTPLUG_CPU
		rtas_stop_self_args.token = rtas_token("stop-self");
#endif /* CONFIG_HOTPLUG_CPU */
	}

}


EXPORT_SYMBOL(rtas_firmware_flash_list);
EXPORT_SYMBOL(rtas_token);
EXPORT_SYMBOL(rtas_call);
EXPORT_SYMBOL(rtas_data_buf);
EXPORT_SYMBOL(rtas_data_buf_lock);
EXPORT_SYMBOL(rtas_extended_busy_delay_time);
EXPORT_SYMBOL(rtas_get_sensor);
EXPORT_SYMBOL(rtas_get_power_level);
EXPORT_SYMBOL(rtas_set_power_level);
EXPORT_SYMBOL(rtas_set_indicator);
EXPORT_SYMBOL(rtas_get_error_log_max);