/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* KVM/MIPS: MIPS specific KVM APIs
*
* Copyright (C) 2012 MIPS Technologies, Inc. All rights reserved.
* Authors: Sanjay Lal <sanjayl@kymasys.com>
*/
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/module.h>
#include <linux/vmalloc.h>
#include <linux/fs.h>
#include <linux/bootmem.h>
#include <asm/page.h>
#include <asm/cacheflush.h>
#include <asm/mmu_context.h>
#include <linux/kvm_host.h>
#include "kvm_mips_int.h"
#include "kvm_mips_comm.h"
#define CREATE_TRACE_POINTS
#include "trace.h"
#ifndef VECTORSPACING
#define VECTORSPACING 0x100 /* for EI/VI mode */
#endif
#define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
struct kvm_stats_debugfs_item debugfs_entries[] = {
{ "wait", VCPU_STAT(wait_exits) },
{ "cache", VCPU_STAT(cache_exits) },
{ "signal", VCPU_STAT(signal_exits) },
{ "interrupt", VCPU_STAT(int_exits) },
{ "cop_unsuable", VCPU_STAT(cop_unusable_exits) },
{ "tlbmod", VCPU_STAT(tlbmod_exits) },
{ "tlbmiss_ld", VCPU_STAT(tlbmiss_ld_exits) },
{ "tlbmiss_st", VCPU_STAT(tlbmiss_st_exits) },
{ "addrerr_st", VCPU_STAT(addrerr_st_exits) },
{ "addrerr_ld", VCPU_STAT(addrerr_ld_exits) },
{ "syscall", VCPU_STAT(syscall_exits) },
{ "resvd_inst", VCPU_STAT(resvd_inst_exits) },
{ "break_inst", VCPU_STAT(break_inst_exits) },
{ "flush_dcache", VCPU_STAT(flush_dcache_exits) },
{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
{NULL}
};
static int kvm_mips_reset_vcpu(struct kvm_vcpu *vcpu)
{
int i;
for_each_possible_cpu(i) {
vcpu->arch.guest_kernel_asid[i] = 0;
vcpu->arch.guest_user_asid[i] = 0;
}
return 0;
}
/* XXXKYMA: We are simulatoring a processor that has the WII bit set in Config7, so we
* are "runnable" if interrupts are pending
*/
int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
{
return !!(vcpu->arch.pending_exceptions);
}
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
return 1;
}
int kvm_arch_hardware_enable(void *garbage)
{
return 0;
}
void kvm_arch_hardware_disable(void *garbage)
{
}
int kvm_arch_hardware_setup(void)
{
return 0;
}
void kvm_arch_hardware_unsetup(void)
{
}
void kvm_arch_check_processor_compat(void *rtn)
{
int *r = (int *)rtn;
*r = 0;
return;
}
static void kvm_mips_init_tlbs(struct kvm *kvm)
{
unsigned long wired;
/* Add a wired entry to the TLB, it is used to map the commpage to the Guest kernel */
wired = read_c0_wired();
write_c0_wired(wired + 1);
mtc0_tlbw_hazard();
kvm->arch.commpage_tlb = wired;
kvm_debug("[%d] commpage TLB: %d\n", smp_processor_id(),
kvm->arch.commpage_tlb);
}
static void kvm_mips_init_vm_percpu(void *arg)
{
struct kvm *kvm = (struct kvm *)arg;
kvm_mips_init_tlbs(kvm);
kvm_mips_callbacks->vm_init(kvm);
}
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
{
if (atomic_inc_return(&kvm_mips_instance) == 1) {
kvm_debug("%s: 1st KVM instance, setup host TLB parameters\n",
__func__);
on_each_cpu(kvm_mips_init_vm_percpu, kvm, 1);
}
return 0;
}
void kvm_mips_free_vcpus(struct kvm *kvm)
{
unsigned int i;
struct kvm_vcpu *vcpu;
/* Put the pages we reserved for the guest pmap */
for (i = 0; i < kvm->arch.guest_pmap_npages; i++) {
if (kvm->arch.guest_pmap[i] != KVM_INVALID_PAGE)
kvm_mips_release_pfn_clean(kvm->arch.guest_pmap[i]);
}
if (kvm->arch.guest_pmap)
kfree(kvm->arch.guest_pmap);
kvm_for_each_vcpu(i, vcpu, kvm) {
kvm_arch_vcpu_free(vcpu);
}
mutex_lock(&kvm->lock);
for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
kvm->vcpus[i] = NULL;
atomic_set(&kvm->online_vcpus, 0);
mutex_unlock(&kvm->lock);
}
void kvm_arch_sync_events(struct kvm *kvm)
{
}
static void kvm_mips_uninit_tlbs(void *arg)
{
/* Restore wired count */
write_c0_wired(0);
mtc0_tlbw_hazard();
/* Clear out all the TLBs */
kvm_local_flush_tlb_all();
}
void kvm_arch_destroy_vm(struct kvm *kvm)
{
kvm_mips_free_vcpus(kvm);
/* If this is the last instance, restore wired count */
if (atomic_dec_return(&kvm_mips_instance) == 0) {
kvm_debug("%s: last KVM instance, restoring TLB parameters\n",
__func__);
on_each_cpu(kvm_mips_uninit_tlbs, NULL, 1);
}
}
long
kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
{
return -ENOIOCTLCMD;
}
void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
struct kvm_memory_slot *dont)
{
}
int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
unsigned long npages)
{
return 0;
}
void kvm_arch_memslots_updated(struct kvm *kvm)
{
}
int kvm_arch_prepare_memory_region(struct kvm *kvm,
struct kvm_memory_slot *memslot,
struct kvm_userspace_memory_region *mem,
enum kvm_mr_change change)
{
return 0;
}
void kvm_arch_commit_memory_region(struct kvm *kvm,
struct kvm_userspace_memory_region *mem,
const struct kvm_memory_slot *old,
enum kvm_mr_change change)
{
unsigned long npages = 0;
int i, err = 0;
kvm_debug("%s: kvm: %p slot: %d, GPA: %llx, size: %llx, QVA: %llx\n",
__func__, kvm, mem->slot, mem->guest_phys_addr,
mem->memory_size, mem->userspace_addr);
/* Setup Guest PMAP table */
if (!kvm->arch.guest_pmap) {
if (mem->slot == 0)
npages = mem->memory_size >> PAGE_SHIFT;
if (npages) {
kvm->arch.guest_pmap_npages = npages;
kvm->arch.guest_pmap =
kzalloc(npages * sizeof(unsigned long), GFP_KERNEL);
if (!kvm->arch.guest_pmap) {
kvm_err("Failed to allocate guest PMAP");
err = -ENOMEM;
goto out;
}
kvm_debug("Allocated space for Guest PMAP Table (%ld pages) @ %p\n",
npages, kvm->arch.guest_pmap);
/* Now setup the page table */
for (i = 0; i < npages; i++) {
kvm->arch.guest_pmap[i] = KVM_INVALID_PAGE;
}
}
}
out:
return;
}
void kvm_arch_flush_shadow_all(struct kvm *kvm)
{
}
void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
struct kvm_memory_slot *slot)
{
}
void kvm_arch_flush_shadow(struct kvm *kvm)
{
}
struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
{
extern char mips32_exception[], mips32_exceptionEnd[];
extern char mips32_GuestException[], mips32_GuestExceptionEnd[];
int err, size, offset;
void *gebase;
int i;
struct kvm_vcpu *vcpu = kzalloc(sizeof(struct kvm_vcpu), GFP_KERNEL);
if (!vcpu) {
err = -ENOMEM;
goto out;
}
err = kvm_vcpu_init(vcpu, kvm, id);
if (err)
goto out_free_cpu;
kvm_debug("kvm @ %p: create cpu %d at %p\n", kvm, id, vcpu);
/* Allocate space for host mode exception handlers that handle
* guest mode exits
*/
if (cpu_has_veic || cpu_has_vint) {
size = 0x200 + VECTORSPACING * 64;
} else {
size = 0x4000;
}
/* Save Linux EBASE */
vcpu->arch.host_ebase = (void *)read_c0_ebase();
gebase = kzalloc(ALIGN(size, PAGE_SIZE), GFP_KERNEL);
if (!gebase) {
err = -ENOMEM;
goto out_free_cpu;
}
kvm_debug("Allocated %d bytes for KVM Exception Handlers @ %p\n",
ALIGN(size, PAGE_SIZE), gebase);
/* Save new ebase */
vcpu->arch.guest_ebase = gebase;
/* Copy L1 Guest Exception handler to correct offset */
/* TLB Refill, EXL = 0 */
memcpy(gebase, mips32_exception,
mips32_exceptionEnd - mips32_exception);
/* General Exception Entry point */
memcpy(gebase + 0x180, mips32_exception,
mips32_exceptionEnd - mips32_exception);
/* For vectored interrupts poke the exception code @ all offsets 0-7 */
for (i = 0; i < 8; i++) {
kvm_debug("L1 Vectored handler @ %p\n",
gebase + 0x200 + (i * VECTORSPACING));
memcpy(gebase + 0x200 + (i * VECTORSPACING), mips32_exception,
mips32_exceptionEnd - mips32_exception);
}
/* General handler, relocate to unmapped space for sanity's sake */
offset = 0x2000;
kvm_debug("Installing KVM Exception handlers @ %p, %#x bytes\n",
gebase + offset,
mips32_GuestExceptionEnd - mips32_GuestException);
memcpy(gebase + offset, mips32_GuestException,
mips32_GuestExceptionEnd - mips32_GuestException);
/* Invalidate the icache for these ranges */
local_flush_icache_range((unsigned long)gebase,
(unsigned long)gebase + ALIGN(size, PAGE_SIZE));
/* Allocate comm page for guest kernel, a TLB will be reserved for mapping GVA @ 0xFFFF8000 to this page */
vcpu->arch.kseg0_commpage = kzalloc(PAGE_SIZE << 1, GFP_KERNEL);
if (!vcpu->arch.kseg0_commpage) {
err = -ENOMEM;
goto out_free_gebase;
}
kvm_debug("Allocated COMM page @ %p\n", vcpu->arch.kseg0_commpage);
kvm_mips_commpage_init(vcpu);
/* Init */
vcpu->arch.last_sched_cpu = -1;
/* Start off the timer */
kvm_mips_init_count(vcpu);
return vcpu;
out_free_gebase:
kfree(gebase);
out_free_cpu:
kfree(vcpu);
out:
return ERR_PTR(err);
}
void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
{
hrtimer_cancel(&vcpu->arch.comparecount_timer);
kvm_vcpu_uninit(vcpu);
kvm_mips_dump_stats(vcpu);
if (vcpu->arch.guest_ebase)
kfree(vcpu->arch.guest_ebase);
if (vcpu->arch.kseg0_commpage)
kfree(vcpu->arch.kseg0_commpage);
}
void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
{
kvm_arch_vcpu_free(vcpu);
}
int
kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
struct kvm_guest_debug *dbg)
{
return -ENOIOCTLCMD;
}
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
int r = 0;
sigset_t sigsaved;
if (vcpu->sigset_active)
sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
if (vcpu->mmio_needed) {
if (!vcpu->mmio_is_write)
kvm_mips_complete_mmio_load(vcpu, run);
vcpu->mmio_needed = 0;
}
local_irq_disable();
/* Check if we have any exceptions/interrupts pending */
kvm_mips_deliver_interrupts(vcpu,
kvm_read_c0_guest_cause(vcpu->arch.cop0));
kvm_guest_enter();
r = __kvm_mips_vcpu_run(run, vcpu);
kvm_guest_exit();
local_irq_enable();
if (vcpu->sigset_active)
sigprocmask(SIG_SETMASK, &sigsaved, NULL);
return r;
}
int
kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_mips_interrupt *irq)
{
int intr = (int)irq->irq;
struct kvm_vcpu *dvcpu = NULL;
if (intr == 3 || intr == -3 || intr == 4 || intr == -4)
kvm_debug("%s: CPU: %d, INTR: %d\n", __func__, irq->cpu,
(int)intr);
if (irq->cpu == -1)
dvcpu = vcpu;
else
dvcpu = vcpu->kvm->vcpus[irq->cpu];
if (intr == 2 || intr == 3 || intr == 4) {
kvm_mips_callbacks->queue_io_int(dvcpu, irq);
} else if (intr == -2 || intr == -3 || intr == -4) {
kvm_mips_callbacks->dequeue_io_int(dvcpu, irq);
} else {
kvm_err("%s: invalid interrupt ioctl (%d:%d)\n", __func__,
irq->cpu, irq->irq);
return -EINVAL;
}
dvcpu->arch.wait = 0;
if (waitqueue_active(&dvcpu->wq)) {
wake_up_interruptible(&dvcpu->wq);
}
return 0;
}
int
kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
struct kvm_mp_state *mp_state)
{
return -ENOIOCTLCMD;
}
int
kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
struct kvm_mp_state *mp_state)
{
return -ENOIOCTLCMD;
}
static u64 kvm_mips_get_one_regs[] = {
KVM_REG_MIPS_R0,
KVM_REG_MIPS_R1,
KVM_REG_MIPS_R2,
KVM_REG_MIPS_R3,
KVM_REG_MIPS_R4,
KVM_REG_MIPS_R5,
KVM_REG_MIPS_R6,
KVM_REG_MIPS_R7,
KVM_REG_MIPS_R8,
KVM_REG_MIPS_R9,
KVM_REG_MIPS_R10,
KVM_REG_MIPS_R11,
KVM_REG_MIPS_R12,
KVM_REG_MIPS_R13,
KVM_REG_MIPS_R14,
KVM_REG_MIPS_R15,
KVM_REG_MIPS_R16,
KVM_REG_MIPS_R17,
KVM_REG_MIPS_R18,
KVM_REG_MIPS_R19,
KVM_REG_MIPS_R20,
KVM_REG_MIPS_R21,
KVM_REG_MIPS_R22,
KVM_REG_MIPS_R23,
KVM_REG_MIPS_R24,
KVM_REG_MIPS_R25,
KVM_REG_MIPS_R26,
KVM_REG_MIPS_R27,
KVM_REG_MIPS_R28,
KVM_REG_MIPS_R29,
KVM_REG_MIPS_R30,
KVM_REG_MIPS_R31,
KVM_REG_MIPS_HI,
KVM_REG_MIPS_LO,
KVM_REG_MIPS_PC,
KVM_REG_MIPS_CP0_INDEX,
KVM_REG_MIPS_CP0_CONTEXT,
KVM_REG_MIPS_CP0_USERLOCAL,
KVM_REG_MIPS_CP0_PAGEMASK,
KVM_REG_MIPS_CP0_WIRED,
KVM_REG_MIPS_CP0_HWRENA,
KVM_REG_MIPS_CP0_BADVADDR,
KVM_REG_MIPS_CP0_COUNT,
KVM_REG_MIPS_CP0_ENTRYHI,
KVM_REG_MIPS_CP0_COMPARE,
KVM_REG_MIPS_CP0_STATUS,
KVM_REG_MIPS_CP0_CAUSE,
KVM_REG_MIPS_CP0_EPC,
KVM_REG_MIPS_CP0_CONFIG,
KVM_REG_MIPS_CP0_CONFIG1,
KVM_REG_MIPS_CP0_CONFIG2,
KVM_REG_MIPS_CP0_CONFIG3,
KVM_REG_MIPS_CP0_CONFIG7,
KVM_REG_MIPS_CP0_ERROREPC,
KVM_REG_MIPS_COUNT_CTL,
KVM_REG_MIPS_COUNT_RESUME,
KVM_REG_MIPS_COUNT_HZ,
};
static int kvm_mips_get_reg(struct kvm_vcpu *vcpu,
const struct kvm_one_reg *reg)
{
struct mips_coproc *cop0 = vcpu->arch.cop0;
int ret;
s64 v;
switch (reg->id) {
case KVM_REG_MIPS_R0 ... KVM_REG_MIPS_R31:
v = (long)vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0];
break;
case KVM_REG_MIPS_HI:
v = (long)vcpu->arch.hi;
break;
case KVM_REG_MIPS_LO:
v = (long)vcpu->arch.lo;
break;
case KVM_REG_MIPS_PC:
v = (long)vcpu->arch.pc;
break;
case KVM_REG_MIPS_CP0_INDEX:
v = (long)kvm_read_c0_guest_index(cop0);
break;
case KVM_REG_MIPS_CP0_CONTEXT:
v = (long)kvm_read_c0_guest_context(cop0);
break;
case KVM_REG_MIPS_CP0_USERLOCAL:
v = (long)kvm_read_c0_guest_userlocal(cop0);
break;
case KVM_REG_MIPS_CP0_PAGEMASK:
v = (long)kvm_read_c0_guest_pagemask(cop0);
break;
case KVM_REG_MIPS_CP0_WIRED:
v = (long)kvm_read_c0_guest_wired(cop0);
break;
case KVM_REG_MIPS_CP0_HWRENA:
v = (long)kvm_read_c0_guest_hwrena(cop0);
break;
case KVM_REG_MIPS_CP0_BADVADDR:
v = (long)kvm_read_c0_guest_badvaddr(cop0);
break;
case KVM_REG_MIPS_CP0_ENTRYHI:
v = (long)kvm_read_c0_guest_entryhi(cop0);
break;
case KVM_REG_MIPS_CP0_COMPARE:
v = (long)kvm_read_c0_guest_compare(cop0);
break;
case KVM_REG_MIPS_CP0_STATUS:
v = (long)kvm_read_c0_guest_status(cop0);
break;
case KVM_REG_MIPS_CP0_CAUSE:
v = (long)kvm_read_c0_guest_cause(cop0);
break;
case KVM_REG_MIPS_CP0_EPC:
v = (long)kvm_read_c0_guest_epc(cop0);
break;
case KVM_REG_MIPS_CP0_ERROREPC:
v = (long)kvm_read_c0_guest_errorepc(cop0);
break;
case KVM_REG_MIPS_CP0_CONFIG:
v = (long)kvm_read_c0_guest_config(cop0);
break;
case KVM_REG_MIPS_CP0_CONFIG1:
v = (long)kvm_read_c0_guest_config1(cop0);
break;
case KVM_REG_MIPS_CP0_CONFIG2:
v = (long)kvm_read_c0_guest_config2(cop0);
break;
case KVM_REG_MIPS_CP0_CONFIG3:
v = (long)kvm_read_c0_guest_config3(cop0);
break;
case KVM_REG_MIPS_CP0_CONFIG7:
v = (long)kvm_read_c0_guest_config7(cop0);
break;
/* registers to be handled specially */
case KVM_REG_MIPS_CP0_COUNT:
case KVM_REG_MIPS_COUNT_CTL:
case KVM_REG_MIPS_COUNT_RESUME:
case KVM_REG_MIPS_COUNT_HZ:
ret = kvm_mips_callbacks->get_one_reg(vcpu, reg, &v);
if (ret)
return ret;
break;
default:
return -EINVAL;
}
if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
return put_user(v, uaddr64);
} else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
u32 v32 = (u32)v;
return put_user(v32, uaddr32);
} else {
return -EINVAL;
}
}
static int kvm_mips_set_reg(struct kvm_vcpu *vcpu,
const struct kvm_one_reg *reg)
{
struct mips_coproc *cop0 = vcpu->arch.cop0;
u64 v;
if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
if (get_user(v, uaddr64) != 0)
return -EFAULT;
} else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
s32 v32;
if (get_user(v32, uaddr32) != 0)
return -EFAULT;
v = (s64)v32;
} else {
return -EINVAL;
}
switch (reg->id) {
case KVM_REG_MIPS_R0:
/* Silently ignore requests to set $0 */
break;
case KVM_REG_MIPS_R1 ... KVM_REG_MIPS_R31:
vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0] = v;
break;
case KVM_REG_MIPS_HI:
vcpu->arch.hi = v;
break;
case KVM_REG_MIPS_LO:
vcpu->arch.lo = v;
break;
case KVM_REG_MIPS_PC:
vcpu->arch.pc = v;
break;
case KVM_REG_MIPS_CP0_INDEX:
kvm_write_c0_guest_index(cop0, v);
break;
case KVM_REG_MIPS_CP0_CONTEXT:
kvm_write_c0_guest_context(cop0, v);
break;
case KVM_REG_MIPS_CP0_USERLOCAL:
kvm_write_c0_guest_userlocal(cop0, v);
break;
case KVM_REG_MIPS_CP0_PAGEMASK:
kvm_write_c0_guest_pagemask(cop0, v);
break;
case KVM_REG_MIPS_CP0_WIRED:
kvm_write_c0_guest_wired(cop0, v);
break;
case KVM_REG_MIPS_CP0_HWRENA:
kvm_write_c0_guest_hwrena(cop0, v);
break;
case KVM_REG_MIPS_CP0_BADVADDR:
kvm_write_c0_guest_badvaddr(cop0, v);
break;
case KVM_REG_MIPS_CP0_ENTRYHI:
kvm_write_c0_guest_entryhi(cop0, v);
break;
case KVM_REG_MIPS_CP0_STATUS:
kvm_write_c0_guest_status(cop0, v);
break;
case KVM_REG_MIPS_CP0_EPC:
kvm_write_c0_guest_epc(cop0, v);
break;
case KVM_REG_MIPS_CP0_ERROREPC:
kvm_write_c0_guest_errorepc(cop0, v);
break;
/* registers to be handled specially */
case KVM_REG_MIPS_CP0_COUNT:
case KVM_REG_MIPS_CP0_COMPARE:
case KVM_REG_MIPS_CP0_CAUSE:
case KVM_REG_MIPS_COUNT_CTL:
case KVM_REG_MIPS_COUNT_RESUME:
case KVM_REG_MIPS_COUNT_HZ:
return kvm_mips_callbacks->set_one_reg(vcpu, reg, v);
default:
return -EINVAL;
}
return 0;
}
long
kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
{
struct kvm_vcpu *vcpu = filp->private_data;
void __user *argp = (void __user *)arg;
long r;
switch (ioctl) {
case KVM_SET_ONE_REG:
case KVM_GET_ONE_REG: {
struct kvm_one_reg reg;
if (copy_from_user(®, argp, sizeof(reg)))
return -EFAULT;
if (ioctl == KVM_SET_ONE_REG)
return kvm_mips_set_reg(vcpu, ®);
else
return kvm_mips_get_reg(vcpu, ®);
}
case KVM_GET_REG_LIST: {
struct kvm_reg_list __user *user_list = argp;
u64 __user *reg_dest;
struct kvm_reg_list reg_list;
unsigned n;
if (copy_from_user(®_list, user_list, sizeof(reg_list)))
return -EFAULT;
n = reg_list.n;
reg_list.n = ARRAY_SIZE(kvm_mips_get_one_regs);
if (copy_to_user(user_list, ®_list, sizeof(reg_list)))
return -EFAULT;
if (n < reg_list.n)
return -E2BIG;
reg_dest = user_list->reg;
if (copy_to_user(reg_dest, kvm_mips_get_one_regs,
sizeof(kvm_mips_get_one_regs)))
return -EFAULT;
return 0;
}
case KVM_NMI:
/* Treat the NMI as a CPU reset */
r = kvm_mips_reset_vcpu(vcpu);
break;
case KVM_INTERRUPT:
{
struct kvm_mips_interrupt irq;
r = -EFAULT;
if (copy_from_user(&irq, argp, sizeof(irq)))
goto out;
kvm_debug("[%d] %s: irq: %d\n", vcpu->vcpu_id, __func__,
irq.irq);
r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
break;
}
default:
r = -ENOIOCTLCMD;
}
out:
return r;
}
/*
* Get (and clear) the dirty memory log for a memory slot.
*/
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
{
struct kvm_memory_slot *memslot;
unsigned long ga, ga_end;
int is_dirty = 0;
int r;
unsigned long n;
mutex_lock(&kvm->slots_lock);
r = kvm_get_dirty_log(kvm, log, &is_dirty);
if (r)
goto out;
/* If nothing is dirty, don't bother messing with page tables. */
if (is_dirty) {
memslot = &kvm->memslots->memslots[log->slot];
ga = memslot->base_gfn << PAGE_SHIFT;
ga_end = ga + (memslot->npages << PAGE_SHIFT);
printk("%s: dirty, ga: %#lx, ga_end %#lx\n", __func__, ga,
ga_end);
n = kvm_dirty_bitmap_bytes(memslot);
memset(memslot->dirty_bitmap, 0, n);
}
r = 0;
out:
mutex_unlock(&kvm->slots_lock);
return r;
}
long kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
{
long r;
switch (ioctl) {
default:
r = -ENOIOCTLCMD;
}
return r;
}
int kvm_arch_init(void *opaque)
{
int ret;
if (kvm_mips_callbacks) {
kvm_err("kvm: module already exists\n");
return -EEXIST;
}
ret = kvm_mips_emulation_init(&kvm_mips_callbacks);
return ret;
}
void kvm_arch_exit(void)
{
kvm_mips_callbacks = NULL;
}
int
kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
{
return -ENOIOCTLCMD;
}
int
kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
{
return -ENOIOCTLCMD;
}
int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
{
return 0;
}
int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
return -ENOIOCTLCMD;
}
int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
return -ENOIOCTLCMD;
}
int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
{
return VM_FAULT_SIGBUS;
}
int kvm_dev_ioctl_check_extension(long ext)
{
int r;
switch (ext) {
case KVM_CAP_ONE_REG:
r = 1;
break;
case KVM_CAP_COALESCED_MMIO:
r = KVM_COALESCED_MMIO_PAGE_OFFSET;
break;
default:
r = 0;
break;
}
return r;
}
int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
{
return kvm_mips_pending_timer(vcpu);
}
int kvm_arch_vcpu_dump_regs(struct kvm_vcpu *vcpu)
{
int i;
struct mips_coproc *cop0;
if (!vcpu)
return -1;
printk("VCPU Register Dump:\n");
printk("\tpc = 0x%08lx\n", vcpu->arch.pc);;
printk("\texceptions: %08lx\n", vcpu->arch.pending_exceptions);
for (i = 0; i < 32; i += 4) {
printk("\tgpr%02d: %08lx %08lx %08lx %08lx\n", i,
vcpu->arch.gprs[i],
vcpu->arch.gprs[i + 1],
vcpu->arch.gprs[i + 2], vcpu->arch.gprs[i + 3]);
}
printk("\thi: 0x%08lx\n", vcpu->arch.hi);
printk("\tlo: 0x%08lx\n", vcpu->arch.lo);
cop0 = vcpu->arch.cop0;
printk("\tStatus: 0x%08lx, Cause: 0x%08lx\n",
kvm_read_c0_guest_status(cop0), kvm_read_c0_guest_cause(cop0));
printk("\tEPC: 0x%08lx\n", kvm_read_c0_guest_epc(cop0));
return 0;
}
int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
int i;
for (i = 1; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
vcpu->arch.gprs[i] = regs->gpr[i];
vcpu->arch.gprs[0] = 0; /* zero is special, and cannot be set. */
vcpu->arch.hi = regs->hi;
vcpu->arch.lo = regs->lo;
vcpu->arch.pc = regs->pc;
return 0;
}
int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
int i;
for (i = 0; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
regs->gpr[i] = vcpu->arch.gprs[i];
regs->hi = vcpu->arch.hi;
regs->lo = vcpu->arch.lo;
regs->pc = vcpu->arch.pc;
return 0;
}
static void kvm_mips_comparecount_func(unsigned long data)
{
struct kvm_vcpu *vcpu = (struct kvm_vcpu *)data;
kvm_mips_callbacks->queue_timer_int(vcpu);
vcpu->arch.wait = 0;
if (waitqueue_active(&vcpu->wq)) {
wake_up_interruptible(&vcpu->wq);
}
}
/*
* low level hrtimer wake routine.
*/
static enum hrtimer_restart kvm_mips_comparecount_wakeup(struct hrtimer *timer)
{
struct kvm_vcpu *vcpu;
vcpu = container_of(timer, struct kvm_vcpu, arch.comparecount_timer);
kvm_mips_comparecount_func((unsigned long) vcpu);
return kvm_mips_count_timeout(vcpu);
}
int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
{
kvm_mips_callbacks->vcpu_init(vcpu);
hrtimer_init(&vcpu->arch.comparecount_timer, CLOCK_MONOTONIC,
HRTIMER_MODE_REL);
vcpu->arch.comparecount_timer.function = kvm_mips_comparecount_wakeup;
return 0;
}
void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
{
return;
}
int
kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, struct kvm_translation *tr)
{
return 0;
}
/* Initial guest state */
int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
{
return kvm_mips_callbacks->vcpu_setup(vcpu);
}
static
void kvm_mips_set_c0_status(void)
{
uint32_t status = read_c0_status();
if (cpu_has_fpu)
status |= (ST0_CU1);
if (cpu_has_dsp)
status |= (ST0_MX);
write_c0_status(status);
ehb();
}
/*
* Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV)
*/
int kvm_mips_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu)
{
uint32_t cause = vcpu->arch.host_cp0_cause;
uint32_t exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
uint32_t __user *opc = (uint32_t __user *) vcpu->arch.pc;
unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
enum emulation_result er = EMULATE_DONE;
int ret = RESUME_GUEST;
/* Set a default exit reason */
run->exit_reason = KVM_EXIT_UNKNOWN;
run->ready_for_interrupt_injection = 1;
/* Set the appropriate status bits based on host CPU features, before we hit the scheduler */
kvm_mips_set_c0_status();
local_irq_enable();
kvm_debug("kvm_mips_handle_exit: cause: %#x, PC: %p, kvm_run: %p, kvm_vcpu: %p\n",
cause, opc, run, vcpu);
/* Do a privilege check, if in UM most of these exit conditions end up
* causing an exception to be delivered to the Guest Kernel
*/
er = kvm_mips_check_privilege(cause, opc, run, vcpu);
if (er == EMULATE_PRIV_FAIL) {
goto skip_emul;
} else if (er == EMULATE_FAIL) {
run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
ret = RESUME_HOST;
goto skip_emul;
}
switch (exccode) {
case T_INT:
kvm_debug("[%d]T_INT @ %p\n", vcpu->vcpu_id, opc);
++vcpu->stat.int_exits;
trace_kvm_exit(vcpu, INT_EXITS);
if (need_resched()) {
cond_resched();
}
ret = RESUME_GUEST;
break;
case T_COP_UNUSABLE:
kvm_debug("T_COP_UNUSABLE: @ PC: %p\n", opc);
++vcpu->stat.cop_unusable_exits;
trace_kvm_exit(vcpu, COP_UNUSABLE_EXITS);
ret = kvm_mips_callbacks->handle_cop_unusable(vcpu);
/* XXXKYMA: Might need to return to user space */
if (run->exit_reason == KVM_EXIT_IRQ_WINDOW_OPEN) {
ret = RESUME_HOST;
}
break;
case T_TLB_MOD:
++vcpu->stat.tlbmod_exits;
trace_kvm_exit(vcpu, TLBMOD_EXITS);
ret = kvm_mips_callbacks->handle_tlb_mod(vcpu);
break;
case T_TLB_ST_MISS:
kvm_debug
("TLB ST fault: cause %#x, status %#lx, PC: %p, BadVaddr: %#lx\n",
cause, kvm_read_c0_guest_status(vcpu->arch.cop0), opc,
badvaddr);
++vcpu->stat.tlbmiss_st_exits;
trace_kvm_exit(vcpu, TLBMISS_ST_EXITS);
ret = kvm_mips_callbacks->handle_tlb_st_miss(vcpu);
break;
case T_TLB_LD_MISS:
kvm_debug("TLB LD fault: cause %#x, PC: %p, BadVaddr: %#lx\n",
cause, opc, badvaddr);
++vcpu->stat.tlbmiss_ld_exits;
trace_kvm_exit(vcpu, TLBMISS_LD_EXITS);
ret = kvm_mips_callbacks->handle_tlb_ld_miss(vcpu);
break;
case T_ADDR_ERR_ST:
++vcpu->stat.addrerr_st_exits;
trace_kvm_exit(vcpu, ADDRERR_ST_EXITS);
ret = kvm_mips_callbacks->handle_addr_err_st(vcpu);
break;
case T_ADDR_ERR_LD:
++vcpu->stat.addrerr_ld_exits;
trace_kvm_exit(vcpu, ADDRERR_LD_EXITS);
ret = kvm_mips_callbacks->handle_addr_err_ld(vcpu);
break;
case T_SYSCALL:
++vcpu->stat.syscall_exits;
trace_kvm_exit(vcpu, SYSCALL_EXITS);
ret = kvm_mips_callbacks->handle_syscall(vcpu);
break;
case T_RES_INST:
++vcpu->stat.resvd_inst_exits;
trace_kvm_exit(vcpu, RESVD_INST_EXITS);
ret = kvm_mips_callbacks->handle_res_inst(vcpu);
break;
case T_BREAK:
++vcpu->stat.break_inst_exits;
trace_kvm_exit(vcpu, BREAK_INST_EXITS);
ret = kvm_mips_callbacks->handle_break(vcpu);
break;
default:
kvm_err
("Exception Code: %d, not yet handled, @ PC: %p, inst: 0x%08x BadVaddr: %#lx Status: %#lx\n",
exccode, opc, kvm_get_inst(opc, vcpu), badvaddr,
kvm_read_c0_guest_status(vcpu->arch.cop0));
kvm_arch_vcpu_dump_regs(vcpu);
run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
ret = RESUME_HOST;
break;
}
skip_emul:
local_irq_disable();
if (er == EMULATE_DONE && !(ret & RESUME_HOST))
kvm_mips_deliver_interrupts(vcpu, cause);
if (!(ret & RESUME_HOST)) {
/* Only check for signals if not already exiting to userspace */
if (signal_pending(current)) {
run->exit_reason = KVM_EXIT_INTR;
ret = (-EINTR << 2) | RESUME_HOST;
++vcpu->stat.signal_exits;
trace_kvm_exit(vcpu, SIGNAL_EXITS);
}
}
return ret;
}
int __init kvm_mips_init(void)
{
int ret;
ret = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
if (ret)
return ret;
/* On MIPS, kernel modules are executed from "mapped space", which requires TLBs.
* The TLB handling code is statically linked with the rest of the kernel (kvm_tlb.c)
* to avoid the possibility of double faulting. The issue is that the TLB code
* references routines that are part of the the KVM module,
* which are only available once the module is loaded.
*/
kvm_mips_gfn_to_pfn = gfn_to_pfn;
kvm_mips_release_pfn_clean = kvm_release_pfn_clean;
kvm_mips_is_error_pfn = is_error_pfn;
pr_info("KVM/MIPS Initialized\n");
return 0;
}
void __exit kvm_mips_exit(void)
{
kvm_exit();
kvm_mips_gfn_to_pfn = NULL;
kvm_mips_release_pfn_clean = NULL;
kvm_mips_is_error_pfn = NULL;
pr_info("KVM/MIPS unloaded\n");
}
module_init(kvm_mips_init);
module_exit(kvm_mips_exit);
EXPORT_TRACEPOINT_SYMBOL(kvm_exit);