// SPDX-License-Identifier: GPL-2.0
/*
* Extensible Firmware Interface
*
* Based on Extensible Firmware Interface Specification version 0.9
* April 30, 1999
*
* Copyright (C) 1999 VA Linux Systems
* Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
* Copyright (C) 1999-2003 Hewlett-Packard Co.
* David Mosberger-Tang <davidm@hpl.hp.com>
* Stephane Eranian <eranian@hpl.hp.com>
* (c) Copyright 2006 Hewlett-Packard Development Company, L.P.
* Bjorn Helgaas <bjorn.helgaas@hp.com>
*
* All EFI Runtime Services are not implemented yet as EFI only
* supports physical mode addressing on SoftSDV. This is to be fixed
* in a future version. --drummond 1999-07-20
*
* Implemented EFI runtime services and virtual mode calls. --davidm
*
* Goutham Rao: <goutham.rao@intel.com>
* Skip non-WB memory and ignore empty memory ranges.
*/
#include <linux/module.h>
#include <linux/bootmem.h>
#include <linux/crash_dump.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/time.h>
#include <linux/efi.h>
#include <linux/kexec.h>
#include <linux/mm.h>
#include <asm/io.h>
#include <asm/kregs.h>
#include <asm/meminit.h>
#include <asm/pgtable.h>
#include <asm/processor.h>
#include <asm/mca.h>
#include <asm/setup.h>
#include <asm/tlbflush.h>
#define EFI_DEBUG 0
static __initdata unsigned long palo_phys;
static __initdata efi_config_table_type_t arch_tables[] = {
{PROCESSOR_ABSTRACTION_LAYER_OVERWRITE_GUID, "PALO", &palo_phys},
{NULL_GUID, NULL, 0},
};
extern efi_status_t efi_call_phys (void *, ...);
static efi_runtime_services_t *runtime;
static u64 mem_limit = ~0UL, max_addr = ~0UL, min_addr = 0UL;
#define efi_call_virt(f, args...) (*(f))(args)
#define STUB_GET_TIME(prefix, adjust_arg) \
static efi_status_t \
prefix##_get_time (efi_time_t *tm, efi_time_cap_t *tc) \
{ \
struct ia64_fpreg fr[6]; \
efi_time_cap_t *atc = NULL; \
efi_status_t ret; \
\
if (tc) \
atc = adjust_arg(tc); \
ia64_save_scratch_fpregs(fr); \
ret = efi_call_##prefix((efi_get_time_t *) __va(runtime->get_time), \
adjust_arg(tm), atc); \
ia64_load_scratch_fpregs(fr); \
return ret; \
}
#define STUB_SET_TIME(prefix, adjust_arg) \
static efi_status_t \
prefix##_set_time (efi_time_t *tm) \
{ \
struct ia64_fpreg fr[6]; \
efi_status_t ret; \
\
ia64_save_scratch_fpregs(fr); \
ret = efi_call_##prefix((efi_set_time_t *) __va(runtime->set_time), \
adjust_arg(tm)); \
ia64_load_scratch_fpregs(fr); \
return ret; \
}
#define STUB_GET_WAKEUP_TIME(prefix, adjust_arg) \
static efi_status_t \
prefix##_get_wakeup_time (efi_bool_t *enabled, efi_bool_t *pending, \
efi_time_t *tm) \
{ \
struct ia64_fpreg fr[6]; \
efi_status_t ret; \
\
ia64_save_scratch_fpregs(fr); \
ret = efi_call_##prefix( \
(efi_get_wakeup_time_t *) __va(runtime->get_wakeup_time), \
adjust_arg(enabled), adjust_arg(pending), adjust_arg(tm)); \
ia64_load_scratch_fpregs(fr); \
return ret; \
}
#define STUB_SET_WAKEUP_TIME(prefix, adjust_arg) \
static efi_status_t \
prefix##_set_wakeup_time (efi_bool_t enabled, efi_time_t *tm) \
{ \
struct ia64_fpreg fr[6]; \
efi_time_t *atm = NULL; \
efi_status_t ret; \
\
if (tm) \
atm = adjust_arg(tm); \
ia64_save_scratch_fpregs(fr); \
ret = efi_call_##prefix( \
(efi_set_wakeup_time_t *) __va(runtime->set_wakeup_time), \
enabled, atm); \
ia64_load_scratch_fpregs(fr); \
return ret; \
}
#define STUB_GET_VARIABLE(prefix, adjust_arg) \
static efi_status_t \
prefix##_get_variable (efi_char16_t *name, efi_guid_t *vendor, u32 *attr, \
unsigned long *data_size, void *data) \
{ \
struct ia64_fpreg fr[6]; \
u32 *aattr = NULL; \
efi_status_t ret; \
\
if (attr) \
aattr = adjust_arg(attr); \
ia64_save_scratch_fpregs(fr); \
ret = efi_call_##prefix( \
(efi_get_variable_t *) __va(runtime->get_variable), \
adjust_arg(name), adjust_arg(vendor), aattr, \
adjust_arg(data_size), adjust_arg(data)); \
ia64_load_scratch_fpregs(fr); \
return ret; \
}
#define STUB_GET_NEXT_VARIABLE(prefix, adjust_arg) \
static efi_status_t \
prefix##_get_next_variable (unsigned long *name_size, efi_char16_t *name, \
efi_guid_t *vendor) \
{ \
struct ia64_fpreg fr[6]; \
efi_status_t ret; \
\
ia64_save_scratch_fpregs(fr); \
ret = efi_call_##prefix( \
(efi_get_next_variable_t *) __va(runtime->get_next_variable), \
adjust_arg(name_size), adjust_arg(name), adjust_arg(vendor)); \
ia64_load_scratch_fpregs(fr); \
return ret; \
}
#define STUB_SET_VARIABLE(prefix, adjust_arg) \
static efi_status_t \
prefix##_set_variable (efi_char16_t *name, efi_guid_t *vendor, \
u32 attr, unsigned long data_size, \
void *data) \
{ \
struct ia64_fpreg fr[6]; \
efi_status_t ret; \
\
ia64_save_scratch_fpregs(fr); \
ret = efi_call_##prefix( \
(efi_set_variable_t *) __va(runtime->set_variable), \
adjust_arg(name), adjust_arg(vendor), attr, data_size, \
adjust_arg(data)); \
ia64_load_scratch_fpregs(fr); \
return ret; \
}
#define STUB_GET_NEXT_HIGH_MONO_COUNT(prefix, adjust_arg) \
static efi_status_t \
prefix##_get_next_high_mono_count (u32 *count) \
{ \
struct ia64_fpreg fr[6]; \
efi_status_t ret; \
\
ia64_save_scratch_fpregs(fr); \
ret = efi_call_##prefix((efi_get_next_high_mono_count_t *) \
__va(runtime->get_next_high_mono_count), \
adjust_arg(count)); \
ia64_load_scratch_fpregs(fr); \
return ret; \
}
#define STUB_RESET_SYSTEM(prefix, adjust_arg) \
static void \
prefix##_reset_system (int reset_type, efi_status_t status, \
unsigned long data_size, efi_char16_t *data) \
{ \
struct ia64_fpreg fr[6]; \
efi_char16_t *adata = NULL; \
\
if (data) \
adata = adjust_arg(data); \
\
ia64_save_scratch_fpregs(fr); \
efi_call_##prefix( \
(efi_reset_system_t *) __va(runtime->reset_system), \
reset_type, status, data_size, adata); \
/* should not return, but just in case... */ \
ia64_load_scratch_fpregs(fr); \
}
#define phys_ptr(arg) ((__typeof__(arg)) ia64_tpa(arg))
STUB_GET_TIME(phys, phys_ptr)
STUB_SET_TIME(phys, phys_ptr)
STUB_GET_WAKEUP_TIME(phys, phys_ptr)
STUB_SET_WAKEUP_TIME(phys, phys_ptr)
STUB_GET_VARIABLE(phys, phys_ptr)
STUB_GET_NEXT_VARIABLE(phys, phys_ptr)
STUB_SET_VARIABLE(phys, phys_ptr)
STUB_GET_NEXT_HIGH_MONO_COUNT(phys, phys_ptr)
STUB_RESET_SYSTEM(phys, phys_ptr)
#define id(arg) arg
STUB_GET_TIME(virt, id)
STUB_SET_TIME(virt, id)
STUB_GET_WAKEUP_TIME(virt, id)
STUB_SET_WAKEUP_TIME(virt, id)
STUB_GET_VARIABLE(virt, id)
STUB_GET_NEXT_VARIABLE(virt, id)
STUB_SET_VARIABLE(virt, id)
STUB_GET_NEXT_HIGH_MONO_COUNT(virt, id)
STUB_RESET_SYSTEM(virt, id)
void
efi_gettimeofday (struct timespec64 *ts)
{
efi_time_t tm;
if ((*efi.get_time)(&tm, NULL) != EFI_SUCCESS) {
memset(ts, 0, sizeof(*ts));
return;
}
ts->tv_sec = mktime64(tm.year, tm.month, tm.day,
tm.hour, tm.minute, tm.second);
ts->tv_nsec = tm.nanosecond;
}
static int
is_memory_available (efi_memory_desc_t *md)
{
if (!(md->attribute & EFI_MEMORY_WB))
return 0;
switch (md->type) {
case EFI_LOADER_CODE:
case EFI_LOADER_DATA:
case EFI_BOOT_SERVICES_CODE:
case EFI_BOOT_SERVICES_DATA:
case EFI_CONVENTIONAL_MEMORY:
return 1;
}
return 0;
}
typedef struct kern_memdesc {
u64 attribute;
u64 start;
u64 num_pages;
} kern_memdesc_t;
static kern_memdesc_t *kern_memmap;
#define efi_md_size(md) (md->num_pages << EFI_PAGE_SHIFT)
static inline u64
kmd_end(kern_memdesc_t *kmd)
{
return (kmd->start + (kmd->num_pages << EFI_PAGE_SHIFT));
}
static inline u64
efi_md_end(efi_memory_desc_t *md)
{
return (md->phys_addr + efi_md_size(md));
}
static inline int
efi_wb(efi_memory_desc_t *md)
{
return (md->attribute & EFI_MEMORY_WB);
}
static inline int
efi_uc(efi_memory_desc_t *md)
{
return (md->attribute & EFI_MEMORY_UC);
}
static void
walk (efi_freemem_callback_t callback, void *arg, u64 attr)
{
kern_memdesc_t *k;
u64 start, end, voff;
voff = (attr == EFI_MEMORY_WB) ? PAGE_OFFSET : __IA64_UNCACHED_OFFSET;
for (k = kern_memmap; k->start != ~0UL; k++) {
if (k->attribute != attr)
continue;
start = PAGE_ALIGN(k->start);
end = (k->start + (k->num_pages << EFI_PAGE_SHIFT)) & PAGE_MASK;
if (start < end)
if ((*callback)(start + voff, end + voff, arg) < 0)
return;
}
}
/*
* Walk the EFI memory map and call CALLBACK once for each EFI memory
* descriptor that has memory that is available for OS use.
*/
void
efi_memmap_walk (efi_freemem_callback_t callback, void *arg)
{
walk(callback, arg, EFI_MEMORY_WB);
}
/*
* Walk the EFI memory map and call CALLBACK once for each EFI memory
* descriptor that has memory that is available for uncached allocator.
*/
void
efi_memmap_walk_uc (efi_freemem_callback_t callback, void *arg)
{
walk(callback, arg, EFI_MEMORY_UC);
}
/*
* Look for the PAL_CODE region reported by EFI and map it using an
* ITR to enable safe PAL calls in virtual mode. See IA-64 Processor
* Abstraction Layer chapter 11 in ADAG
*/
void *
efi_get_pal_addr (void)
{
void *efi_map_start, *efi_map_end, *p;
efi_memory_desc_t *md;
u64 efi_desc_size;
int pal_code_count = 0;
u64 vaddr, mask;
efi_map_start = __va(ia64_boot_param->efi_memmap);
efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
efi_desc_size = ia64_boot_param->efi_memdesc_size;
for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
md = p;
if (md->type != EFI_PAL_CODE)
continue;
if (++pal_code_count > 1) {
printk(KERN_ERR "Too many EFI Pal Code memory ranges, "
"dropped @ %llx\n", md->phys_addr);
continue;
}
/*
* The only ITLB entry in region 7 that is used is the one
* installed by __start(). That entry covers a 64MB range.
*/
mask = ~((1 << KERNEL_TR_PAGE_SHIFT) - 1);
vaddr = PAGE_OFFSET + md->phys_addr;
/*
* We must check that the PAL mapping won't overlap with the
* kernel mapping.
*
* PAL code is guaranteed to be aligned on a power of 2 between
* 4k and 256KB and that only one ITR is needed to map it. This
* implies that the PAL code is always aligned on its size,
* i.e., the closest matching page size supported by the TLB.
* Therefore PAL code is guaranteed never to cross a 64MB unless
* it is bigger than 64MB (very unlikely!). So for now the
* following test is enough to determine whether or not we need
* a dedicated ITR for the PAL code.
*/
if ((vaddr & mask) == (KERNEL_START & mask)) {
printk(KERN_INFO "%s: no need to install ITR for PAL code\n",
__func__);
continue;
}
if (efi_md_size(md) > IA64_GRANULE_SIZE)
panic("Whoa! PAL code size bigger than a granule!");
#if EFI_DEBUG
mask = ~((1 << IA64_GRANULE_SHIFT) - 1);
printk(KERN_INFO "CPU %d: mapping PAL code "
"[0x%lx-0x%lx) into [0x%lx-0x%lx)\n",
smp_processor_id(), md->phys_addr,
md->phys_addr + efi_md_size(md),
vaddr & mask, (vaddr & mask) + IA64_GRANULE_SIZE);
#endif
return __va(md->phys_addr);
}
printk(KERN_WARNING "%s: no PAL-code memory-descriptor found\n",
__func__);
return NULL;
}
static u8 __init palo_checksum(u8 *buffer, u32 length)
{
u8 sum = 0;
u8 *end = buffer + length;
while (buffer < end)
sum = (u8) (sum + *(buffer++));
return sum;
}
/*
* Parse and handle PALO table which is published at:
* http://www.dig64.org/home/DIG64_PALO_R1_0.pdf
*/
static void __init handle_palo(unsigned long phys_addr)
{
struct palo_table *palo = __va(phys_addr);
u8 checksum;
if (strncmp(palo->signature, PALO_SIG, sizeof(PALO_SIG) - 1)) {
printk(KERN_INFO "PALO signature incorrect.\n");
return;
}
checksum = palo_checksum((u8 *)palo, palo->length);
if (checksum) {
printk(KERN_INFO "PALO checksum incorrect.\n");
return;
}
setup_ptcg_sem(palo->max_tlb_purges, NPTCG_FROM_PALO);
}
void
efi_map_pal_code (void)
{
void *pal_vaddr = efi_get_pal_addr ();
u64 psr;
if (!pal_vaddr)
return;
/*
* Cannot write to CRx with PSR.ic=1
*/
psr = ia64_clear_ic();
ia64_itr(0x1, IA64_TR_PALCODE,
GRANULEROUNDDOWN((unsigned long) pal_vaddr),
pte_val(pfn_pte(__pa(pal_vaddr) >> PAGE_SHIFT, PAGE_KERNEL)),
IA64_GRANULE_SHIFT);
ia64_set_psr(psr); /* restore psr */
}
void __init
efi_init (void)
{
void *efi_map_start, *efi_map_end;
efi_char16_t *c16;
u64 efi_desc_size;
char *cp, vendor[100] = "unknown";
int i;
set_bit(EFI_BOOT, &efi.flags);
set_bit(EFI_64BIT, &efi.flags);
/*
* It's too early to be able to use the standard kernel command line
* support...
*/
for (cp = boot_command_line; *cp; ) {
if (memcmp(cp, "mem=", 4) == 0) {
mem_limit = memparse(cp + 4, &cp);
} else if (memcmp(cp, "max_addr=", 9) == 0) {
max_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
} else if (memcmp(cp, "min_addr=", 9) == 0) {
min_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
} else {
while (*cp != ' ' && *cp)
++cp;
while (*cp == ' ')
++cp;
}
}
if (min_addr != 0UL)
printk(KERN_INFO "Ignoring memory below %lluMB\n",
min_addr >> 20);
if (max_addr != ~0UL)
printk(KERN_INFO "Ignoring memory above %lluMB\n",
max_addr >> 20);
efi.systab = __va(ia64_boot_param->efi_systab);
/*
* Verify the EFI Table
*/
if (efi.systab == NULL)
panic("Whoa! Can't find EFI system table.\n");
if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
panic("Whoa! EFI system table signature incorrect\n");
if ((efi.systab->hdr.revision >> 16) == 0)
printk(KERN_WARNING "Warning: EFI system table version "
"%d.%02d, expected 1.00 or greater\n",
efi.systab->hdr.revision >> 16,
efi.systab->hdr.revision & 0xffff);
/* Show what we know for posterity */
c16 = __va(efi.systab->fw_vendor);
if (c16) {
for (i = 0;i < (int) sizeof(vendor) - 1 && *c16; ++i)
vendor[i] = *c16++;
vendor[i] = '\0';
}
printk(KERN_INFO "EFI v%u.%.02u by %s:",
efi.systab->hdr.revision >> 16,
efi.systab->hdr.revision & 0xffff, vendor);
palo_phys = EFI_INVALID_TABLE_ADDR;
if (efi_config_init(arch_tables) != 0)
return;
if (palo_phys != EFI_INVALID_TABLE_ADDR)
handle_palo(palo_phys);
runtime = __va(efi.systab->runtime);
efi.get_time = phys_get_time;
efi.set_time = phys_set_time;
efi.get_wakeup_time = phys_get_wakeup_time;
efi.set_wakeup_time = phys_set_wakeup_time;
efi.get_variable = phys_get_variable;
efi.get_next_variable = phys_get_next_variable;
efi.set_variable = phys_set_variable;
efi.get_next_high_mono_count = phys_get_next_high_mono_count;
efi.reset_system = phys_reset_system;
efi_map_start = __va(ia64_boot_param->efi_memmap);
efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
efi_desc_size = ia64_boot_param->efi_memdesc_size;
#if EFI_DEBUG
/* print EFI memory map: */
{
efi_memory_desc_t *md;
void *p;
for (i = 0, p = efi_map_start; p < efi_map_end;
++i, p += efi_desc_size)
{
const char *unit;
unsigned long size;
char buf[64];
md = p;
size = md->num_pages << EFI_PAGE_SHIFT;
if ((size >> 40) > 0) {
size >>= 40;
unit = "TB";
} else if ((size >> 30) > 0) {
size >>= 30;
unit = "GB";
} else if ((size >> 20) > 0) {
size >>= 20;
unit = "MB";
} else {
size >>= 10;
unit = "KB";
}
printk("mem%02d: %s "
"range=[0x%016lx-0x%016lx) (%4lu%s)\n",
i, efi_md_typeattr_format(buf, sizeof(buf), md),
md->phys_addr,
md->phys_addr + efi_md_size(md), size, unit);
}
}
#endif
efi_map_pal_code();
efi_enter_virtual_mode();
}
void
efi_enter_virtual_mode (void)
{
void *efi_map_start, *efi_map_end, *p;
efi_memory_desc_t *md;
efi_status_t status;
u64 efi_desc_size;
efi_map_start = __va(ia64_boot_param->efi_memmap);
efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
efi_desc_size = ia64_boot_param->efi_memdesc_size;
for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
md = p;
if (md->attribute & EFI_MEMORY_RUNTIME) {
/*
* Some descriptors have multiple bits set, so the
* order of the tests is relevant.
*/
if (md->attribute & EFI_MEMORY_WB) {
md->virt_addr = (u64) __va(md->phys_addr);
} else if (md->attribute & EFI_MEMORY_UC) {
md->virt_addr = (u64) ioremap(md->phys_addr, 0);
} else if (md->attribute & EFI_MEMORY_WC) {
#if 0
md->virt_addr = ia64_remap(md->phys_addr,
(_PAGE_A |
_PAGE_P |
_PAGE_D |
_PAGE_MA_WC |
_PAGE_PL_0 |
_PAGE_AR_RW));
#else
printk(KERN_INFO "EFI_MEMORY_WC mapping\n");
md->virt_addr = (u64) ioremap(md->phys_addr, 0);
#endif
} else if (md->attribute & EFI_MEMORY_WT) {
#if 0
md->virt_addr = ia64_remap(md->phys_addr,
(_PAGE_A |
_PAGE_P |
_PAGE_D |
_PAGE_MA_WT |
_PAGE_PL_0 |
_PAGE_AR_RW));
#else
printk(KERN_INFO "EFI_MEMORY_WT mapping\n");
md->virt_addr = (u64) ioremap(md->phys_addr, 0);
#endif
}
}
}
status = efi_call_phys(__va(runtime->set_virtual_address_map),
ia64_boot_param->efi_memmap_size,
efi_desc_size,
ia64_boot_param->efi_memdesc_version,
ia64_boot_param->efi_memmap);
if (status != EFI_SUCCESS) {
printk(KERN_WARNING "warning: unable to switch EFI into "
"virtual mode (status=%lu)\n", status);
return;
}
set_bit(EFI_RUNTIME_SERVICES, &efi.flags);
/*
* Now that EFI is in virtual mode, we call the EFI functions more
* efficiently:
*/
efi.get_time = virt_get_time;
efi.set_time = virt_set_time;
efi.get_wakeup_time = virt_get_wakeup_time;
efi.set_wakeup_time = virt_set_wakeup_time;
efi.get_variable = virt_get_variable;
efi.get_next_variable = virt_get_next_variable;
efi.set_variable = virt_set_variable;
efi.get_next_high_mono_count = virt_get_next_high_mono_count;
efi.reset_system = virt_reset_system;
}
/*
* Walk the EFI memory map looking for the I/O port range. There can only be
* one entry of this type, other I/O port ranges should be described via ACPI.
*/
u64
efi_get_iobase (void)
{
void *efi_map_start, *efi_map_end, *p;
efi_memory_desc_t *md;
u64 efi_desc_size;
efi_map_start = __va(ia64_boot_param->efi_memmap);
efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
efi_desc_size = ia64_boot_param->efi_memdesc_size;
for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
md = p;
if (md->type == EFI_MEMORY_MAPPED_IO_PORT_SPACE) {
if (md->attribute & EFI_MEMORY_UC)
return md->phys_addr;
}
}
return 0;
}
static struct kern_memdesc *
kern_memory_descriptor (unsigned long phys_addr)
{
struct kern_memdesc *md;
for (md = kern_memmap; md->start != ~0UL; md++) {
if (phys_addr - md->start < (md->num_pages << EFI_PAGE_SHIFT))
return md;
}
return NULL;
}
static efi_memory_desc_t *
efi_memory_descriptor (unsigned long phys_addr)
{
void *efi_map_start, *efi_map_end, *p;
efi_memory_desc_t *md;
u64 efi_desc_size;
efi_map_start = __va(ia64_boot_param->efi_memmap);
efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
efi_desc_size = ia64_boot_param->efi_memdesc_size;
for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
md = p;
if (phys_addr - md->phys_addr < efi_md_size(md))
return md;
}
return NULL;
}
static int
efi_memmap_intersects (unsigned long phys_addr, unsigned long size)
{
void *efi_map_start, *efi_map_end, *p;
efi_memory_desc_t *md;
u64 efi_desc_size;
unsigned long end;
efi_map_start = __va(ia64_boot_param->efi_memmap);
efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
efi_desc_size = ia64_boot_param->efi_memdesc_size;
end = phys_addr + size;
for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
md = p;
if (md->phys_addr < end && efi_md_end(md) > phys_addr)
return 1;
}
return 0;
}
int
efi_mem_type (unsigned long phys_addr)
{
efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
if (md)
return md->type;
return -EINVAL;
}
u64
efi_mem_attributes (unsigned long phys_addr)
{
efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
if (md)
return md->attribute;
return 0;
}
EXPORT_SYMBOL(efi_mem_attributes);
u64
efi_mem_attribute (unsigned long phys_addr, unsigned long size)
{
unsigned long end = phys_addr + size;
efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
u64 attr;
if (!md)
return 0;
/*
* EFI_MEMORY_RUNTIME is not a memory attribute; it just tells
* the kernel that firmware needs this region mapped.
*/
attr = md->attribute & ~EFI_MEMORY_RUNTIME;
do {
unsigned long md_end = efi_md_end(md);
if (end <= md_end)
return attr;
md = efi_memory_descriptor(md_end);
if (!md || (md->attribute & ~EFI_MEMORY_RUNTIME) != attr)
return 0;
} while (md);
return 0; /* never reached */
}
u64
kern_mem_attribute (unsigned long phys_addr, unsigned long size)
{
unsigned long end = phys_addr + size;
struct kern_memdesc *md;
u64 attr;
/*
* This is a hack for ioremap calls before we set up kern_memmap.
* Maybe we should do efi_memmap_init() earlier instead.
*/
if (!kern_memmap) {
attr = efi_mem_attribute(phys_addr, size);
if (attr & EFI_MEMORY_WB)
return EFI_MEMORY_WB;
return 0;
}
md = kern_memory_descriptor(phys_addr);
if (!md)
return 0;
attr = md->attribute;
do {
unsigned long md_end = kmd_end(md);
if (end <= md_end)
return attr;
md = kern_memory_descriptor(md_end);
if (!md || md->attribute != attr)
return 0;
} while (md);
return 0; /* never reached */
}
EXPORT_SYMBOL(kern_mem_attribute);
int
valid_phys_addr_range (phys_addr_t phys_addr, unsigned long size)
{
u64 attr;
/*
* /dev/mem reads and writes use copy_to_user(), which implicitly
* uses a granule-sized kernel identity mapping. It's really
* only safe to do this for regions in kern_memmap. For more
* details, see Documentation/ia64/aliasing.txt.
*/
attr = kern_mem_attribute(phys_addr, size);
if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
return 1;
return 0;
}
int
valid_mmap_phys_addr_range (unsigned long pfn, unsigned long size)
{
unsigned long phys_addr = pfn << PAGE_SHIFT;
u64 attr;
attr = efi_mem_attribute(phys_addr, size);
/*
* /dev/mem mmap uses normal user pages, so we don't need the entire
* granule, but the entire region we're mapping must support the same
* attribute.
*/
if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
return 1;
/*
* Intel firmware doesn't tell us about all the MMIO regions, so
* in general we have to allow mmap requests. But if EFI *does*
* tell us about anything inside this region, we should deny it.
* The user can always map a smaller region to avoid the overlap.
*/
if (efi_memmap_intersects(phys_addr, size))
return 0;
return 1;
}
pgprot_t
phys_mem_access_prot(struct file *file, unsigned long pfn, unsigned long size,
pgprot_t vma_prot)
{
unsigned long phys_addr = pfn << PAGE_SHIFT;
u64 attr;
/*
* For /dev/mem mmap, we use user mappings, but if the region is
* in kern_memmap (and hence may be covered by a kernel mapping),
* we must use the same attribute as the kernel mapping.
*/
attr = kern_mem_attribute(phys_addr, size);
if (attr & EFI_MEMORY_WB)
return pgprot_cacheable(vma_prot);
else if (attr & EFI_MEMORY_UC)
return pgprot_noncached(vma_prot);
/*
* Some chipsets don't support UC access to memory. If
* WB is supported, we prefer that.
*/
if (efi_mem_attribute(phys_addr, size) & EFI_MEMORY_WB)
return pgprot_cacheable(vma_prot);
return pgprot_noncached(vma_prot);
}
int __init
efi_uart_console_only(void)
{
efi_status_t status;
char *s, name[] = "ConOut";
efi_guid_t guid = EFI_GLOBAL_VARIABLE_GUID;
efi_char16_t *utf16, name_utf16[32];
unsigned char data[1024];
unsigned long size = sizeof(data);
struct efi_generic_dev_path *hdr, *end_addr;
int uart = 0;
/* Convert to UTF-16 */
utf16 = name_utf16;
s = name;
while (*s)
*utf16++ = *s++ & 0x7f;
*utf16 = 0;
status = efi.get_variable(name_utf16, &guid, NULL, &size, data);
if (status != EFI_SUCCESS) {
printk(KERN_ERR "No EFI %s variable?\n", name);
return 0;
}
hdr = (struct efi_generic_dev_path *) data;
end_addr = (struct efi_generic_dev_path *) ((u8 *) data + size);
while (hdr < end_addr) {
if (hdr->type == EFI_DEV_MSG &&
hdr->sub_type == EFI_DEV_MSG_UART)
uart = 1;
else if (hdr->type == EFI_DEV_END_PATH ||
hdr->type == EFI_DEV_END_PATH2) {
if (!uart)
return 0;
if (hdr->sub_type == EFI_DEV_END_ENTIRE)
return 1;
uart = 0;
}
hdr = (struct efi_generic_dev_path *)((u8 *) hdr + hdr->length);
}
printk(KERN_ERR "Malformed %s value\n", name);
return 0;
}
/*
* Look for the first granule aligned memory descriptor memory
* that is big enough to hold EFI memory map. Make sure this
* descriptor is at least granule sized so it does not get trimmed
*/
struct kern_memdesc *
find_memmap_space (void)
{
u64 contig_low=0, contig_high=0;
u64 as = 0, ae;
void *efi_map_start, *efi_map_end, *p, *q;
efi_memory_desc_t *md, *pmd = NULL, *check_md;
u64 space_needed, efi_desc_size;
unsigned long total_mem = 0;
efi_map_start = __va(ia64_boot_param->efi_memmap);
efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
efi_desc_size = ia64_boot_param->efi_memdesc_size;
/*
* Worst case: we need 3 kernel descriptors for each efi descriptor
* (if every entry has a WB part in the middle, and UC head and tail),
* plus one for the end marker.
*/
space_needed = sizeof(kern_memdesc_t) *
(3 * (ia64_boot_param->efi_memmap_size/efi_desc_size) + 1);
for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
md = p;
if (!efi_wb(md)) {
continue;
}
if (pmd == NULL || !efi_wb(pmd) ||
efi_md_end(pmd) != md->phys_addr) {
contig_low = GRANULEROUNDUP(md->phys_addr);
contig_high = efi_md_end(md);
for (q = p + efi_desc_size; q < efi_map_end;
q += efi_desc_size) {
check_md = q;
if (!efi_wb(check_md))
break;
if (contig_high != check_md->phys_addr)
break;
contig_high = efi_md_end(check_md);
}
contig_high = GRANULEROUNDDOWN(contig_high);
}
if (!is_memory_available(md) || md->type == EFI_LOADER_DATA)
continue;
/* Round ends inward to granule boundaries */
as = max(contig_low, md->phys_addr);
ae = min(contig_high, efi_md_end(md));
/* keep within max_addr= and min_addr= command line arg */
as = max(as, min_addr);
ae = min(ae, max_addr);
if (ae <= as)
continue;
/* avoid going over mem= command line arg */
if (total_mem + (ae - as) > mem_limit)
ae -= total_mem + (ae - as) - mem_limit;
if (ae <= as)
continue;
if (ae - as > space_needed)
break;
}
if (p >= efi_map_end)
panic("Can't allocate space for kernel memory descriptors");
return __va(as);
}
/*
* Walk the EFI memory map and gather all memory available for kernel
* to use. We can allocate partial granules only if the unavailable
* parts exist, and are WB.
*/
unsigned long
efi_memmap_init(u64 *s, u64 *e)
{
struct kern_memdesc *k, *prev = NULL;
u64 contig_low=0, contig_high=0;
u64 as, ae, lim;
void *efi_map_start, *efi_map_end, *p, *q;
efi_memory_desc_t *md, *pmd = NULL, *check_md;
u64 efi_desc_size;
unsigned long total_mem = 0;
k = kern_memmap = find_memmap_space();
efi_map_start = __va(ia64_boot_param->efi_memmap);
efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
efi_desc_size = ia64_boot_param->efi_memdesc_size;
for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
md = p;
if (!efi_wb(md)) {
if (efi_uc(md) &&
(md->type == EFI_CONVENTIONAL_MEMORY ||
md->type == EFI_BOOT_SERVICES_DATA)) {
k->attribute = EFI_MEMORY_UC;
k->start = md->phys_addr;
k->num_pages = md->num_pages;
k++;
}
continue;
}
if (pmd == NULL || !efi_wb(pmd) ||
efi_md_end(pmd) != md->phys_addr) {
contig_low = GRANULEROUNDUP(md->phys_addr);
contig_high = efi_md_end(md);
for (q = p + efi_desc_size; q < efi_map_end;
q += efi_desc_size) {
check_md = q;
if (!efi_wb(check_md))
break;
if (contig_high != check_md->phys_addr)
break;
contig_high = efi_md_end(check_md);
}
contig_high = GRANULEROUNDDOWN(contig_high);
}
if (!is_memory_available(md))
continue;
/*
* Round ends inward to granule boundaries
* Give trimmings to uncached allocator
*/
if (md->phys_addr < contig_low) {
lim = min(efi_md_end(md), contig_low);
if (efi_uc(md)) {
if (k > kern_memmap &&
(k-1)->attribute == EFI_MEMORY_UC &&
kmd_end(k-1) == md->phys_addr) {
(k-1)->num_pages +=
(lim - md->phys_addr)
>> EFI_PAGE_SHIFT;
} else {
k->attribute = EFI_MEMORY_UC;
k->start = md->phys_addr;
k->num_pages = (lim - md->phys_addr)
>> EFI_PAGE_SHIFT;
k++;
}
}
as = contig_low;
} else
as = md->phys_addr;
if (efi_md_end(md) > contig_high) {
lim = max(md->phys_addr, contig_high);
if (efi_uc(md)) {
if (lim == md->phys_addr && k > kern_memmap &&
(k-1)->attribute == EFI_MEMORY_UC &&
kmd_end(k-1) == md->phys_addr) {
(k-1)->num_pages += md->num_pages;
} else {
k->attribute = EFI_MEMORY_UC;
k->start = lim;
k->num_pages = (efi_md_end(md) - lim)
>> EFI_PAGE_SHIFT;
k++;
}
}
ae = contig_high;
} else
ae = efi_md_end(md);
/* keep within max_addr= and min_addr= command line arg */
as = max(as, min_addr);
ae = min(ae, max_addr);
if (ae <= as)
continue;
/* avoid going over mem= command line arg */
if (total_mem + (ae - as) > mem_limit)
ae -= total_mem + (ae - as) - mem_limit;
if (ae <= as)
continue;
if (prev && kmd_end(prev) == md->phys_addr) {
prev->num_pages += (ae - as) >> EFI_PAGE_SHIFT;
total_mem += ae - as;
continue;
}
k->attribute = EFI_MEMORY_WB;
k->start = as;
k->num_pages = (ae - as) >> EFI_PAGE_SHIFT;
total_mem += ae - as;
prev = k++;
}
k->start = ~0L; /* end-marker */
/* reserve the memory we are using for kern_memmap */
*s = (u64)kern_memmap;
*e = (u64)++k;
return total_mem;
}
void
efi_initialize_iomem_resources(struct resource *code_resource,
struct resource *data_resource,
struct resource *bss_resource)
{
struct resource *res;
void *efi_map_start, *efi_map_end, *p;
efi_memory_desc_t *md;
u64 efi_desc_size;
char *name;
unsigned long flags, desc;
efi_map_start = __va(ia64_boot_param->efi_memmap);
efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
efi_desc_size = ia64_boot_param->efi_memdesc_size;
res = NULL;
for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
md = p;
if (md->num_pages == 0) /* should not happen */
continue;
flags = IORESOURCE_MEM | IORESOURCE_BUSY;
desc = IORES_DESC_NONE;
switch (md->type) {
case EFI_MEMORY_MAPPED_IO:
case EFI_MEMORY_MAPPED_IO_PORT_SPACE:
continue;
case EFI_LOADER_CODE:
case EFI_LOADER_DATA:
case EFI_BOOT_SERVICES_DATA:
case EFI_BOOT_SERVICES_CODE:
case EFI_CONVENTIONAL_MEMORY:
if (md->attribute & EFI_MEMORY_WP) {
name = "System ROM";
flags |= IORESOURCE_READONLY;
} else if (md->attribute == EFI_MEMORY_UC) {
name = "Uncached RAM";
} else {
name = "System RAM";
flags |= IORESOURCE_SYSRAM;
}
break;
case EFI_ACPI_MEMORY_NVS:
name = "ACPI Non-volatile Storage";
desc = IORES_DESC_ACPI_NV_STORAGE;
break;
case EFI_UNUSABLE_MEMORY:
name = "reserved";
flags |= IORESOURCE_DISABLED;
break;
case EFI_PERSISTENT_MEMORY:
name = "Persistent Memory";
desc = IORES_DESC_PERSISTENT_MEMORY;
break;
case EFI_RESERVED_TYPE:
case EFI_RUNTIME_SERVICES_CODE:
case EFI_RUNTIME_SERVICES_DATA:
case EFI_ACPI_RECLAIM_MEMORY:
default:
name = "reserved";
break;
}
if ((res = kzalloc(sizeof(struct resource),
GFP_KERNEL)) == NULL) {
printk(KERN_ERR
"failed to allocate resource for iomem\n");
return;
}
res->name = name;
res->start = md->phys_addr;
res->end = md->phys_addr + efi_md_size(md) - 1;
res->flags = flags;
res->desc = desc;
if (insert_resource(&iomem_resource, res) < 0)
kfree(res);
else {
/*
* We don't know which region contains
* kernel data so we try it repeatedly and
* let the resource manager test it.
*/
insert_resource(res, code_resource);
insert_resource(res, data_resource);
insert_resource(res, bss_resource);
#ifdef CONFIG_KEXEC
insert_resource(res, &efi_memmap_res);
insert_resource(res, &boot_param_res);
if (crashk_res.end > crashk_res.start)
insert_resource(res, &crashk_res);
#endif
}
}
}
#ifdef CONFIG_KEXEC
/* find a block of memory aligned to 64M exclude reserved regions
rsvd_regions are sorted
*/
unsigned long __init
kdump_find_rsvd_region (unsigned long size, struct rsvd_region *r, int n)
{
int i;
u64 start, end;
u64 alignment = 1UL << _PAGE_SIZE_64M;
void *efi_map_start, *efi_map_end, *p;
efi_memory_desc_t *md;
u64 efi_desc_size;
efi_map_start = __va(ia64_boot_param->efi_memmap);
efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
efi_desc_size = ia64_boot_param->efi_memdesc_size;
for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
md = p;
if (!efi_wb(md))
continue;
start = ALIGN(md->phys_addr, alignment);
end = efi_md_end(md);
for (i = 0; i < n; i++) {
if (__pa(r[i].start) >= start && __pa(r[i].end) < end) {
if (__pa(r[i].start) > start + size)
return start;
start = ALIGN(__pa(r[i].end), alignment);
if (i < n-1 &&
__pa(r[i+1].start) < start + size)
continue;
else
break;
}
}
if (end > start + size)
return start;
}
printk(KERN_WARNING
"Cannot reserve 0x%lx byte of memory for crashdump\n", size);
return ~0UL;
}
#endif
#ifdef CONFIG_CRASH_DUMP
/* locate the size find a the descriptor at a certain address */
unsigned long __init
vmcore_find_descriptor_size (unsigned long address)
{
void *efi_map_start, *efi_map_end, *p;
efi_memory_desc_t *md;
u64 efi_desc_size;
unsigned long ret = 0;
efi_map_start = __va(ia64_boot_param->efi_memmap);
efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
efi_desc_size = ia64_boot_param->efi_memdesc_size;
for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
md = p;
if (efi_wb(md) && md->type == EFI_LOADER_DATA
&& md->phys_addr == address) {
ret = efi_md_size(md);
break;
}
}
if (ret == 0)
printk(KERN_WARNING "Cannot locate EFI vmcore descriptor\n");
return ret;
}
#endif