summaryrefslogblamecommitdiff
path: root/arch/i386/mm/discontig.c
blob: 244d8ec66be2a473361bf00d81e81ba53cdf9fe0 (plain) (tree)






























                                                                       
                         

                        




                       
                                                          
                         






                                                                               
                                                                  

                                                               

                                                         
 
 
                          
  
                                                                  









                                                                      
                                                                                 
                            

























                                                                                      
      



















                                                                         


                                           





































                                                                               














                                                                           
















                                                                                














                                                                            






                                    












                                                                               
                          

                                   















                                                                            












                                                                            


                                                                              
                                                       
                                      

                                                                          










                                                                                               

















































                                                                              






                                                                           


                                                                           

                                                                             





























































                                                                                


                                                                           







                                                 
                          

                             

                                                                     


                                      
                                                      




                                                                      
 




                                                                                      




                                          
/*
 * Written by: Patricia Gaughen <gone@us.ibm.com>, IBM Corporation
 * August 2002: added remote node KVA remap - Martin J. Bligh 
 *
 * Copyright (C) 2002, IBM Corp.
 *
 * All rights reserved.          
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
 * NON INFRINGEMENT.  See the GNU General Public License for more
 * details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

#include <linux/config.h>
#include <linux/mm.h>
#include <linux/bootmem.h>
#include <linux/mmzone.h>
#include <linux/highmem.h>
#include <linux/initrd.h>
#include <linux/nodemask.h>
#include <linux/module.h>
#include <linux/kexec.h>

#include <asm/e820.h>
#include <asm/setup.h>
#include <asm/mmzone.h>
#include <bios_ebda.h>

struct pglist_data *node_data[MAX_NUMNODES] __read_mostly;
EXPORT_SYMBOL(node_data);
bootmem_data_t node0_bdata;

/*
 * numa interface - we expect the numa architecture specfic code to have
 *                  populated the following initialisation.
 *
 * 1) node_online_map  - the map of all nodes configured (online) in the system
 * 2) node_start_pfn   - the starting page frame number for a node
 * 3) node_end_pfn     - the ending page fram number for a node
 */
unsigned long node_start_pfn[MAX_NUMNODES] __read_mostly;
unsigned long node_end_pfn[MAX_NUMNODES] __read_mostly;


#ifdef CONFIG_DISCONTIGMEM
/*
 * 4) physnode_map     - the mapping between a pfn and owning node
 * physnode_map keeps track of the physical memory layout of a generic
 * numa node on a 256Mb break (each element of the array will
 * represent 256Mb of memory and will be marked by the node id.  so,
 * if the first gig is on node 0, and the second gig is on node 1
 * physnode_map will contain:
 *
 *     physnode_map[0-3] = 0;
 *     physnode_map[4-7] = 1;
 *     physnode_map[8- ] = -1;
 */
s8 physnode_map[MAX_ELEMENTS] __read_mostly = { [0 ... (MAX_ELEMENTS - 1)] = -1};
EXPORT_SYMBOL(physnode_map);

void memory_present(int nid, unsigned long start, unsigned long end)
{
	unsigned long pfn;

	printk(KERN_INFO "Node: %d, start_pfn: %ld, end_pfn: %ld\n",
			nid, start, end);
	printk(KERN_DEBUG "  Setting physnode_map array to node %d for pfns:\n", nid);
	printk(KERN_DEBUG "  ");
	for (pfn = start; pfn < end; pfn += PAGES_PER_ELEMENT) {
		physnode_map[pfn / PAGES_PER_ELEMENT] = nid;
		printk("%ld ", pfn);
	}
	printk("\n");
}

unsigned long node_memmap_size_bytes(int nid, unsigned long start_pfn,
					      unsigned long end_pfn)
{
	unsigned long nr_pages = end_pfn - start_pfn;

	if (!nr_pages)
		return 0;

	return (nr_pages + 1) * sizeof(struct page);
}
#endif

extern unsigned long find_max_low_pfn(void);
extern void find_max_pfn(void);
extern void one_highpage_init(struct page *, int, int);

extern struct e820map e820;
extern unsigned long init_pg_tables_end;
extern unsigned long highend_pfn, highstart_pfn;
extern unsigned long max_low_pfn;
extern unsigned long totalram_pages;
extern unsigned long totalhigh_pages;

#define LARGE_PAGE_BYTES (PTRS_PER_PTE * PAGE_SIZE)

unsigned long node_remap_start_pfn[MAX_NUMNODES];
unsigned long node_remap_size[MAX_NUMNODES];
unsigned long node_remap_offset[MAX_NUMNODES];
void *node_remap_start_vaddr[MAX_NUMNODES];
void set_pmd_pfn(unsigned long vaddr, unsigned long pfn, pgprot_t flags);

void *node_remap_end_vaddr[MAX_NUMNODES];
void *node_remap_alloc_vaddr[MAX_NUMNODES];

/*
 * FLAT - support for basic PC memory model with discontig enabled, essentially
 *        a single node with all available processors in it with a flat
 *        memory map.
 */
int __init get_memcfg_numa_flat(void)
{
	printk("NUMA - single node, flat memory mode\n");

	/* Run the memory configuration and find the top of memory. */
	find_max_pfn();
	node_start_pfn[0] = 0;
	node_end_pfn[0] = max_pfn;
	memory_present(0, 0, max_pfn);

        /* Indicate there is one node available. */
	nodes_clear(node_online_map);
	node_set_online(0);
	return 1;
}

/*
 * Find the highest page frame number we have available for the node
 */
static void __init find_max_pfn_node(int nid)
{
	if (node_end_pfn[nid] > max_pfn)
		node_end_pfn[nid] = max_pfn;
	/*
	 * if a user has given mem=XXXX, then we need to make sure 
	 * that the node _starts_ before that, too, not just ends
	 */
	if (node_start_pfn[nid] > max_pfn)
		node_start_pfn[nid] = max_pfn;
	if (node_start_pfn[nid] > node_end_pfn[nid])
		BUG();
}

/* Find the owning node for a pfn. */
int early_pfn_to_nid(unsigned long pfn)
{
	int nid;

	for_each_node(nid) {
		if (node_end_pfn[nid] == 0)
			break;
		if (node_start_pfn[nid] <= pfn && node_end_pfn[nid] >= pfn)
			return nid;
	}

	return 0;
}

/* 
 * Allocate memory for the pg_data_t for this node via a crude pre-bootmem
 * method.  For node zero take this from the bottom of memory, for
 * subsequent nodes place them at node_remap_start_vaddr which contains
 * node local data in physically node local memory.  See setup_memory()
 * for details.
 */
static void __init allocate_pgdat(int nid)
{
	if (nid && node_has_online_mem(nid))
		NODE_DATA(nid) = (pg_data_t *)node_remap_start_vaddr[nid];
	else {
		NODE_DATA(nid) = (pg_data_t *)(__va(min_low_pfn << PAGE_SHIFT));
		min_low_pfn += PFN_UP(sizeof(pg_data_t));
	}
}

void *alloc_remap(int nid, unsigned long size)
{
	void *allocation = node_remap_alloc_vaddr[nid];

	size = ALIGN(size, L1_CACHE_BYTES);

	if (!allocation || (allocation + size) >= node_remap_end_vaddr[nid])
		return 0;

	node_remap_alloc_vaddr[nid] += size;
	memset(allocation, 0, size);

	return allocation;
}

void __init remap_numa_kva(void)
{
	void *vaddr;
	unsigned long pfn;
	int node;

	for_each_online_node(node) {
		for (pfn=0; pfn < node_remap_size[node]; pfn += PTRS_PER_PTE) {
			vaddr = node_remap_start_vaddr[node]+(pfn<<PAGE_SHIFT);
			set_pmd_pfn((ulong) vaddr, 
				node_remap_start_pfn[node] + pfn, 
				PAGE_KERNEL_LARGE);
		}
	}
}

static unsigned long calculate_numa_remap_pages(void)
{
	int nid;
	unsigned long size, reserve_pages = 0;
	unsigned long pfn;

	for_each_online_node(nid) {
		/*
		 * The acpi/srat node info can show hot-add memroy zones
		 * where memory could be added but not currently present.
		 */
		if (node_start_pfn[nid] > max_pfn)
			continue;
		if (node_end_pfn[nid] > max_pfn)
			node_end_pfn[nid] = max_pfn;

		/* ensure the remap includes space for the pgdat. */
		size = node_remap_size[nid] + sizeof(pg_data_t);

		/* convert size to large (pmd size) pages, rounding up */
		size = (size + LARGE_PAGE_BYTES - 1) / LARGE_PAGE_BYTES;
		/* now the roundup is correct, convert to PAGE_SIZE pages */
		size = size * PTRS_PER_PTE;

		/*
		 * Validate the region we are allocating only contains valid
		 * pages.
		 */
		for (pfn = node_end_pfn[nid] - size;
		     pfn < node_end_pfn[nid]; pfn++)
			if (!page_is_ram(pfn))
				break;

		if (pfn != node_end_pfn[nid])
			size = 0;

		printk("Reserving %ld pages of KVA for lmem_map of node %d\n",
				size, nid);
		node_remap_size[nid] = size;
		node_remap_offset[nid] = reserve_pages;
		reserve_pages += size;
		printk("Shrinking node %d from %ld pages to %ld pages\n",
			nid, node_end_pfn[nid], node_end_pfn[nid] - size);

		if (node_end_pfn[nid] & (PTRS_PER_PTE-1)) {
			/*
			 * Align node_end_pfn[] and node_remap_start_pfn[] to
			 * pmd boundary. remap_numa_kva will barf otherwise.
			 */
			printk("Shrinking node %d further by %ld pages for proper alignment\n",
				nid, node_end_pfn[nid] & (PTRS_PER_PTE-1));
			size +=  node_end_pfn[nid] & (PTRS_PER_PTE-1);
		}

		node_end_pfn[nid] -= size;
		node_remap_start_pfn[nid] = node_end_pfn[nid];
	}
	printk("Reserving total of %ld pages for numa KVA remap\n",
			reserve_pages);
	return reserve_pages;
}

extern void setup_bootmem_allocator(void);
unsigned long __init setup_memory(void)
{
	int nid;
	unsigned long system_start_pfn, system_max_low_pfn;
	unsigned long reserve_pages;

	/*
	 * When mapping a NUMA machine we allocate the node_mem_map arrays
	 * from node local memory.  They are then mapped directly into KVA
	 * between zone normal and vmalloc space.  Calculate the size of
	 * this space and use it to adjust the boundry between ZONE_NORMAL
	 * and ZONE_HIGHMEM.
	 */
	find_max_pfn();
	get_memcfg_numa();

	reserve_pages = calculate_numa_remap_pages();

	/* partially used pages are not usable - thus round upwards */
	system_start_pfn = min_low_pfn = PFN_UP(init_pg_tables_end);

	system_max_low_pfn = max_low_pfn = find_max_low_pfn() - reserve_pages;
	printk("reserve_pages = %ld find_max_low_pfn() ~ %ld\n",
			reserve_pages, max_low_pfn + reserve_pages);
	printk("max_pfn = %ld\n", max_pfn);
#ifdef CONFIG_HIGHMEM
	highstart_pfn = highend_pfn = max_pfn;
	if (max_pfn > system_max_low_pfn)
		highstart_pfn = system_max_low_pfn;
	printk(KERN_NOTICE "%ldMB HIGHMEM available.\n",
	       pages_to_mb(highend_pfn - highstart_pfn));
#endif
	printk(KERN_NOTICE "%ldMB LOWMEM available.\n",
			pages_to_mb(system_max_low_pfn));
	printk("min_low_pfn = %ld, max_low_pfn = %ld, highstart_pfn = %ld\n", 
			min_low_pfn, max_low_pfn, highstart_pfn);

	printk("Low memory ends at vaddr %08lx\n",
			(ulong) pfn_to_kaddr(max_low_pfn));
	for_each_online_node(nid) {
		node_remap_start_vaddr[nid] = pfn_to_kaddr(
				highstart_pfn + node_remap_offset[nid]);
		/* Init the node remap allocator */
		node_remap_end_vaddr[nid] = node_remap_start_vaddr[nid] +
			(node_remap_size[nid] * PAGE_SIZE);
		node_remap_alloc_vaddr[nid] = node_remap_start_vaddr[nid] +
			ALIGN(sizeof(pg_data_t), PAGE_SIZE);

		allocate_pgdat(nid);
		printk ("node %d will remap to vaddr %08lx - %08lx\n", nid,
			(ulong) node_remap_start_vaddr[nid],
			(ulong) pfn_to_kaddr(highstart_pfn
			   + node_remap_offset[nid] + node_remap_size[nid]));
	}
	printk("High memory starts at vaddr %08lx\n",
			(ulong) pfn_to_kaddr(highstart_pfn));
	vmalloc_earlyreserve = reserve_pages * PAGE_SIZE;
	for_each_online_node(nid)
		find_max_pfn_node(nid);

	memset(NODE_DATA(0), 0, sizeof(struct pglist_data));
	NODE_DATA(0)->bdata = &node0_bdata;
	setup_bootmem_allocator();
	return max_low_pfn;
}

void __init zone_sizes_init(void)
{
	int nid;

	/*
	 * Insert nodes into pgdat_list backward so they appear in order.
	 * Clobber node 0's links and NULL out pgdat_list before starting.
	 */
	pgdat_list = NULL;
	for (nid = MAX_NUMNODES - 1; nid >= 0; nid--) {
		if (!node_online(nid))
			continue;
		NODE_DATA(nid)->pgdat_next = pgdat_list;
		pgdat_list = NODE_DATA(nid);
	}

	for_each_online_node(nid) {
		unsigned long zones_size[MAX_NR_ZONES] = {0, 0, 0};
		unsigned long *zholes_size;
		unsigned int max_dma;

		unsigned long low = max_low_pfn;
		unsigned long start = node_start_pfn[nid];
		unsigned long high = node_end_pfn[nid];

		max_dma = virt_to_phys((char *)MAX_DMA_ADDRESS) >> PAGE_SHIFT;

		if (node_has_online_mem(nid)){
			if (start > low) {
#ifdef CONFIG_HIGHMEM
				BUG_ON(start > high);
				zones_size[ZONE_HIGHMEM] = high - start;
#endif
			} else {
				if (low < max_dma)
					zones_size[ZONE_DMA] = low;
				else {
					BUG_ON(max_dma > low);
					BUG_ON(low > high);
					zones_size[ZONE_DMA] = max_dma;
					zones_size[ZONE_NORMAL] = low - max_dma;
#ifdef CONFIG_HIGHMEM
					zones_size[ZONE_HIGHMEM] = high - low;
#endif
				}
			}
		}

		zholes_size = get_zholes_size(nid);

		free_area_init_node(nid, NODE_DATA(nid), zones_size, start,
				zholes_size);
	}
	return;
}

void __init set_highmem_pages_init(int bad_ppro) 
{
#ifdef CONFIG_HIGHMEM
	struct zone *zone;
	struct page *page;

	for_each_zone(zone) {
		unsigned long node_pfn, zone_start_pfn, zone_end_pfn;

		if (!is_highmem(zone))
			continue;

		zone_start_pfn = zone->zone_start_pfn;
		zone_end_pfn = zone_start_pfn + zone->spanned_pages;

		printk("Initializing %s for node %d (%08lx:%08lx)\n",
				zone->name, zone->zone_pgdat->node_id,
				zone_start_pfn, zone_end_pfn);

		for (node_pfn = zone_start_pfn; node_pfn < zone_end_pfn; node_pfn++) {
			if (!pfn_valid(node_pfn))
				continue;
			page = pfn_to_page(node_pfn);
			one_highpage_init(page, node_pfn, bad_ppro);
		}
	}
	totalram_pages += totalhigh_pages;
#endif
}