summaryrefslogblamecommitdiff
path: root/arch/i386/Kconfig
blob: 8ff1c6fb5aa135b678a3aa83047c1e57422ae6f8 (plain) (tree)
1
2
3
4
5
6
7
8






                                                             
             







                                                                              



                   



                      



                         



                         



                 






                 







                      



                      
                           


                 



                 



                                  




























                                                                              






























                                                                              
                  















                                                                                  
                                                                   






















                                                                             


                                                                                       
                                                                          














                                                                            
                                                                  





                           















                                                          
                              












                                                                           
            
                                      
                 
 















                                                                           
                         





                                                                            

                                           
                         





                                                                             
                               


                                                  
                                                                         























                                                                               
                                                                                         



                  
                                                                                           






                            




































                                                                                         








                                                                              


































                                                                                

















                                                                          

                                                                        
                        














                                                                             




                              
























                                                                             
                             



































                                                                              
                             





                                                                        
                                





                                                                    
      
                               
                                         



















                                                                           
                                   













                                                                       








                                          
                              



                                                           
                                                                                              


                                              


                                                                





                                      




                             
                               





                               
                                            

                 




                            



                                                       









                                

                                                     




                                        

                              
 
                   
 




































































                                                                              
                                    


                       
                                                              



















                                                                               







                                                                              
                                     
                 
            








                                                                           
 
















                                                                         

                        
            
                                


                                                                             
                                                                           

                                                           
                                                                     






                                                                            

                                                



                                                           






                                                                        




















                                                                                     

                                                            
                                                                 
                  


                                                                       
 


                                  
                            







                                                                   
 

       


                                 












                                                               
                     















































































































































































































                                                                              
                                                               





                                 



                  










































                                                                              



                                                                      
 
                                                              
 









                                                                     
 



                            











                                    

                    



                        


                               

                                   

                                     
                                                      







                                                                          


















                                                         




                                          


















                                                     



                   
#
# For a description of the syntax of this configuration file,
# see Documentation/kbuild/kconfig-language.txt.
#

mainmenu "Linux Kernel Configuration"

config X86_32
	bool
	default y
	help
	  This is Linux's home port.  Linux was originally native to the Intel
	  386, and runs on all the later x86 processors including the Intel
	  486, 586, Pentiums, and various instruction-set-compatible chips by
	  AMD, Cyrix, and others.

config GENERIC_TIME
	bool
	default y

config LOCKDEP_SUPPORT
	bool
	default y

config STACKTRACE_SUPPORT
	bool
	default y

config SEMAPHORE_SLEEPERS
	bool
	default y

config X86
	bool
	default y

config MMU
	bool
	default y

config SBUS
	bool

config GENERIC_ISA_DMA
	bool
	default y

config GENERIC_IOMAP
	bool
	default y

config GENERIC_HWEIGHT
	bool
	default y

config ARCH_MAY_HAVE_PC_FDC
	bool
	default y

config DMI
	bool
	default y

source "init/Kconfig"

menu "Processor type and features"

config SMP
	bool "Symmetric multi-processing support"
	---help---
	  This enables support for systems with more than one CPU. If you have
	  a system with only one CPU, like most personal computers, say N. If
	  you have a system with more than one CPU, say Y.

	  If you say N here, the kernel will run on single and multiprocessor
	  machines, but will use only one CPU of a multiprocessor machine. If
	  you say Y here, the kernel will run on many, but not all,
	  singleprocessor machines. On a singleprocessor machine, the kernel
	  will run faster if you say N here.

	  Note that if you say Y here and choose architecture "586" or
	  "Pentium" under "Processor family", the kernel will not work on 486
	  architectures. Similarly, multiprocessor kernels for the "PPro"
	  architecture may not work on all Pentium based boards.

	  People using multiprocessor machines who say Y here should also say
	  Y to "Enhanced Real Time Clock Support", below. The "Advanced Power
	  Management" code will be disabled if you say Y here.

	  See also the <file:Documentation/smp.txt>,
	  <file:Documentation/i386/IO-APIC.txt>,
	  <file:Documentation/nmi_watchdog.txt> and the SMP-HOWTO available at
	  <http://www.tldp.org/docs.html#howto>.

	  If you don't know what to do here, say N.

choice
	prompt "Subarchitecture Type"
	default X86_PC

config X86_PC
	bool "PC-compatible"
	help
	  Choose this option if your computer is a standard PC or compatible.

config X86_ELAN
	bool "AMD Elan"
	help
	  Select this for an AMD Elan processor.

	  Do not use this option for K6/Athlon/Opteron processors!

	  If unsure, choose "PC-compatible" instead.

config X86_VOYAGER
	bool "Voyager (NCR)"
	help
	  Voyager is an MCA-based 32-way capable SMP architecture proprietary
	  to NCR Corp.  Machine classes 345x/35xx/4100/51xx are Voyager-based.

	  *** WARNING ***

	  If you do not specifically know you have a Voyager based machine,
	  say N here, otherwise the kernel you build will not be bootable.

config X86_NUMAQ
	bool "NUMAQ (IBM/Sequent)"
	select SMP
	select NUMA
	help
	  This option is used for getting Linux to run on a (IBM/Sequent) NUMA
	  multiquad box. This changes the way that processors are bootstrapped,
	  and uses Clustered Logical APIC addressing mode instead of Flat Logical.
	  You will need a new lynxer.elf file to flash your firmware with - send
	  email to <Martin.Bligh@us.ibm.com>.

config X86_SUMMIT
	bool "Summit/EXA (IBM x440)"
	depends on SMP
	help
	  This option is needed for IBM systems that use the Summit/EXA chipset.
	  In particular, it is needed for the x440.

	  If you don't have one of these computers, you should say N here.
	  If you want to build a NUMA kernel, you must select ACPI.

config X86_BIGSMP
	bool "Support for other sub-arch SMP systems with more than 8 CPUs"
	depends on SMP
	help
	  This option is needed for the systems that have more than 8 CPUs
	  and if the system is not of any sub-arch type above.

	  If you don't have such a system, you should say N here.

config X86_VISWS
	bool "SGI 320/540 (Visual Workstation)"
	help
	  The SGI Visual Workstation series is an IA32-based workstation
	  based on SGI systems chips with some legacy PC hardware attached.

	  Say Y here to create a kernel to run on the SGI 320 or 540.

	  A kernel compiled for the Visual Workstation will not run on PCs
	  and vice versa. See <file:Documentation/sgi-visws.txt> for details.

config X86_GENERICARCH
       bool "Generic architecture (Summit, bigsmp, ES7000, default)"
       help
          This option compiles in the Summit, bigsmp, ES7000, default subarchitectures.
	  It is intended for a generic binary kernel.
	  If you want a NUMA kernel, select ACPI.   We need SRAT for NUMA.

config X86_ES7000
	bool "Support for Unisys ES7000 IA32 series"
	depends on SMP
	help
	  Support for Unisys ES7000 systems.  Say 'Y' here if this kernel is
	  supposed to run on an IA32-based Unisys ES7000 system.
	  Only choose this option if you have such a system, otherwise you
	  should say N here.

endchoice

config ACPI_SRAT
	bool
	default y
	depends on ACPI && NUMA && (X86_SUMMIT || X86_GENERICARCH)
	select ACPI_NUMA

config HAVE_ARCH_PARSE_SRAT
       bool
       default y
       depends on ACPI_SRAT

config X86_SUMMIT_NUMA
	bool
	default y
	depends on NUMA && (X86_SUMMIT || X86_GENERICARCH)

config X86_CYCLONE_TIMER
	bool
	default y
	depends on X86_SUMMIT || X86_GENERICARCH

config ES7000_CLUSTERED_APIC
	bool
	default y
	depends on SMP && X86_ES7000 && MPENTIUMIII

source "arch/i386/Kconfig.cpu"

config HPET_TIMER
	bool "HPET Timer Support"
	help
	  This enables the use of the HPET for the kernel's internal timer.
	  HPET is the next generation timer replacing legacy 8254s.
	  You can safely choose Y here.  However, HPET will only be
	  activated if the platform and the BIOS support this feature.
	  Otherwise the 8254 will be used for timing services.

	  Choose N to continue using the legacy 8254 timer.

config HPET_EMULATE_RTC
	bool
	depends on HPET_TIMER && RTC=y
	default y

config NR_CPUS
	int "Maximum number of CPUs (2-255)"
	range 2 255
	depends on SMP
	default "32" if X86_NUMAQ || X86_SUMMIT || X86_BIGSMP || X86_ES7000
	default "8"
	help
	  This allows you to specify the maximum number of CPUs which this
	  kernel will support.  The maximum supported value is 255 and the
	  minimum value which makes sense is 2.

	  This is purely to save memory - each supported CPU adds
	  approximately eight kilobytes to the kernel image.

config SCHED_SMT
	bool "SMT (Hyperthreading) scheduler support"
	depends on X86_HT
	help
	  SMT scheduler support improves the CPU scheduler's decision making
	  when dealing with Intel Pentium 4 chips with HyperThreading at a
	  cost of slightly increased overhead in some places. If unsure say
	  N here.

config SCHED_MC
	bool "Multi-core scheduler support"
	depends on X86_HT
	default y
	help
	  Multi-core scheduler support improves the CPU scheduler's decision
	  making when dealing with multi-core CPU chips at a cost of slightly
	  increased overhead in some places. If unsure say N here.

source "kernel/Kconfig.preempt"

config X86_UP_APIC
	bool "Local APIC support on uniprocessors"
	depends on !SMP && !(X86_VISWS || X86_VOYAGER || X86_GENERICARCH)
	help
	  A local APIC (Advanced Programmable Interrupt Controller) is an
	  integrated interrupt controller in the CPU. If you have a single-CPU
	  system which has a processor with a local APIC, you can say Y here to
	  enable and use it. If you say Y here even though your machine doesn't
	  have a local APIC, then the kernel will still run with no slowdown at
	  all. The local APIC supports CPU-generated self-interrupts (timer,
	  performance counters), and the NMI watchdog which detects hard
	  lockups.

config X86_UP_IOAPIC
	bool "IO-APIC support on uniprocessors"
	depends on X86_UP_APIC
	help
	  An IO-APIC (I/O Advanced Programmable Interrupt Controller) is an
	  SMP-capable replacement for PC-style interrupt controllers. Most
	  SMP systems and many recent uniprocessor systems have one.

	  If you have a single-CPU system with an IO-APIC, you can say Y here
	  to use it. If you say Y here even though your machine doesn't have
	  an IO-APIC, then the kernel will still run with no slowdown at all.

config X86_LOCAL_APIC
	bool
	depends on X86_UP_APIC || ((X86_VISWS || SMP) && !X86_VOYAGER) || X86_GENERICARCH
	default y

config X86_IO_APIC
	bool
	depends on X86_UP_IOAPIC || (SMP && !(X86_VISWS || X86_VOYAGER)) || X86_GENERICARCH
	default y

config X86_VISWS_APIC
	bool
	depends on X86_VISWS
	default y

config X86_MCE
	bool "Machine Check Exception"
	depends on !X86_VOYAGER
	---help---
	  Machine Check Exception support allows the processor to notify the
	  kernel if it detects a problem (e.g. overheating, component failure).
	  The action the kernel takes depends on the severity of the problem,
	  ranging from a warning message on the console, to halting the machine.
	  Your processor must be a Pentium or newer to support this - check the
	  flags in /proc/cpuinfo for mce.  Note that some older Pentium systems
	  have a design flaw which leads to false MCE events - hence MCE is
	  disabled on all P5 processors, unless explicitly enabled with "mce"
	  as a boot argument.  Similarly, if MCE is built in and creates a
	  problem on some new non-standard machine, you can boot with "nomce"
	  to disable it.  MCE support simply ignores non-MCE processors like
	  the 386 and 486, so nearly everyone can say Y here.

config X86_MCE_NONFATAL
	tristate "Check for non-fatal errors on AMD Athlon/Duron / Intel Pentium 4"
	depends on X86_MCE
	help
	  Enabling this feature starts a timer that triggers every 5 seconds which
	  will look at the machine check registers to see if anything happened.
	  Non-fatal problems automatically get corrected (but still logged).
	  Disable this if you don't want to see these messages.
	  Seeing the messages this option prints out may be indicative of dying hardware,
	  or out-of-spec (ie, overclocked) hardware.
	  This option only does something on certain CPUs.
	  (AMD Athlon/Duron and Intel Pentium 4)

config X86_MCE_P4THERMAL
	bool "check for P4 thermal throttling interrupt."
	depends on X86_MCE && (X86_UP_APIC || SMP) && !X86_VISWS
	help
	  Enabling this feature will cause a message to be printed when the P4
	  enters thermal throttling.

config VM86
	default y
	bool "Enable VM86 support" if EMBEDDED
	help
          This option is required by programs like DOSEMU to run 16-bit legacy
	  code on X86 processors. It also may be needed by software like
          XFree86 to initialize some video cards via BIOS. Disabling this
          option saves about 6k.

config TOSHIBA
	tristate "Toshiba Laptop support"
	---help---
	  This adds a driver to safely access the System Management Mode of
	  the CPU on Toshiba portables with a genuine Toshiba BIOS. It does
	  not work on models with a Phoenix BIOS. The System Management Mode
	  is used to set the BIOS and power saving options on Toshiba portables.

	  For information on utilities to make use of this driver see the
	  Toshiba Linux utilities web site at:
	  <http://www.buzzard.org.uk/toshiba/>.

	  Say Y if you intend to run this kernel on a Toshiba portable.
	  Say N otherwise.

config I8K
	tristate "Dell laptop support"
	---help---
	  This adds a driver to safely access the System Management Mode
	  of the CPU on the Dell Inspiron 8000. The System Management Mode
	  is used to read cpu temperature and cooling fan status and to
	  control the fans on the I8K portables.

	  This driver has been tested only on the Inspiron 8000 but it may
	  also work with other Dell laptops. You can force loading on other
	  models by passing the parameter `force=1' to the module. Use at
	  your own risk.

	  For information on utilities to make use of this driver see the
	  I8K Linux utilities web site at:
	  <http://people.debian.org/~dz/i8k/>

	  Say Y if you intend to run this kernel on a Dell Inspiron 8000.
	  Say N otherwise.

config X86_REBOOTFIXUPS
	bool "Enable X86 board specific fixups for reboot"
	depends on X86
	default n
	---help---
	  This enables chipset and/or board specific fixups to be done
	  in order to get reboot to work correctly. This is only needed on
	  some combinations of hardware and BIOS. The symptom, for which
	  this config is intended, is when reboot ends with a stalled/hung
	  system.

	  Currently, the only fixup is for the Geode GX1/CS5530A/TROM2.1.
	  combination.

	  Say Y if you want to enable the fixup. Currently, it's safe to
	  enable this option even if you don't need it.
	  Say N otherwise.

config MICROCODE
	tristate "/dev/cpu/microcode - Intel IA32 CPU microcode support"
	select FW_LOADER
	---help---
	  If you say Y here and also to "/dev file system support" in the
	  'File systems' section, you will be able to update the microcode on
	  Intel processors in the IA32 family, e.g. Pentium Pro, Pentium II,
	  Pentium III, Pentium 4, Xeon etc.  You will obviously need the
	  actual microcode binary data itself which is not shipped with the
	  Linux kernel.

	  For latest news and information on obtaining all the required
	  ingredients for this driver, check:
	  <http://www.urbanmyth.org/microcode/>.

	  To compile this driver as a module, choose M here: the
	  module will be called microcode.

config MICROCODE_OLD_INTERFACE
	bool
	depends on MICROCODE
	default y

config X86_MSR
	tristate "/dev/cpu/*/msr - Model-specific register support"
	help
	  This device gives privileged processes access to the x86
	  Model-Specific Registers (MSRs).  It is a character device with
	  major 202 and minors 0 to 31 for /dev/cpu/0/msr to /dev/cpu/31/msr.
	  MSR accesses are directed to a specific CPU on multi-processor
	  systems.

config X86_CPUID
	tristate "/dev/cpu/*/cpuid - CPU information support"
	help
	  This device gives processes access to the x86 CPUID instruction to
	  be executed on a specific processor.  It is a character device
	  with major 203 and minors 0 to 31 for /dev/cpu/0/cpuid to
	  /dev/cpu/31/cpuid.

source "drivers/firmware/Kconfig"

choice
	prompt "High Memory Support"
	default NOHIGHMEM

config NOHIGHMEM
	bool "off"
	depends on !X86_NUMAQ
	---help---
	  Linux can use up to 64 Gigabytes of physical memory on x86 systems.
	  However, the address space of 32-bit x86 processors is only 4
	  Gigabytes large. That means that, if you have a large amount of
	  physical memory, not all of it can be "permanently mapped" by the
	  kernel. The physical memory that's not permanently mapped is called
	  "high memory".

	  If you are compiling a kernel which will never run on a machine with
	  more than 1 Gigabyte total physical RAM, answer "off" here (default
	  choice and suitable for most users). This will result in a "3GB/1GB"
	  split: 3GB are mapped so that each process sees a 3GB virtual memory
	  space and the remaining part of the 4GB virtual memory space is used
	  by the kernel to permanently map as much physical memory as
	  possible.

	  If the machine has between 1 and 4 Gigabytes physical RAM, then
	  answer "4GB" here.

	  If more than 4 Gigabytes is used then answer "64GB" here. This
	  selection turns Intel PAE (Physical Address Extension) mode on.
	  PAE implements 3-level paging on IA32 processors. PAE is fully
	  supported by Linux, PAE mode is implemented on all recent Intel
	  processors (Pentium Pro and better). NOTE: If you say "64GB" here,
	  then the kernel will not boot on CPUs that don't support PAE!

	  The actual amount of total physical memory will either be
	  auto detected or can be forced by using a kernel command line option
	  such as "mem=256M". (Try "man bootparam" or see the documentation of
	  your boot loader (lilo or loadlin) about how to pass options to the
	  kernel at boot time.)

	  If unsure, say "off".

config HIGHMEM4G
	bool "4GB"
	depends on !X86_NUMAQ
	help
	  Select this if you have a 32-bit processor and between 1 and 4
	  gigabytes of physical RAM.

config HIGHMEM64G
	bool "64GB"
	depends on X86_CMPXCHG64
	help
	  Select this if you have a 32-bit processor and more than 4
	  gigabytes of physical RAM.

endchoice

choice
	depends on EXPERIMENTAL
	prompt "Memory split" if EMBEDDED
	default VMSPLIT_3G
	help
	  Select the desired split between kernel and user memory.

	  If the address range available to the kernel is less than the
	  physical memory installed, the remaining memory will be available
	  as "high memory". Accessing high memory is a little more costly
	  than low memory, as it needs to be mapped into the kernel first.
	  Note that increasing the kernel address space limits the range
	  available to user programs, making the address space there
	  tighter.  Selecting anything other than the default 3G/1G split
	  will also likely make your kernel incompatible with binary-only
	  kernel modules.

	  If you are not absolutely sure what you are doing, leave this
	  option alone!

	config VMSPLIT_3G
		bool "3G/1G user/kernel split"
	config VMSPLIT_3G_OPT
		depends on !HIGHMEM
		bool "3G/1G user/kernel split (for full 1G low memory)"
	config VMSPLIT_2G
		bool "2G/2G user/kernel split"
	config VMSPLIT_1G
		bool "1G/3G user/kernel split"
endchoice

config PAGE_OFFSET
	hex
	default 0xB0000000 if VMSPLIT_3G_OPT
	default 0x78000000 if VMSPLIT_2G
	default 0x40000000 if VMSPLIT_1G
	default 0xC0000000

config HIGHMEM
	bool
	depends on HIGHMEM64G || HIGHMEM4G
	default y

config X86_PAE
	bool
	depends on HIGHMEM64G
	default y
	select RESOURCES_64BIT

# Common NUMA Features
config NUMA
	bool "Numa Memory Allocation and Scheduler Support"
	depends on SMP && HIGHMEM64G && (X86_NUMAQ || (X86_SUMMIT || X86_GENERICARCH) && ACPI)
	default n if X86_PC
	default y if (X86_NUMAQ || X86_SUMMIT)

comment "NUMA (Summit) requires SMP, 64GB highmem support, ACPI"
	depends on X86_SUMMIT && (!HIGHMEM64G || !ACPI)

config NODES_SHIFT
	int
	default "4" if X86_NUMAQ
	default "3"
	depends on NEED_MULTIPLE_NODES

config HAVE_ARCH_BOOTMEM_NODE
	bool
	depends on NUMA
	default y

config ARCH_HAVE_MEMORY_PRESENT
	bool
	depends on DISCONTIGMEM
	default y

config NEED_NODE_MEMMAP_SIZE
	bool
	depends on DISCONTIGMEM || SPARSEMEM
	default y

config HAVE_ARCH_ALLOC_REMAP
	bool
	depends on NUMA
	default y

config ARCH_FLATMEM_ENABLE
	def_bool y
	depends on (ARCH_SELECT_MEMORY_MODEL && X86_PC)

config ARCH_DISCONTIGMEM_ENABLE
	def_bool y
	depends on NUMA

config ARCH_DISCONTIGMEM_DEFAULT
	def_bool y
	depends on NUMA

config ARCH_SPARSEMEM_ENABLE
	def_bool y
	depends on (NUMA || (X86_PC && EXPERIMENTAL))
	select SPARSEMEM_STATIC

config ARCH_SELECT_MEMORY_MODEL
	def_bool y
	depends on ARCH_SPARSEMEM_ENABLE

config ARCH_POPULATES_NODE_MAP
	def_bool y

source "mm/Kconfig"

config HIGHPTE
	bool "Allocate 3rd-level pagetables from highmem"
	depends on HIGHMEM4G || HIGHMEM64G
	help
	  The VM uses one page table entry for each page of physical memory.
	  For systems with a lot of RAM, this can be wasteful of precious
	  low memory.  Setting this option will put user-space page table
	  entries in high memory.

config MATH_EMULATION
	bool "Math emulation"
	---help---
	  Linux can emulate a math coprocessor (used for floating point
	  operations) if you don't have one. 486DX and Pentium processors have
	  a math coprocessor built in, 486SX and 386 do not, unless you added
	  a 487DX or 387, respectively. (The messages during boot time can
	  give you some hints here ["man dmesg"].) Everyone needs either a
	  coprocessor or this emulation.

	  If you don't have a math coprocessor, you need to say Y here; if you
	  say Y here even though you have a coprocessor, the coprocessor will
	  be used nevertheless. (This behavior can be changed with the kernel
	  command line option "no387", which comes handy if your coprocessor
	  is broken. Try "man bootparam" or see the documentation of your boot
	  loader (lilo or loadlin) about how to pass options to the kernel at
	  boot time.) This means that it is a good idea to say Y here if you
	  intend to use this kernel on different machines.

	  More information about the internals of the Linux math coprocessor
	  emulation can be found in <file:arch/i386/math-emu/README>.

	  If you are not sure, say Y; apart from resulting in a 66 KB bigger
	  kernel, it won't hurt.

config MTRR
	bool "MTRR (Memory Type Range Register) support"
	---help---
	  On Intel P6 family processors (Pentium Pro, Pentium II and later)
	  the Memory Type Range Registers (MTRRs) may be used to control
	  processor access to memory ranges. This is most useful if you have
	  a video (VGA) card on a PCI or AGP bus. Enabling write-combining
	  allows bus write transfers to be combined into a larger transfer
	  before bursting over the PCI/AGP bus. This can increase performance
	  of image write operations 2.5 times or more. Saying Y here creates a
	  /proc/mtrr file which may be used to manipulate your processor's
	  MTRRs. Typically the X server should use this.

	  This code has a reasonably generic interface so that similar
	  control registers on other processors can be easily supported
	  as well:

	  The Cyrix 6x86, 6x86MX and M II processors have Address Range
	  Registers (ARRs) which provide a similar functionality to MTRRs. For
	  these, the ARRs are used to emulate the MTRRs.
	  The AMD K6-2 (stepping 8 and above) and K6-3 processors have two
	  MTRRs. The Centaur C6 (WinChip) has 8 MCRs, allowing
	  write-combining. All of these processors are supported by this code
	  and it makes sense to say Y here if you have one of them.

	  Saying Y here also fixes a problem with buggy SMP BIOSes which only
	  set the MTRRs for the boot CPU and not for the secondary CPUs. This
	  can lead to all sorts of problems, so it's good to say Y here.

	  You can safely say Y even if your machine doesn't have MTRRs, you'll
	  just add about 9 KB to your kernel.

	  See <file:Documentation/mtrr.txt> for more information.

config EFI
	bool "Boot from EFI support"
	depends on ACPI
	default n
	---help---
	This enables the kernel to boot on EFI platforms using
	system configuration information passed to it from the firmware.
	This also enables the kernel to use any EFI runtime services that are
	available (such as the EFI variable services).

	This option is only useful on systems that have EFI firmware
	and will result in a kernel image that is ~8k larger.  In addition,
	you must use the latest ELILO loader available at
	<http://elilo.sourceforge.net> in order to take advantage of
	kernel initialization using EFI information (neither GRUB nor LILO know
	anything about EFI).  However, even with this option, the resultant
	kernel should continue to boot on existing non-EFI platforms.

config IRQBALANCE
 	bool "Enable kernel irq balancing"
	depends on SMP && X86_IO_APIC
	default y
	help
 	  The default yes will allow the kernel to do irq load balancing.
	  Saying no will keep the kernel from doing irq load balancing.

# turning this on wastes a bunch of space.
# Summit needs it only when NUMA is on
config BOOT_IOREMAP
	bool
	depends on (((X86_SUMMIT || X86_GENERICARCH) && NUMA) || (X86 && EFI))
	default y

config REGPARM
	bool "Use register arguments"
	default y
	help
	Compile the kernel with -mregparm=3. This instructs gcc to use
	a more efficient function call ABI which passes the first three
	arguments of a function call via registers, which results in denser
	and faster code.

	If this option is disabled, then the default ABI of passing
	arguments via the stack is used.

	If unsure, say Y.

config SECCOMP
	bool "Enable seccomp to safely compute untrusted bytecode"
	depends on PROC_FS
	default y
	help
	  This kernel feature is useful for number crunching applications
	  that may need to compute untrusted bytecode during their
	  execution. By using pipes or other transports made available to
	  the process as file descriptors supporting the read/write
	  syscalls, it's possible to isolate those applications in
	  their own address space using seccomp. Once seccomp is
	  enabled via /proc/<pid>/seccomp, it cannot be disabled
	  and the task is only allowed to execute a few safe syscalls
	  defined by each seccomp mode.

	  If unsure, say Y. Only embedded should say N here.

source kernel/Kconfig.hz

config KEXEC
	bool "kexec system call"
	help
	  kexec is a system call that implements the ability to shutdown your
	  current kernel, and to start another kernel.  It is like a reboot
	  but it is independent of the system firmware.   And like a reboot
	  you can start any kernel with it, not just Linux.

	  The name comes from the similarity to the exec system call.

	  It is an ongoing process to be certain the hardware in a machine
	  is properly shutdown, so do not be surprised if this code does not
	  initially work for you.  It may help to enable device hotplugging
	  support.  As of this writing the exact hardware interface is
	  strongly in flux, so no good recommendation can be made.

config CRASH_DUMP
	bool "kernel crash dumps (EXPERIMENTAL)"
	depends on EXPERIMENTAL
	depends on HIGHMEM
	help
	  Generate crash dump after being started by kexec.
          This should be normally only set in special crash dump kernels
	  which are loaded in the main kernel with kexec-tools into
	  a specially reserved region and then later executed after
	  a crash by kdump/kexec. The crash dump kernel must be compiled
          to a memory address not used by the main kernel or BIOS using
          PHYSICAL_START.
	  For more details see Documentation/kdump/kdump.txt

config PHYSICAL_START
	hex "Physical address where the kernel is loaded" if (EMBEDDED || CRASH_DUMP)

	default "0x1000000" if CRASH_DUMP
	default "0x100000"
	help
	  This gives the physical address where the kernel is loaded. Normally
	  for regular kernels this value is 0x100000 (1MB). But in the case
	  of kexec on panic the fail safe kernel needs to run at a different
	  address than the panic-ed kernel. This option is used to set the load
	  address for kernels used to capture crash dump on being kexec'ed
	  after panic. The default value for crash dump kernels is
	  0x1000000 (16MB). This can also be set based on the "X" value as
	  specified in the "crashkernel=YM@XM" command line boot parameter
	  passed to the panic-ed kernel. Typically this parameter is set as
	  crashkernel=64M@16M. Please take a look at
	  Documentation/kdump/kdump.txt for more details about crash dumps.

	  Don't change this unless you know what you are doing.

config HOTPLUG_CPU
	bool "Support for hot-pluggable CPUs (EXPERIMENTAL)"
	depends on SMP && HOTPLUG && EXPERIMENTAL && !X86_VOYAGER
	---help---
	  Say Y here to experiment with turning CPUs off and on, and to
	  enable suspend on SMP systems. CPUs can be controlled through
	  /sys/devices/system/cpu.

config COMPAT_VDSO
	bool "Compat VDSO support"
	default y
	depends on !PARAVIRT
	help
	  Map the VDSO to the predictable old-style address too.
	---help---
	  Say N here if you are running a sufficiently recent glibc
	  version (2.3.3 or later), to remove the high-mapped
	  VDSO mapping and to exclusively use the randomized VDSO.

	  If unsure, say Y.

endmenu

config ARCH_ENABLE_MEMORY_HOTPLUG
	def_bool y
	depends on HIGHMEM

menu "Power management options (ACPI, APM)"
	depends on !X86_VOYAGER

source kernel/power/Kconfig

source "drivers/acpi/Kconfig"

menu "APM (Advanced Power Management) BIOS Support"
depends on PM && !X86_VISWS

config APM
	tristate "APM (Advanced Power Management) BIOS support"
	depends on PM
	---help---
	  APM is a BIOS specification for saving power using several different
	  techniques. This is mostly useful for battery powered laptops with
	  APM compliant BIOSes. If you say Y here, the system time will be
	  reset after a RESUME operation, the /proc/apm device will provide
	  battery status information, and user-space programs will receive
	  notification of APM "events" (e.g. battery status change).

	  If you select "Y" here, you can disable actual use of the APM
	  BIOS by passing the "apm=off" option to the kernel at boot time.

	  Note that the APM support is almost completely disabled for
	  machines with more than one CPU.

	  In order to use APM, you will need supporting software. For location
	  and more information, read <file:Documentation/pm.txt> and the
	  Battery Powered Linux mini-HOWTO, available from
	  <http://www.tldp.org/docs.html#howto>.

	  This driver does not spin down disk drives (see the hdparm(8)
	  manpage ("man 8 hdparm") for that), and it doesn't turn off
	  VESA-compliant "green" monitors.

	  This driver does not support the TI 4000M TravelMate and the ACER
	  486/DX4/75 because they don't have compliant BIOSes. Many "green"
	  desktop machines also don't have compliant BIOSes, and this driver
	  may cause those machines to panic during the boot phase.

	  Generally, if you don't have a battery in your machine, there isn't
	  much point in using this driver and you should say N. If you get
	  random kernel OOPSes or reboots that don't seem to be related to
	  anything, try disabling/enabling this option (or disabling/enabling
	  APM in your BIOS).

	  Some other things you should try when experiencing seemingly random,
	  "weird" problems:

	  1) make sure that you have enough swap space and that it is
	  enabled.
	  2) pass the "no-hlt" option to the kernel
	  3) switch on floating point emulation in the kernel and pass
	  the "no387" option to the kernel
	  4) pass the "floppy=nodma" option to the kernel
	  5) pass the "mem=4M" option to the kernel (thereby disabling
	  all but the first 4 MB of RAM)
	  6) make sure that the CPU is not over clocked.
	  7) read the sig11 FAQ at <http://www.bitwizard.nl/sig11/>
	  8) disable the cache from your BIOS settings
	  9) install a fan for the video card or exchange video RAM
	  10) install a better fan for the CPU
	  11) exchange RAM chips
	  12) exchange the motherboard.

	  To compile this driver as a module, choose M here: the
	  module will be called apm.

config APM_IGNORE_USER_SUSPEND
	bool "Ignore USER SUSPEND"
	depends on APM
	help
	  This option will ignore USER SUSPEND requests. On machines with a
	  compliant APM BIOS, you want to say N. However, on the NEC Versa M
	  series notebooks, it is necessary to say Y because of a BIOS bug.

config APM_DO_ENABLE
	bool "Enable PM at boot time"
	depends on APM
	---help---
	  Enable APM features at boot time. From page 36 of the APM BIOS
	  specification: "When disabled, the APM BIOS does not automatically
	  power manage devices, enter the Standby State, enter the Suspend
	  State, or take power saving steps in response to CPU Idle calls."
	  This driver will make CPU Idle calls when Linux is idle (unless this
	  feature is turned off -- see "Do CPU IDLE calls", below). This
	  should always save battery power, but more complicated APM features
	  will be dependent on your BIOS implementation. You may need to turn
	  this option off if your computer hangs at boot time when using APM
	  support, or if it beeps continuously instead of suspending. Turn
	  this off if you have a NEC UltraLite Versa 33/C or a Toshiba
	  T400CDT. This is off by default since most machines do fine without
	  this feature.

config APM_CPU_IDLE
	bool "Make CPU Idle calls when idle"
	depends on APM
	help
	  Enable calls to APM CPU Idle/CPU Busy inside the kernel's idle loop.
	  On some machines, this can activate improved power savings, such as
	  a slowed CPU clock rate, when the machine is idle. These idle calls
	  are made after the idle loop has run for some length of time (e.g.,
	  333 mS). On some machines, this will cause a hang at boot time or
	  whenever the CPU becomes idle. (On machines with more than one CPU,
	  this option does nothing.)

config APM_DISPLAY_BLANK
	bool "Enable console blanking using APM"
	depends on APM
	help
	  Enable console blanking using the APM. Some laptops can use this to
	  turn off the LCD backlight when the screen blanker of the Linux
	  virtual console blanks the screen. Note that this is only used by
	  the virtual console screen blanker, and won't turn off the backlight
	  when using the X Window system. This also doesn't have anything to
	  do with your VESA-compliant power-saving monitor. Further, this
	  option doesn't work for all laptops -- it might not turn off your
	  backlight at all, or it might print a lot of errors to the console,
	  especially if you are using gpm.

config APM_RTC_IS_GMT
	bool "RTC stores time in GMT"
	depends on APM
	help
	  Say Y here if your RTC (Real Time Clock a.k.a. hardware clock)
	  stores the time in GMT (Greenwich Mean Time). Say N if your RTC
	  stores localtime.

	  It is in fact recommended to store GMT in your RTC, because then you
	  don't have to worry about daylight savings time changes. The only
	  reason not to use GMT in your RTC is if you also run a broken OS
	  that doesn't understand GMT.

config APM_ALLOW_INTS
	bool "Allow interrupts during APM BIOS calls"
	depends on APM
	help
	  Normally we disable external interrupts while we are making calls to
	  the APM BIOS as a measure to lessen the effects of a badly behaving
	  BIOS implementation.  The BIOS should reenable interrupts if it
	  needs to.  Unfortunately, some BIOSes do not -- especially those in
	  many of the newer IBM Thinkpads.  If you experience hangs when you
	  suspend, try setting this to Y.  Otherwise, say N.

config APM_REAL_MODE_POWER_OFF
	bool "Use real mode APM BIOS call to power off"
	depends on APM
	help
	  Use real mode APM BIOS calls to switch off the computer. This is
	  a work-around for a number of buggy BIOSes. Switch this option on if
	  your computer crashes instead of powering off properly.

endmenu

source "arch/i386/kernel/cpu/cpufreq/Kconfig"

endmenu

menu "Bus options (PCI, PCMCIA, EISA, MCA, ISA)"

config PCI
	bool "PCI support" if !X86_VISWS
	depends on !X86_VOYAGER
	default y if X86_VISWS
	help
	  Find out whether you have a PCI motherboard. PCI is the name of a
	  bus system, i.e. the way the CPU talks to the other stuff inside
	  your box. Other bus systems are ISA, EISA, MicroChannel (MCA) or
	  VESA. If you have PCI, say Y, otherwise N.

	  The PCI-HOWTO, available from
	  <http://www.tldp.org/docs.html#howto>, contains valuable
	  information about which PCI hardware does work under Linux and which
	  doesn't.

choice
	prompt "PCI access mode"
	depends on PCI && !X86_VISWS
	default PCI_GOANY
	---help---
	  On PCI systems, the BIOS can be used to detect the PCI devices and
	  determine their configuration. However, some old PCI motherboards
	  have BIOS bugs and may crash if this is done. Also, some embedded
	  PCI-based systems don't have any BIOS at all. Linux can also try to
	  detect the PCI hardware directly without using the BIOS.

	  With this option, you can specify how Linux should detect the
	  PCI devices. If you choose "BIOS", the BIOS will be used,
	  if you choose "Direct", the BIOS won't be used, and if you
	  choose "MMConfig", then PCI Express MMCONFIG will be used.
	  If you choose "Any", the kernel will try MMCONFIG, then the
	  direct access method and falls back to the BIOS if that doesn't
	  work. If unsure, go with the default, which is "Any".

config PCI_GOBIOS
	bool "BIOS"

config PCI_GOMMCONFIG
	bool "MMConfig"

config PCI_GODIRECT
	bool "Direct"

config PCI_GOANY
	bool "Any"

endchoice

config PCI_BIOS
	bool
	depends on !X86_VISWS && PCI && (PCI_GOBIOS || PCI_GOANY)
	default y

config PCI_DIRECT
	bool
 	depends on PCI && ((PCI_GODIRECT || PCI_GOANY) || X86_VISWS)
	default y

config PCI_MMCONFIG
	bool
	depends on PCI && ACPI && (PCI_GOMMCONFIG || PCI_GOANY)
	default y

source "drivers/pci/pcie/Kconfig"

source "drivers/pci/Kconfig"

config ISA_DMA_API
	bool
	default y

config ISA
	bool "ISA support"
	depends on !(X86_VOYAGER || X86_VISWS)
	help
	  Find out whether you have ISA slots on your motherboard.  ISA is the
	  name of a bus system, i.e. the way the CPU talks to the other stuff
	  inside your box.  Other bus systems are PCI, EISA, MicroChannel
	  (MCA) or VESA.  ISA is an older system, now being displaced by PCI;
	  newer boards don't support it.  If you have ISA, say Y, otherwise N.

config EISA
	bool "EISA support"
	depends on ISA
	---help---
	  The Extended Industry Standard Architecture (EISA) bus was
	  developed as an open alternative to the IBM MicroChannel bus.

	  The EISA bus provided some of the features of the IBM MicroChannel
	  bus while maintaining backward compatibility with cards made for
	  the older ISA bus.  The EISA bus saw limited use between 1988 and
	  1995 when it was made obsolete by the PCI bus.

	  Say Y here if you are building a kernel for an EISA-based machine.

	  Otherwise, say N.

source "drivers/eisa/Kconfig"

config MCA
	bool "MCA support" if !(X86_VISWS || X86_VOYAGER)
	default y if X86_VOYAGER
	help
	  MicroChannel Architecture is found in some IBM PS/2 machines and
	  laptops.  It is a bus system similar to PCI or ISA. See
	  <file:Documentation/mca.txt> (and especially the web page given
	  there) before attempting to build an MCA bus kernel.

source "drivers/mca/Kconfig"

config SCx200
	tristate "NatSemi SCx200 support"
	depends on !X86_VOYAGER
	help
	  This provides basic support for National Semiconductor's
	  (now AMD's) Geode processors.  The driver probes for the
	  PCI-IDs of several on-chip devices, so its a good dependency
	  for other scx200_* drivers.

	  If compiled as a module, the driver is named scx200.

config SCx200HR_TIMER
	tristate "NatSemi SCx200 27MHz High-Resolution Timer Support"
	depends on SCx200 && GENERIC_TIME
	default y
	help
	  This driver provides a clocksource built upon the on-chip
	  27MHz high-resolution timer.  Its also a workaround for
	  NSC Geode SC-1100's buggy TSC, which loses time when the
	  processor goes idle (as is done by the scheduler).  The
	  other workaround is idle=poll boot option.

config K8_NB
	def_bool y
	depends on AGP_AMD64

source "drivers/pcmcia/Kconfig"

source "drivers/pci/hotplug/Kconfig"

endmenu

menu "Executable file formats"

source "fs/Kconfig.binfmt"

endmenu

source "net/Kconfig"

source "drivers/Kconfig"

source "fs/Kconfig"

menu "Instrumentation Support"
	depends on EXPERIMENTAL

source "arch/i386/oprofile/Kconfig"

config KPROBES
	bool "Kprobes (EXPERIMENTAL)"
	depends on KALLSYMS && EXPERIMENTAL && MODULES
	help
	  Kprobes allows you to trap at almost any kernel address and
	  execute a callback function.  register_kprobe() establishes
	  a probepoint and specifies the callback.  Kprobes is useful
	  for kernel debugging, non-intrusive instrumentation and testing.
	  If in doubt, say "N".
endmenu

source "arch/i386/Kconfig.debug"

source "security/Kconfig"

source "crypto/Kconfig"

source "lib/Kconfig"

#
# Use the generic interrupt handling code in kernel/irq/:
#
config GENERIC_HARDIRQS
	bool
	default y

config GENERIC_IRQ_PROBE
	bool
	default y

config GENERIC_PENDING_IRQ
	bool
	depends on GENERIC_HARDIRQS && SMP
	default y

config X86_SMP
	bool
	depends on SMP && !X86_VOYAGER
	default y

config X86_HT
	bool
	depends on SMP && !(X86_VISWS || X86_VOYAGER)
	default y

config X86_BIOS_REBOOT
	bool
	depends on !(X86_VISWS || X86_VOYAGER)
	default y

config X86_TRAMPOLINE
	bool
	depends on X86_SMP || (X86_VOYAGER && SMP)
	default y

config KTIME_SCALAR
	bool
	default y