/*
* Based on arch/arm/include/asm/io.h
*
* Copyright (C) 1996-2000 Russell King
* Copyright (C) 2012 ARM Ltd.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef __ASM_IO_H
#define __ASM_IO_H
#ifdef __KERNEL__
#include <linux/types.h>
#include <linux/blk_types.h>
#include <asm/byteorder.h>
#include <asm/barrier.h>
#include <asm/pgtable.h>
#include <asm/early_ioremap.h>
#include <xen/xen.h>
/*
* Generic IO read/write. These perform native-endian accesses.
*/
static inline void __raw_writeb(u8 val, volatile void __iomem *addr)
{
asm volatile("strb %w0, [%1]" : : "r" (val), "r" (addr));
}
static inline void __raw_writew(u16 val, volatile void __iomem *addr)
{
asm volatile("strh %w0, [%1]" : : "r" (val), "r" (addr));
}
static inline void __raw_writel(u32 val, volatile void __iomem *addr)
{
asm volatile("str %w0, [%1]" : : "r" (val), "r" (addr));
}
static inline void __raw_writeq(u64 val, volatile void __iomem *addr)
{
asm volatile("str %0, [%1]" : : "r" (val), "r" (addr));
}
static inline u8 __raw_readb(const volatile void __iomem *addr)
{
u8 val;
asm volatile("ldrb %w0, [%1]" : "=r" (val) : "r" (addr));
return val;
}
static inline u16 __raw_readw(const volatile void __iomem *addr)
{
u16 val;
asm volatile("ldrh %w0, [%1]" : "=r" (val) : "r" (addr));
return val;
}
static inline u32 __raw_readl(const volatile void __iomem *addr)
{
u32 val;
asm volatile("ldr %w0, [%1]" : "=r" (val) : "r" (addr));
return val;
}
static inline u64 __raw_readq(const volatile void __iomem *addr)
{
u64 val;
asm volatile("ldr %0, [%1]" : "=r" (val) : "r" (addr));
return val;
}
/* IO barriers */
#define __iormb() rmb()
#define __iowmb() wmb()
#define mmiowb() do { } while (0)
/*
* Relaxed I/O memory access primitives. These follow the Device memory
* ordering rules but do not guarantee any ordering relative to Normal memory
* accesses.
*/
#define readb_relaxed(c) ({ u8 __v = __raw_readb(c); __v; })
#define readw_relaxed(c) ({ u16 __v = le16_to_cpu((__force __le16)__raw_readw(c)); __v; })
#define readl_relaxed(c) ({ u32 __v = le32_to_cpu((__force __le32)__raw_readl(c)); __v; })
#define readq_relaxed(c) ({ u64 __v = le64_to_cpu((__force __le64)__raw_readq(c)); __v; })
#define writeb_relaxed(v,c) ((void)__raw_writeb((v),(c)))
#define writew_relaxed(v,c) ((void)__raw_writew((__force u16)cpu_to_le16(v),(c)))
#define writel_relaxed(v,c) ((void)__raw_writel((__force u32)cpu_to_le32(v),(c)))
#define writeq_relaxed(v,c) ((void)__raw_writeq((__force u64)cpu_to_le64(v),(c)))
/*
* I/O memory access primitives. Reads are ordered relative to any
* following Normal memory access. Writes are ordered relative to any prior
* Normal memory access.
*/
#define readb(c) ({ u8 __v = readb_relaxed(c); __iormb(); __v; })
#define readw(c) ({ u16 __v = readw_relaxed(c); __iormb(); __v; })
#define readl(c) ({ u32 __v = readl_relaxed(c); __iormb(); __v; })
#define readq(c) ({ u64 __v = readq_relaxed(c); __iormb(); __v; })
#define writeb(v,c) ({ __iowmb(); writeb_relaxed((v),(c)); })
#define writew(v,c) ({ __iowmb(); writew_relaxed((v),(c)); })
#define writel(v,c) ({ __iowmb(); writel_relaxed((v),(c)); })
#define writeq(v,c) ({ __iowmb(); writeq_relaxed((v),(c)); })
/*
* I/O port access primitives.
*/
#define arch_has_dev_port() (1)
#define IO_SPACE_LIMIT (SZ_32M - 1)
#define PCI_IOBASE ((void __iomem *)(MODULES_VADDR - SZ_32M))
static inline u8 inb(unsigned long addr)
{
return readb(addr + PCI_IOBASE);
}
static inline u16 inw(unsigned long addr)
{
return readw(addr + PCI_IOBASE);
}
static inline u32 inl(unsigned long addr)
{
return readl(addr + PCI_IOBASE);
}
static inline void outb(u8 b, unsigned long addr)
{
writeb(b, addr + PCI_IOBASE);
}
static inline void outw(u16 b, unsigned long addr)
{
writew(b, addr + PCI_IOBASE);
}
static inline void outl(u32 b, unsigned long addr)
{
writel(b, addr + PCI_IOBASE);
}
#define inb_p(addr) inb(addr)
#define inw_p(addr) inw(addr)
#define inl_p(addr) inl(addr)
#define outb_p(x, addr) outb((x), (addr))
#define outw_p(x, addr) outw((x), (addr))
#define outl_p(x, addr) outl((x), (addr))
static inline void insb(unsigned long addr, void *buffer, int count)
{
u8 *buf = buffer;
while (count--)
*buf++ = __raw_readb(addr + PCI_IOBASE);
}
static inline void insw(unsigned long addr, void *buffer, int count)
{
u16 *buf = buffer;
while (count--)
*buf++ = __raw_readw(addr + PCI_IOBASE);
}
static inline void insl(unsigned long addr, void *buffer, int count)
{
u32 *buf = buffer;
while (count--)
*buf++ = __raw_readl(addr + PCI_IOBASE);
}
static inline void outsb(unsigned long addr, const void *buffer, int count)
{
const u8 *buf = buffer;
while (count--)
__raw_writeb(*buf++, addr + PCI_IOBASE);
}
static inline void outsw(unsigned long addr, const void *buffer, int count)
{
const u16 *buf = buffer;
while (count--)
__raw_writew(*buf++, addr + PCI_IOBASE);
}
static inline void outsl(unsigned long addr, const void *buffer, int count)
{
const u32 *buf = buffer;
while (count--)
__raw_writel(*buf++, addr + PCI_IOBASE);
}
#define insb_p(port,to,len) insb(port,to,len)
#define insw_p(port,to,len) insw(port,to,len)
#define insl_p(port,to,len) insl(port,to,len)
#define outsb_p(port,from,len) outsb(port,from,len)
#define outsw_p(port,from,len) outsw(port,from,len)
#define outsl_p(port,from,len) outsl(port,from,len)
/*
* String version of I/O memory access operations.
*/
extern void __memcpy_fromio(void *, const volatile void __iomem *, size_t);
extern void __memcpy_toio(volatile void __iomem *, const void *, size_t);
extern void __memset_io(volatile void __iomem *, int, size_t);
#define memset_io(c,v,l) __memset_io((c),(v),(l))
#define memcpy_fromio(a,c,l) __memcpy_fromio((a),(c),(l))
#define memcpy_toio(c,a,l) __memcpy_toio((c),(a),(l))
/*
* I/O memory mapping functions.
*/
extern void __iomem *__ioremap(phys_addr_t phys_addr, size_t size, pgprot_t prot);
extern void __iounmap(volatile void __iomem *addr);
extern void __iomem *ioremap_cache(phys_addr_t phys_addr, size_t size);
#define ioremap(addr, size) __ioremap((addr), (size), __pgprot(PROT_DEVICE_nGnRE))
#define ioremap_nocache(addr, size) __ioremap((addr), (size), __pgprot(PROT_DEVICE_nGnRE))
#define ioremap_wc(addr, size) __ioremap((addr), (size), __pgprot(PROT_NORMAL_NC))
#define iounmap __iounmap
#define ARCH_HAS_IOREMAP_WC
#include <asm-generic/iomap.h>
/*
* More restrictive address range checking than the default implementation
* (PHYS_OFFSET and PHYS_MASK taken into account).
*/
#define ARCH_HAS_VALID_PHYS_ADDR_RANGE
extern int valid_phys_addr_range(phys_addr_t addr, size_t size);
extern int valid_mmap_phys_addr_range(unsigned long pfn, size_t size);
extern int devmem_is_allowed(unsigned long pfn);
/*
* Convert a physical pointer to a virtual kernel pointer for /dev/mem
* access
*/
#define xlate_dev_mem_ptr(p) __va(p)
/*
* Convert a virtual cached pointer to an uncached pointer
*/
#define xlate_dev_kmem_ptr(p) p
struct bio_vec;
extern bool xen_biovec_phys_mergeable(const struct bio_vec *vec1,
const struct bio_vec *vec2);
#define BIOVEC_PHYS_MERGEABLE(vec1, vec2) \
(__BIOVEC_PHYS_MERGEABLE(vec1, vec2) && \
(!xen_domain() || xen_biovec_phys_mergeable(vec1, vec2)))
#endif /* __KERNEL__ */
#endif /* __ASM_IO_H */