/*
* Copyright 2005-2007 Freescale Semiconductor, Inc. All Rights Reserved.
* Copyright (C) 2008 by Sascha Hauer <kernel@pengutronix.de>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
* MA 02110-1301, USA.
*/
#include <linux/module.h>
#include <linux/spinlock.h>
#include <linux/delay.h>
#include <linux/clk.h>
#include <linux/err.h>
#include <linux/io.h>
#include <asm/clkdev.h>
#include <asm/div64.h>
#include <mach/clock.h>
#include <mach/hardware.h>
#include <mach/mx31.h>
#include <mach/common.h>
#include "crm_regs.h"
#define PRE_DIV_MIN_FREQ 10000000 /* Minimum Frequency after Predivider */
static void __calc_pre_post_dividers(u32 div, u32 *pre, u32 *post)
{
u32 min_pre, temp_pre, old_err, err;
if (div >= 512) {
*pre = 8;
*post = 64;
} else if (div >= 64) {
min_pre = (div - 1) / 64 + 1;
old_err = 8;
for (temp_pre = 8; temp_pre >= min_pre; temp_pre--) {
err = div % temp_pre;
if (err == 0) {
*pre = temp_pre;
break;
}
err = temp_pre - err;
if (err < old_err) {
old_err = err;
*pre = temp_pre;
}
}
*post = (div + *pre - 1) / *pre;
} else if (div <= 8) {
*pre = div;
*post = 1;
} else {
*pre = 1;
*post = div;
}
}
static struct clk mcu_pll_clk;
static struct clk serial_pll_clk;
static struct clk ipg_clk;
static struct clk ckih_clk;
static int cgr_enable(struct clk *clk)
{
u32 reg;
if (!clk->enable_reg)
return 0;
reg = __raw_readl(clk->enable_reg);
reg |= 3 << clk->enable_shift;
__raw_writel(reg, clk->enable_reg);
return 0;
}
static void cgr_disable(struct clk *clk)
{
u32 reg;
if (!clk->enable_reg)
return;
reg = __raw_readl(clk->enable_reg);
reg &= ~(3 << clk->enable_shift);
/* special case for EMI clock */
if (clk->enable_reg == MXC_CCM_CGR2 && clk->enable_shift == 8)
reg |= (1 << clk->enable_shift);
__raw_writel(reg, clk->enable_reg);
}
static unsigned long pll_ref_get_rate(void)
{
unsigned long ccmr;
unsigned int prcs;
ccmr = __raw_readl(MXC_CCM_CCMR);
prcs = (ccmr & MXC_CCM_CCMR_PRCS_MASK) >> MXC_CCM_CCMR_PRCS_OFFSET;
if (prcs == 0x1)
return CKIL_CLK_FREQ * 1024;
else
return clk_get_rate(&ckih_clk);
}
static unsigned long usb_pll_get_rate(struct clk *clk)
{
unsigned long reg;
reg = __raw_readl(MXC_CCM_UPCTL);
return mxc_decode_pll(reg, pll_ref_get_rate());
}
static unsigned long serial_pll_get_rate(struct clk *clk)
{
unsigned long reg;
reg = __raw_readl(MXC_CCM_SRPCTL);
return mxc_decode_pll(reg, pll_ref_get_rate());
}
static unsigned long mcu_pll_get_rate(struct clk *clk)
{
unsigned long reg, ccmr;
ccmr = __raw_readl(MXC_CCM_CCMR);
if (!(ccmr & MXC_CCM_CCMR_MPE) || (ccmr & MXC_CCM_CCMR_MDS))
return clk_get_rate(&ckih_clk);
reg = __raw_readl(MXC_CCM_MPCTL);
return mxc_decode_pll(reg, pll_ref_get_rate());
}
static int usb_pll_enable(struct clk *clk)
{
u32 reg;
reg = __raw_readl(MXC_CCM_CCMR);
reg |= MXC_CCM_CCMR_UPE;
__raw_writel(reg, MXC_CCM_CCMR);
/* No lock bit on MX31, so using max time from spec */
udelay(80);
return 0;
}
static void usb_pll_disable(struct clk *clk)
{
u32 reg;
reg = __raw_readl(MXC_CCM_CCMR);
reg &= ~MXC_CCM_CCMR_UPE;
__raw_writel(reg, MXC_CCM_CCMR);
}
static int serial_pll_enable(struct clk *clk)
{
u32 reg;
reg = __raw_readl(MXC_CCM_CCMR);
reg |= MXC_CCM_CCMR_SPE;
__raw_writel(reg, MXC_CCM_CCMR);
/* No lock bit on MX31, so using max time from spec */
udelay(80);
return 0;
}
static void serial_pll_disable(struct clk *clk)
{
u32 reg;
reg = __raw_readl(MXC_CCM_CCMR);
reg &= ~MXC_CCM_CCMR_SPE;
__raw_writel(reg, MXC_CCM_CCMR);
}
#define PDR0(mask, off) ((__raw_readl(MXC_CCM_PDR0) & mask) >> off)
#define PDR1(mask, off) ((__raw_readl(MXC_CCM_PDR1) & mask) >> off)
#define PDR2(mask, off) ((__raw_readl(MXC_CCM_PDR2) & mask) >> off)
static unsigned long mcu_main_get_rate(struct clk *clk)
{
u32 pmcr0 = __raw_readl(MXC_CCM_PMCR0);
if ((pmcr0 & MXC_CCM_PMCR0_DFSUP1) == MXC_CCM_PMCR0_DFSUP1_SPLL)
return clk_get_rate(&serial_pll_clk);
else
return clk_get_rate(&mcu_pll_clk);
}
static unsigned long ahb_get_rate(struct clk *clk)
{
unsigned long max_pdf;
max_pdf = PDR0(MXC_CCM_PDR0_MAX_PODF_MASK,
MXC_CCM_PDR0_MAX_PODF_OFFSET);
return clk_get_rate(clk->parent) / (max_pdf + 1);
}
static unsigned long ipg_get_rate(struct clk *clk)
{
unsigned long ipg_pdf;
ipg_pdf = PDR0(MXC_CCM_PDR0_IPG_PODF_MASK,
MXC_CCM_PDR0_IPG_PODF_OFFSET);
return clk_get_rate(clk->parent) / (ipg_pdf + 1);
}
static unsigned long nfc_get_rate(struct clk *clk)
{
unsigned long nfc_pdf;
nfc_pdf = PDR0(MXC_CCM_PDR0_NFC_PODF_MASK,
MXC_CCM_PDR0_NFC_PODF_OFFSET);
return clk_get_rate(clk->parent) / (nfc_pdf + 1);
}
static unsigned long hsp_get_rate(struct clk *clk)
{
unsigned long hsp_pdf;
hsp_pdf = PDR0(MXC_CCM_PDR0_HSP_PODF_MASK,
MXC_CCM_PDR0_HSP_PODF_OFFSET);
return clk_get_rate(clk->parent) / (hsp_pdf + 1);
}
static unsigned long usb_get_rate(struct clk *clk)
{
unsigned long usb_pdf, usb_prepdf;
usb_pdf = PDR1(MXC_CCM_PDR1_USB_PODF_MASK,
MXC_CCM_PDR1_USB_PODF_OFFSET);
usb_prepdf = PDR1(MXC_CCM_PDR1_USB_PRDF_MASK,
MXC_CCM_PDR1_USB_PRDF_OFFSET);
return clk_get_rate(clk->parent) / (usb_prepdf + 1) / (usb_pdf + 1);
}
static unsigned long csi_get_rate(struct clk *clk)
{
u32 reg, pre, post;
reg = __raw_readl(MXC_CCM_PDR0);
pre = (reg & MXC_CCM_PDR0_CSI_PRDF_MASK) >>
MXC_CCM_PDR0_CSI_PRDF_OFFSET;
pre++;
post = (reg & MXC_CCM_PDR0_CSI_PODF_MASK) >>
MXC_CCM_PDR0_CSI_PODF_OFFSET;
post++;
return clk_get_rate(clk->parent) / (pre * post);
}
static unsigned long csi_round_rate(struct clk *clk, unsigned long rate)
{
u32 pre, post, parent = clk_get_rate(clk->parent);
u32 div = parent / rate;
if (parent % rate)
div++;
__calc_pre_post_dividers(div, &pre, &post);
return parent / (pre * post);
}
static int csi_set_rate(struct clk *clk, unsigned long rate)
{
u32 reg, div, pre, post, parent = clk_get_rate(clk->parent);
div = parent / rate;
if ((parent / div) != rate)
return -EINVAL;
__calc_pre_post_dividers(div, &pre, &post);
/* Set CSI clock divider */
reg = __raw_readl(MXC_CCM_PDR0) &
~(MXC_CCM_PDR0_CSI_PODF_MASK | MXC_CCM_PDR0_CSI_PRDF_MASK);
reg |= (post - 1) << MXC_CCM_PDR0_CSI_PODF_OFFSET;
reg |= (pre - 1) << MXC_CCM_PDR0_CSI_PRDF_OFFSET;
__raw_writel(reg, MXC_CCM_PDR0);
return 0;
}
static unsigned long ssi1_get_rate(struct clk *clk)
{
unsigned long ssi1_pdf, ssi1_prepdf;
ssi1_pdf = PDR1(MXC_CCM_PDR1_SSI1_PODF_MASK,
MXC_CCM_PDR1_SSI1_PODF_OFFSET);
ssi1_prepdf = PDR1(MXC_CCM_PDR1_SSI1_PRE_PODF_MASK,
MXC_CCM_PDR1_SSI1_PRE_PODF_OFFSET);
return clk_get_rate(clk->parent) / (ssi1_prepdf + 1) / (ssi1_pdf + 1);
}
static unsigned long ssi2_get_rate(struct clk *clk)
{
unsigned long ssi2_pdf, ssi2_prepdf;
ssi2_pdf = PDR1(MXC_CCM_PDR1_SSI2_PODF_MASK,
MXC_CCM_PDR1_SSI2_PODF_OFFSET);
ssi2_prepdf = PDR1(MXC_CCM_PDR1_SSI2_PRE_PODF_MASK,
MXC_CCM_PDR1_SSI2_PRE_PODF_OFFSET);
return clk_get_rate(clk->parent) / (ssi2_prepdf + 1) / (ssi2_pdf + 1);
}
static unsigned long firi_get_rate(struct clk *clk)
{
unsigned long firi_pdf, firi_prepdf;
firi_pdf = PDR1(MXC_CCM_PDR1_FIRI_PODF_MASK,
MXC_CCM_PDR1_FIRI_PODF_OFFSET);
firi_prepdf = PDR1(MXC_CCM_PDR1_FIRI_PRE_PODF_MASK,
MXC_CCM_PDR1_FIRI_PRE_PODF_OFFSET);
return clk_get_rate(clk->parent) / (firi_prepdf + 1) / (firi_pdf + 1);
}
static unsigned long firi_round_rate(struct clk *clk, unsigned long rate)
{
u32 pre, post;
u32 parent = clk_get_rate(clk->parent);
u32 div = parent / rate;
if (parent % rate)
div++;
__calc_pre_post_dividers(div, &pre, &post);
return parent / (pre * post);
}
static int firi_set_rate(struct clk *clk, unsigned long rate)
{
u32 reg, div, pre, post, parent = clk_get_rate(clk->parent);
div = parent / rate;
if ((parent / div) != rate)
return -EINVAL;
__calc_pre_post_dividers(div, &pre, &post);
/* Set FIRI clock divider */
reg = __raw_readl(MXC_CCM_PDR1) &
~(MXC_CCM_PDR1_FIRI_PODF_MASK | MXC_CCM_PDR1_FIRI_PRE_PODF_MASK);
reg |= (pre - 1) << MXC_CCM_PDR1_FIRI_PRE_PODF_OFFSET;
reg |= (post - 1) << MXC_CCM_PDR1_FIRI_PODF_OFFSET;
__raw_writel(reg, MXC_CCM_PDR1);
return 0;
}
static unsigned long mbx_get_rate(struct clk *clk)
{
return clk_get_rate(clk->parent) / 2;
}
static unsigned long mstick1_get_rate(struct clk *clk)
{
unsigned long msti_pdf;
msti_pdf = PDR2(MXC_CCM_PDR2_MST1_PDF_MASK,
MXC_CCM_PDR2_MST1_PDF_OFFSET);
return clk_get_rate(clk->parent) / (msti_pdf + 1);
}
static unsigned long mstick2_get_rate(struct clk *clk)
{
unsigned long msti_pdf;
msti_pdf = PDR2(MXC_CCM_PDR2_MST2_PDF_MASK,
MXC_CCM_PDR2_MST2_PDF_OFFSET);
return clk_get_rate(clk->parent) / (msti_pdf + 1);
}
static unsigned long ckih_rate;
static unsigned long clk_ckih_get_rate(struct clk *clk)
{
return ckih_rate;
}
static struct clk ckih_clk = {
.get_rate = clk_ckih_get_rate,
};
static struct clk mcu_pll_clk = {
.parent = &ckih_clk,
.get_rate = mcu_pll_get_rate,
};
static struct clk mcu_main_clk = {
.parent = &mcu_pll_clk,
.get_rate = mcu_main_get_rate,
};
static struct clk serial_pll_clk = {
.parent = &ckih_clk,
.get_rate = serial_pll_get_rate,
.enable = serial_pll_enable,
.disable = serial_pll_disable,
};
static struct clk usb_pll_clk = {
.parent = &ckih_clk,
.get_rate = usb_pll_get_rate,
.enable = usb_pll_enable,
.disable = usb_pll_disable,
};
static struct clk ahb_clk = {
.parent = &mcu_main_clk,
.get_rate = ahb_get_rate,
};
#define DEFINE_CLOCK(name, i, er, es, gr, s, p) \
static struct clk name = { \
.id = i, \
.enable_reg = er, \
.enable_shift = es, \
.get_rate = gr, \
.enable = cgr_enable, \
.disable = cgr_disable, \
.secondary = s, \
.parent = p, \
}
#define DEFINE_CLOCK1(name, i, er, es, getsetround, s, p) \
static struct clk name = { \
.id = i, \
.enable_reg = er, \
.enable_shift = es, \
.get_rate = getsetround##_get_rate, \
.set_rate = getsetround##_set_rate, \
.round_rate = getsetround##_round_rate, \
.enable = cgr_enable, \
.disable = cgr_disable, \
.secondary = s, \
.parent = p, \
}
DEFINE_CLOCK(perclk_clk, 0, NULL, 0, NULL, NULL, &ipg_clk);
DEFINE_CLOCK(sdhc1_clk, 0, MXC_CCM_CGR0, 0, NULL, NULL, &perclk_clk);
DEFINE_CLOCK(sdhc2_clk, 1, MXC_CCM_CGR0, 2, NULL, NULL, &perclk_clk);
DEFINE_CLOCK(gpt_clk, 0, MXC_CCM_CGR0, 4, NULL, NULL, &perclk_clk);
DEFINE_CLOCK(epit1_clk, 0, MXC_CCM_CGR0, 6, NULL, NULL, &perclk_clk);
DEFINE_CLOCK(epit2_clk, 1, MXC_CCM_CGR0, 8, NULL, NULL, &perclk_clk);
DEFINE_CLOCK(iim_clk, 0, MXC_CCM_CGR0, 10, NULL, NULL, &ipg_clk);
DEFINE_CLOCK(ata_clk, 0, MXC_CCM_CGR0, 12, NULL, NULL, &ipg_clk);
DEFINE_CLOCK(sdma_clk1, 0, MXC_CCM_CGR0, 14, NULL, &sdma_clk1, &ahb_clk);
DEFINE_CLOCK(cspi3_clk, 2, MXC_CCM_CGR0, 16, NULL, NULL, &ipg_clk);
DEFINE_CLOCK(rng_clk, 0, MXC_CCM_CGR0, 18, NULL, NULL, &ipg_clk);
DEFINE_CLOCK(uart1_clk, 0, MXC_CCM_CGR0, 20, NULL, NULL, &perclk_clk);
DEFINE_CLOCK(uart2_clk, 1, MXC_CCM_CGR0, 22, NULL, NULL, &perclk_clk);
DEFINE_CLOCK(ssi1_clk, 0, MXC_CCM_CGR0, 24, ssi1_get_rate, NULL, &serial_pll_clk);
DEFINE_CLOCK(i2c1_clk, 0, MXC_CCM_CGR0, 26, NULL, NULL, &perclk_clk);
DEFINE_CLOCK(i2c2_clk, 1, MXC_CCM_CGR0, 28, NULL, NULL, &perclk_clk);
DEFINE_CLOCK(i2c3_clk, 2, MXC_CCM_CGR0, 30, NULL, NULL, &perclk_clk);
DEFINE_CLOCK(mpeg4_clk, 0, MXC_CCM_CGR1, 0, NULL, NULL, &ahb_clk);
DEFINE_CLOCK(mstick1_clk, 0, MXC_CCM_CGR1, 2, mstick1_get_rate, NULL, &usb_pll_clk);
DEFINE_CLOCK(mstick2_clk, 1, MXC_CCM_CGR1, 4, mstick2_get_rate, NULL, &usb_pll_clk);
DEFINE_CLOCK1(csi_clk, 0, MXC_CCM_CGR1, 6, csi, NULL, &serial_pll_clk);
DEFINE_CLOCK(rtc_clk, 0, MXC_CCM_CGR1, 8, NULL, NULL, &ipg_clk);
DEFINE_CLOCK(wdog_clk, 0, MXC_CCM_CGR1, 10, NULL, NULL, &ipg_clk);
DEFINE_CLOCK(pwm_clk, 0, MXC_CCM_CGR1, 12, NULL, NULL, &perclk_clk);
DEFINE_CLOCK(usb_clk2, 0, MXC_CCM_CGR1, 18, usb_get_rate, NULL, &ahb_clk);
DEFINE_CLOCK(kpp_clk, 0, MXC_CCM_CGR1, 20, NULL, NULL, &ipg_clk);
DEFINE_CLOCK(ipu_clk, 0, MXC_CCM_CGR1, 22, hsp_get_rate, NULL, &mcu_main_clk);
DEFINE_CLOCK(uart3_clk, 2, MXC_CCM_CGR1, 24, NULL, NULL, &perclk_clk);
DEFINE_CLOCK(uart4_clk, 3, MXC_CCM_CGR1, 26, NULL, NULL, &perclk_clk);
DEFINE_CLOCK(uart5_clk, 4, MXC_CCM_CGR1, 28, NULL, NULL, &perclk_clk);
DEFINE_CLOCK(owire_clk, 0, MXC_CCM_CGR1, 30, NULL, NULL, &perclk_clk);
DEFINE_CLOCK(ssi2_clk, 1, MXC_CCM_CGR2, 0, ssi2_get_rate, NULL, &serial_pll_clk);
DEFINE_CLOCK(cspi1_clk, 0, MXC_CCM_CGR2, 2, NULL, NULL, &ipg_clk);
DEFINE_CLOCK(cspi2_clk, 1, MXC_CCM_CGR2, 4, NULL, NULL, &ipg_clk);
DEFINE_CLOCK(mbx_clk, 0, MXC_CCM_CGR2, 6, mbx_get_rate, NULL, &ahb_clk);
DEFINE_CLOCK(emi_clk, 0, MXC_CCM_CGR2, 8, NULL, NULL, &ahb_clk);
DEFINE_CLOCK(rtic_clk, 0, MXC_CCM_CGR2, 10, NULL, NULL, &ahb_clk);
DEFINE_CLOCK1(firi_clk, 0, MXC_CCM_CGR2, 12, firi, NULL, &usb_pll_clk);
DEFINE_CLOCK(sdma_clk2, 0, NULL, 0, NULL, NULL, &ipg_clk);
DEFINE_CLOCK(usb_clk1, 0, NULL, 0, usb_get_rate, NULL, &usb_pll_clk);
DEFINE_CLOCK(nfc_clk, 0, NULL, 0, nfc_get_rate, NULL, &ahb_clk);
DEFINE_CLOCK(scc_clk, 0, NULL, 0, NULL, NULL, &ipg_clk);
DEFINE_CLOCK(ipg_clk, 0, NULL, 0, ipg_get_rate, NULL, &ahb_clk);
#define _REGISTER_CLOCK(d, n, c) \
{ \
.dev_id = d, \
.con_id = n, \
.clk = &c, \
},
static struct clk_lookup lookups[] = {
_REGISTER_CLOCK(NULL, "emi", emi_clk)
_REGISTER_CLOCK(NULL, "cspi", cspi1_clk)
_REGISTER_CLOCK(NULL, "cspi", cspi2_clk)
_REGISTER_CLOCK(NULL, "cspi", cspi3_clk)
_REGISTER_CLOCK(NULL, "gpt", gpt_clk)
_REGISTER_CLOCK(NULL, "pwm", pwm_clk)
_REGISTER_CLOCK(NULL, "wdog", wdog_clk)
_REGISTER_CLOCK(NULL, "rtc", rtc_clk)
_REGISTER_CLOCK(NULL, "epit", epit1_clk)
_REGISTER_CLOCK(NULL, "epit", epit2_clk)
_REGISTER_CLOCK("mxc_nand.0", NULL, nfc_clk)
_REGISTER_CLOCK("ipu-core", NULL, ipu_clk)
_REGISTER_CLOCK("mx3_sdc_fb", NULL, ipu_clk)
_REGISTER_CLOCK(NULL, "kpp", kpp_clk)
_REGISTER_CLOCK("fsl-usb2-udc", "usb", usb_clk1)
_REGISTER_CLOCK("fsl-usb2-udc", "usb_ahb", usb_clk2)
_REGISTER_CLOCK("mx3-camera.0", NULL, csi_clk)
_REGISTER_CLOCK("imx-uart.0", NULL, uart1_clk)
_REGISTER_CLOCK("imx-uart.1", NULL, uart2_clk)
_REGISTER_CLOCK("imx-uart.2", NULL, uart3_clk)
_REGISTER_CLOCK("imx-uart.3", NULL, uart4_clk)
_REGISTER_CLOCK("imx-uart.4", NULL, uart5_clk)
_REGISTER_CLOCK("imx-i2c.0", NULL, i2c1_clk)
_REGISTER_CLOCK("imx-i2c.1", NULL, i2c2_clk)
_REGISTER_CLOCK("imx-i2c.2", NULL, i2c3_clk)
_REGISTER_CLOCK("mxc_w1.0", NULL, owire_clk)
_REGISTER_CLOCK("mxc-mmc.0", NULL, sdhc1_clk)
_REGISTER_CLOCK("mxc-mmc.1", NULL, sdhc2_clk)
_REGISTER_CLOCK(NULL, "ssi", ssi1_clk)
_REGISTER_CLOCK(NULL, "ssi", ssi2_clk)
_REGISTER_CLOCK(NULL, "firi", firi_clk)
_REGISTER_CLOCK(NULL, "ata", ata_clk)
_REGISTER_CLOCK(NULL, "rtic", rtic_clk)
_REGISTER_CLOCK(NULL, "rng", rng_clk)
_REGISTER_CLOCK(NULL, "sdma_ahb", sdma_clk1)
_REGISTER_CLOCK(NULL, "sdma_ipg", sdma_clk2)
_REGISTER_CLOCK(NULL, "mstick", mstick1_clk)
_REGISTER_CLOCK(NULL, "mstick", mstick2_clk)
_REGISTER_CLOCK(NULL, "scc", scc_clk)
_REGISTER_CLOCK(NULL, "iim", iim_clk)
_REGISTER_CLOCK(NULL, "mpeg4", mpeg4_clk)
_REGISTER_CLOCK(NULL, "mbx", mbx_clk)
};
int __init mx31_clocks_init(unsigned long fref)
{
u32 reg;
int i;
ckih_rate = fref;
for (i = 0; i < ARRAY_SIZE(lookups); i++)
clkdev_add(&lookups[i]);
/* change the csi_clk parent if necessary */
reg = __raw_readl(MXC_CCM_CCMR);
if (!(reg & MXC_CCM_CCMR_CSCS))
if (clk_set_parent(&csi_clk, &usb_pll_clk))
pr_err("%s: error changing csi_clk parent\n", __func__);
/* Turn off all possible clocks */
__raw_writel((3 << 4), MXC_CCM_CGR0);
__raw_writel(0, MXC_CCM_CGR1);
__raw_writel((3 << 8) | (3 << 14) | (3 << 16)|
1 << 27 | 1 << 28, /* Bit 27 and 28 are not defined for
MX32, but still required to be set */
MXC_CCM_CGR2);
/*
* Before turning off usb_pll make sure ipg_per_clk is generated
* by ipg_clk and not usb_pll.
*/
__raw_writel(__raw_readl(MXC_CCM_CCMR) | (1 << 24), MXC_CCM_CCMR);
usb_pll_disable(&usb_pll_clk);
pr_info("Clock input source is %ld\n", clk_get_rate(&ckih_clk));
clk_enable(&gpt_clk);
clk_enable(&emi_clk);
clk_enable(&iim_clk);
clk_enable(&serial_pll_clk);
if (mx31_revision() >= CHIP_REV_2_0) {
reg = __raw_readl(MXC_CCM_PMCR1);
/* No PLL restart on DVFS switch; enable auto EMI handshake */
reg |= MXC_CCM_PMCR1_PLLRDIS | MXC_CCM_PMCR1_EMIRQ_EN;
__raw_writel(reg, MXC_CCM_PMCR1);
}
mxc_timer_init(&ipg_clk, IO_ADDRESS(GPT1_BASE_ADDR), MXC_INT_GPT);
return 0;
}