/*
*
* Copyright (C) 2007 Google, Inc.
* Copyright (c) 2009-2012, The Linux Foundation. All rights reserved.
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/clocksource.h>
#include <linux/clockchips.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/io.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <asm/mach/time.h>
#include <asm/localtimer.h>
#include <asm/sched_clock.h>
#include "common.h"
#define TIMER_MATCH_VAL 0x0000
#define TIMER_COUNT_VAL 0x0004
#define TIMER_ENABLE 0x0008
#define TIMER_ENABLE_CLR_ON_MATCH_EN BIT(1)
#define TIMER_ENABLE_EN BIT(0)
#define TIMER_CLEAR 0x000C
#define DGT_CLK_CTL 0x10
#define DGT_CLK_CTL_DIV_4 0x3
#define GPT_HZ 32768
#define MSM_DGT_SHIFT 5
static void __iomem *event_base;
static irqreturn_t msm_timer_interrupt(int irq, void *dev_id)
{
struct clock_event_device *evt = *(struct clock_event_device **)dev_id;
/* Stop the timer tick */
if (evt->mode == CLOCK_EVT_MODE_ONESHOT) {
u32 ctrl = readl_relaxed(event_base + TIMER_ENABLE);
ctrl &= ~TIMER_ENABLE_EN;
writel_relaxed(ctrl, event_base + TIMER_ENABLE);
}
evt->event_handler(evt);
return IRQ_HANDLED;
}
static int msm_timer_set_next_event(unsigned long cycles,
struct clock_event_device *evt)
{
u32 ctrl = readl_relaxed(event_base + TIMER_ENABLE);
writel_relaxed(0, event_base + TIMER_CLEAR);
writel_relaxed(cycles, event_base + TIMER_MATCH_VAL);
writel_relaxed(ctrl | TIMER_ENABLE_EN, event_base + TIMER_ENABLE);
return 0;
}
static void msm_timer_set_mode(enum clock_event_mode mode,
struct clock_event_device *evt)
{
u32 ctrl;
ctrl = readl_relaxed(event_base + TIMER_ENABLE);
ctrl &= ~(TIMER_ENABLE_EN | TIMER_ENABLE_CLR_ON_MATCH_EN);
switch (mode) {
case CLOCK_EVT_MODE_RESUME:
case CLOCK_EVT_MODE_PERIODIC:
break;
case CLOCK_EVT_MODE_ONESHOT:
/* Timer is enabled in set_next_event */
break;
case CLOCK_EVT_MODE_UNUSED:
case CLOCK_EVT_MODE_SHUTDOWN:
break;
}
writel_relaxed(ctrl, event_base + TIMER_ENABLE);
}
static struct clock_event_device msm_clockevent = {
.name = "gp_timer",
.features = CLOCK_EVT_FEAT_ONESHOT,
.rating = 200,
.set_next_event = msm_timer_set_next_event,
.set_mode = msm_timer_set_mode,
};
static union {
struct clock_event_device *evt;
struct clock_event_device * __percpu *percpu_evt;
} msm_evt;
static void __iomem *source_base;
static notrace cycle_t msm_read_timer_count(struct clocksource *cs)
{
return readl_relaxed(source_base + TIMER_COUNT_VAL);
}
static notrace cycle_t msm_read_timer_count_shift(struct clocksource *cs)
{
/*
* Shift timer count down by a constant due to unreliable lower bits
* on some targets.
*/
return msm_read_timer_count(cs) >> MSM_DGT_SHIFT;
}
static struct clocksource msm_clocksource = {
.name = "dg_timer",
.rating = 300,
.read = msm_read_timer_count,
.mask = CLOCKSOURCE_MASK(32),
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
};
#ifdef CONFIG_LOCAL_TIMERS
static int __cpuinit msm_local_timer_setup(struct clock_event_device *evt)
{
/* Use existing clock_event for cpu 0 */
if (!smp_processor_id())
return 0;
writel_relaxed(0, event_base + TIMER_ENABLE);
writel_relaxed(0, event_base + TIMER_CLEAR);
writel_relaxed(~0, event_base + TIMER_MATCH_VAL);
evt->irq = msm_clockevent.irq;
evt->name = "local_timer";
evt->features = msm_clockevent.features;
evt->rating = msm_clockevent.rating;
evt->set_mode = msm_timer_set_mode;
evt->set_next_event = msm_timer_set_next_event;
*__this_cpu_ptr(msm_evt.percpu_evt) = evt;
clockevents_config_and_register(evt, GPT_HZ, 4, 0xf0000000);
enable_percpu_irq(evt->irq, IRQ_TYPE_EDGE_RISING);
return 0;
}
static void msm_local_timer_stop(struct clock_event_device *evt)
{
evt->set_mode(CLOCK_EVT_MODE_UNUSED, evt);
disable_percpu_irq(evt->irq);
}
static struct local_timer_ops msm_local_timer_ops __cpuinitdata = {
.setup = msm_local_timer_setup,
.stop = msm_local_timer_stop,
};
#endif /* CONFIG_LOCAL_TIMERS */
static notrace u32 msm_sched_clock_read(void)
{
return msm_clocksource.read(&msm_clocksource);
}
static void __init msm_timer_init(u32 dgt_hz, int sched_bits, int irq,
bool percpu)
{
struct clock_event_device *ce = &msm_clockevent;
struct clocksource *cs = &msm_clocksource;
int res;
writel_relaxed(0, event_base + TIMER_ENABLE);
writel_relaxed(0, event_base + TIMER_CLEAR);
writel_relaxed(~0, event_base + TIMER_MATCH_VAL);
ce->cpumask = cpumask_of(0);
ce->irq = irq;
clockevents_config_and_register(ce, GPT_HZ, 4, 0xffffffff);
if (percpu) {
msm_evt.percpu_evt = alloc_percpu(struct clock_event_device *);
if (!msm_evt.percpu_evt) {
pr_err("memory allocation failed for %s\n", ce->name);
goto err;
}
*__this_cpu_ptr(msm_evt.percpu_evt) = ce;
res = request_percpu_irq(ce->irq, msm_timer_interrupt,
ce->name, msm_evt.percpu_evt);
if (!res) {
enable_percpu_irq(ce->irq, IRQ_TYPE_EDGE_RISING);
#ifdef CONFIG_LOCAL_TIMERS
local_timer_register(&msm_local_timer_ops);
#endif
}
} else {
msm_evt.evt = ce;
res = request_irq(ce->irq, msm_timer_interrupt,
IRQF_TIMER | IRQF_NOBALANCING |
IRQF_TRIGGER_RISING, ce->name, &msm_evt.evt);
}
if (res)
pr_err("request_irq failed for %s\n", ce->name);
err:
writel_relaxed(TIMER_ENABLE_EN, source_base + TIMER_ENABLE);
res = clocksource_register_hz(cs, dgt_hz);
if (res)
pr_err("clocksource_register failed\n");
setup_sched_clock(msm_sched_clock_read, sched_bits, dgt_hz);
}
#ifdef CONFIG_OF
static const struct of_device_id msm_timer_match[] __initconst = {
{ .compatible = "qcom,kpss-timer" },
{ .compatible = "qcom,scss-timer" },
{ },
};
void __init msm_dt_timer_init(void)
{
struct device_node *np;
u32 freq;
int irq;
struct resource res;
u32 percpu_offset;
void __iomem *base;
void __iomem *cpu0_base;
np = of_find_matching_node(NULL, msm_timer_match);
if (!np) {
pr_err("Can't find msm timer DT node\n");
return;
}
base = of_iomap(np, 0);
if (!base) {
pr_err("Failed to map event base\n");
return;
}
/* We use GPT0 for the clockevent */
irq = irq_of_parse_and_map(np, 1);
if (irq <= 0) {
pr_err("Can't get irq\n");
return;
}
/* We use CPU0's DGT for the clocksource */
if (of_property_read_u32(np, "cpu-offset", &percpu_offset))
percpu_offset = 0;
if (of_address_to_resource(np, 0, &res)) {
pr_err("Failed to parse DGT resource\n");
return;
}
cpu0_base = ioremap(res.start + percpu_offset, resource_size(&res));
if (!cpu0_base) {
pr_err("Failed to map source base\n");
return;
}
if (of_property_read_u32(np, "clock-frequency", &freq)) {
pr_err("Unknown frequency\n");
return;
}
of_node_put(np);
event_base = base + 0x4;
source_base = cpu0_base + 0x24;
freq /= 4;
writel_relaxed(DGT_CLK_CTL_DIV_4, source_base + DGT_CLK_CTL);
msm_timer_init(freq, 32, irq, !!percpu_offset);
}
#endif
static int __init msm_timer_map(phys_addr_t addr, u32 event, u32 source)
{
void __iomem *base;
base = ioremap(addr, SZ_256);
if (!base) {
pr_err("Failed to map timer base\n");
return -ENOMEM;
}
event_base = base + event;
source_base = base + source;
return 0;
}
void __init msm7x01_timer_init(void)
{
struct clocksource *cs = &msm_clocksource;
if (msm_timer_map(0xc0100000, 0x0, 0x10))
return;
cs->read = msm_read_timer_count_shift;
cs->mask = CLOCKSOURCE_MASK((32 - MSM_DGT_SHIFT));
/* 600 KHz */
msm_timer_init(19200000 >> MSM_DGT_SHIFT, 32 - MSM_DGT_SHIFT, 7,
false);
}
void __init msm7x30_timer_init(void)
{
if (msm_timer_map(0xc0100000, 0x4, 0x24))
return;
msm_timer_init(24576000 / 4, 32, 1, false);
}
void __init qsd8x50_timer_init(void)
{
if (msm_timer_map(0xAC100000, 0x0, 0x10))
return;
msm_timer_init(19200000 / 4, 32, 7, false);
}