// SPDX-License-Identifier: GPL-2.0 /* * KVM dirty page logging test * * Copyright (C) 2018, Red Hat, Inc. */ #include <stdio.h> #include <stdlib.h> #include <pthread.h> #include <semaphore.h> #include <sys/types.h> #include <signal.h> #include <errno.h> #include <linux/bitmap.h> #include <linux/bitops.h> #include <linux/atomic.h> #include <asm/barrier.h> #include "kvm_util.h" #include "test_util.h" #include "guest_modes.h" #include "processor.h" #include "ucall_common.h" #define DIRTY_MEM_BITS 30 /* 1G */ #define PAGE_SHIFT_4K 12 /* The memory slot index to track dirty pages */ #define TEST_MEM_SLOT_INDEX 1 /* Default guest test virtual memory offset */ #define DEFAULT_GUEST_TEST_MEM 0xc0000000 /* How many host loops to run (one KVM_GET_DIRTY_LOG for each loop) */ #define TEST_HOST_LOOP_N 32UL /* Interval for each host loop (ms) */ #define TEST_HOST_LOOP_INTERVAL 10UL /* * Ensure the vCPU is able to perform a reasonable number of writes in each * iteration to provide a lower bound on coverage. */ #define TEST_MIN_WRITES_PER_ITERATION 0x100 /* Dirty bitmaps are always little endian, so we need to swap on big endian */ #if defined(__s390x__) # define BITOP_LE_SWIZZLE ((BITS_PER_LONG-1) & ~0x7) # define test_bit_le(nr, addr) \ test_bit((nr) ^ BITOP_LE_SWIZZLE, addr) # define __set_bit_le(nr, addr) \ __set_bit((nr) ^ BITOP_LE_SWIZZLE, addr) # define __clear_bit_le(nr, addr) \ __clear_bit((nr) ^ BITOP_LE_SWIZZLE, addr) # define __test_and_set_bit_le(nr, addr) \ __test_and_set_bit((nr) ^ BITOP_LE_SWIZZLE, addr) # define __test_and_clear_bit_le(nr, addr) \ __test_and_clear_bit((nr) ^ BITOP_LE_SWIZZLE, addr) #else # define test_bit_le test_bit # define __set_bit_le __set_bit # define __clear_bit_le __clear_bit # define __test_and_set_bit_le __test_and_set_bit # define __test_and_clear_bit_le __test_and_clear_bit #endif #define TEST_DIRTY_RING_COUNT 65536 #define SIG_IPI SIGUSR1 /* * Guest/Host shared variables. Ensure addr_gva2hva() and/or * sync_global_to/from_guest() are used when accessing from * the host. READ/WRITE_ONCE() should also be used with anything * that may change. */ static uint64_t host_page_size; static uint64_t guest_page_size; static uint64_t guest_num_pages; static uint64_t iteration; static uint64_t nr_writes; static bool vcpu_stop; /* * Guest physical memory offset of the testing memory slot. * This will be set to the topmost valid physical address minus * the test memory size. */ static uint64_t guest_test_phys_mem; /* * Guest virtual memory offset of the testing memory slot. * Must not conflict with identity mapped test code. */ static uint64_t guest_test_virt_mem = DEFAULT_GUEST_TEST_MEM; /* * Continuously write to the first 8 bytes of a random pages within * the testing memory region. */ static void guest_code(void) { uint64_t addr; #ifdef __s390x__ uint64_t i; /* * On s390x, all pages of a 1M segment are initially marked as dirty * when a page of the segment is written to for the very first time. * To compensate this specialty in this test, we need to touch all * pages during the first iteration. */ for (i = 0; i < guest_num_pages; i++) { addr = guest_test_virt_mem + i * guest_page_size; vcpu_arch_put_guest(*(uint64_t *)addr, READ_ONCE(iteration)); nr_writes++; } #endif while (true) { while (!READ_ONCE(vcpu_stop)) { addr = guest_test_virt_mem; addr += (guest_random_u64(&guest_rng) % guest_num_pages) * guest_page_size; addr = align_down(addr, host_page_size); vcpu_arch_put_guest(*(uint64_t *)addr, READ_ONCE(iteration)); nr_writes++; } GUEST_SYNC(1); } } /* Host variables */ static bool host_quit; /* Points to the test VM memory region on which we track dirty logs */ static void *host_test_mem; static uint64_t host_num_pages; /* For statistics only */ static uint64_t host_dirty_count; static uint64_t host_clear_count; /* Whether dirty ring reset is requested, or finished */ static sem_t sem_vcpu_stop; static sem_t sem_vcpu_cont; /* * This is updated by the vcpu thread to tell the host whether it's a * ring-full event. It should only be read until a sem_wait() of * sem_vcpu_stop and before vcpu continues to run. */ static bool dirty_ring_vcpu_ring_full; /* * This is only used for verifying the dirty pages. Dirty ring has a very * tricky case when the ring just got full, kvm will do userspace exit due to * ring full. When that happens, the very last PFN is set but actually the * data is not changed (the guest WRITE is not really applied yet), because * we found that the dirty ring is full, refused to continue the vcpu, and * recorded the dirty gfn with the old contents. * * For this specific case, it's safe to skip checking this pfn for this * bit, because it's a redundant bit, and when the write happens later the bit * will be set again. We use this variable to always keep track of the latest * dirty gfn we've collected, so that if a mismatch of data found later in the * verifying process, we let it pass. */ static uint64_t dirty_ring_last_page = -1ULL; /* * In addition to the above, it is possible (especially if this * test is run nested) for the above scenario to repeat multiple times: * * The following can happen: * * - L1 vCPU: Memory write is logged to PML but not committed. * * - L1 test thread: Ignores the write because its last dirty ring entry * Resets the dirty ring which: * - Resets the A/D bits in EPT * - Issues tlb flush (invept), which is intercepted by L0 * * - L0: frees the whole nested ept mmu root as the response to invept, * and thus ensures that when memory write is retried, it will fault again * * - L1 vCPU: Same memory write is logged to the PML but not committed again. * * - L1 test thread: Ignores the write because its last dirty ring entry (again) * Resets the dirty ring which: * - Resets the A/D bits in EPT (again) * - Issues tlb flush (again) which is intercepted by L0 * * ... * * N times * * - L1 vCPU: Memory write is logged in the PML and then committed. * Lots of other memory writes are logged and committed. * ... * * - L1 test thread: Sees the memory write along with other memory writes * in the dirty ring, and since the write is usually not * the last entry in the dirty-ring and has a very outdated * iteration, the test fails. * * * Note that this is only possible when the write was the last log entry * write during iteration N-1, thus remember last iteration last log entry * and also don't fail when it is reported in the next iteration, together with * an outdated iteration count. */ static uint64_t dirty_ring_prev_iteration_last_page; enum log_mode_t { /* Only use KVM_GET_DIRTY_LOG for logging */ LOG_MODE_DIRTY_LOG = 0, /* Use both KVM_[GET|CLEAR]_DIRTY_LOG for logging */ LOG_MODE_CLEAR_LOG = 1, /* Use dirty ring for logging */ LOG_MODE_DIRTY_RING = 2, LOG_MODE_NUM, /* Run all supported modes */ LOG_MODE_ALL = LOG_MODE_NUM, }; /* Mode of logging to test. Default is to run all supported modes */ static enum log_mode_t host_log_mode_option = LOG_MODE_ALL; /* Logging mode for current run */ static enum log_mode_t host_log_mode; static pthread_t vcpu_thread; static uint32_t test_dirty_ring_count = TEST_DIRTY_RING_COUNT; static bool clear_log_supported(void) { return kvm_has_cap(KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2); } static void clear_log_create_vm_done(struct kvm_vm *vm) { u64 manual_caps; manual_caps = kvm_check_cap(KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2); TEST_ASSERT(manual_caps, "MANUAL_CAPS is zero!"); manual_caps &= (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | KVM_DIRTY_LOG_INITIALLY_SET); vm_enable_cap(vm, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, manual_caps); } static void dirty_log_collect_dirty_pages(struct kvm_vcpu *vcpu, int slot, void *bitmap, uint32_t num_pages, uint32_t *unused) { kvm_vm_get_dirty_log(vcpu->vm, slot, bitmap); } static void clear_log_collect_dirty_pages(struct kvm_vcpu *vcpu, int slot, void *bitmap, uint32_t num_pages, uint32_t *unused) { kvm_vm_get_dirty_log(vcpu->vm, slot, bitmap); kvm_vm_clear_dirty_log(vcpu->vm, slot, bitmap, 0, num_pages); } /* Should only be called after a GUEST_SYNC */ static void vcpu_handle_sync_stop(void) { if (READ_ONCE(vcpu_stop)) { sem_post(&sem_vcpu_stop); sem_wait(&sem_vcpu_cont); } } static void default_after_vcpu_run(struct kvm_vcpu *vcpu) { struct kvm_run *run = vcpu->run; TEST_ASSERT(get_ucall(vcpu, NULL) == UCALL_SYNC, "Invalid guest sync status: exit_reason=%s", exit_reason_str(run->exit_reason)); vcpu_handle_sync_stop(); } static bool dirty_ring_supported(void) { return (kvm_has_cap(KVM_CAP_DIRTY_LOG_RING) || kvm_has_cap(KVM_CAP_DIRTY_LOG_RING_ACQ_REL)); } static void dirty_ring_create_vm_done(struct kvm_vm *vm) { uint64_t pages; uint32_t limit; /* * We rely on vcpu exit due to full dirty ring state. Adjust * the ring buffer size to ensure we're able to reach the * full dirty ring state. */ pages = (1ul << (DIRTY_MEM_BITS - vm->page_shift)) + 3; pages = vm_adjust_num_guest_pages(vm->mode, pages); if (vm->page_size < getpagesize()) pages = vm_num_host_pages(vm->mode, pages); limit = 1 << (31 - __builtin_clz(pages)); test_dirty_ring_count = 1 << (31 - __builtin_clz(test_dirty_ring_count)); test_dirty_ring_count = min(limit, test_dirty_ring_count); pr_info("dirty ring count: 0x%x\n", test_dirty_ring_count); /* * Switch to dirty ring mode after VM creation but before any * of the vcpu creation. */ vm_enable_dirty_ring(vm, test_dirty_ring_count * sizeof(struct kvm_dirty_gfn)); } static inline bool dirty_gfn_is_dirtied(struct kvm_dirty_gfn *gfn) { return smp_load_acquire(&gfn->flags) == KVM_DIRTY_GFN_F_DIRTY; } static inline void dirty_gfn_set_collected(struct kvm_dirty_gfn *gfn) { smp_store_release(&gfn->flags, KVM_DIRTY_GFN_F_RESET); } static uint32_t dirty_ring_collect_one(struct kvm_dirty_gfn *dirty_gfns, int slot, void *bitmap, uint32_t num_pages, uint32_t *fetch_index) { struct kvm_dirty_gfn *cur; uint32_t count = 0; while (true) { cur = &dirty_gfns[*fetch_index % test_dirty_ring_count]; if (!dirty_gfn_is_dirtied(cur)) break; TEST_ASSERT(cur->slot == slot, "Slot number didn't match: " "%u != %u", cur->slot, slot); TEST_ASSERT(cur->offset < num_pages, "Offset overflow: " "0x%llx >= 0x%x", cur->offset, num_pages); __set_bit_le(cur->offset, bitmap); dirty_ring_last_page = cur->offset; dirty_gfn_set_collected(cur); (*fetch_index)++; count++; } return count; } static void dirty_ring_collect_dirty_pages(struct kvm_vcpu *vcpu, int slot, void *bitmap, uint32_t num_pages, uint32_t *ring_buf_idx) { uint32_t count, cleared; /* Only have one vcpu */ count = dirty_ring_collect_one(vcpu_map_dirty_ring(vcpu), slot, bitmap, num_pages, ring_buf_idx); cleared = kvm_vm_reset_dirty_ring(vcpu->vm); /* * Cleared pages should be the same as collected, as KVM is supposed to * clear only the entries that have been harvested. */ TEST_ASSERT(cleared == count, "Reset dirty pages (%u) mismatch " "with collected (%u)", cleared, count); } static void dirty_ring_after_vcpu_run(struct kvm_vcpu *vcpu) { struct kvm_run *run = vcpu->run; /* A ucall-sync or ring-full event is allowed */ if (get_ucall(vcpu, NULL) == UCALL_SYNC) { vcpu_handle_sync_stop(); } else if (run->exit_reason == KVM_EXIT_DIRTY_RING_FULL) { WRITE_ONCE(dirty_ring_vcpu_ring_full, true); vcpu_handle_sync_stop(); } else { TEST_ASSERT(false, "Invalid guest sync status: " "exit_reason=%s", exit_reason_str(run->exit_reason)); } } struct log_mode { const char *name; /* Return true if this mode is supported, otherwise false */ bool (*supported)(void); /* Hook when the vm creation is done (before vcpu creation) */ void (*create_vm_done)(struct kvm_vm *vm); /* Hook to collect the dirty pages into the bitmap provided */ void (*collect_dirty_pages) (struct kvm_vcpu *vcpu, int slot, void *bitmap, uint32_t num_pages, uint32_t *ring_buf_idx); /* Hook to call when after each vcpu run */ void (*after_vcpu_run)(struct kvm_vcpu *vcpu); } log_modes[LOG_MODE_NUM] = { { .name = "dirty-log", .collect_dirty_pages = dirty_log_collect_dirty_pages, .after_vcpu_run = default_after_vcpu_run, }, { .name = "clear-log", .supported = clear_log_supported, .create_vm_done = clear_log_create_vm_done, .collect_dirty_pages = clear_log_collect_dirty_pages, .after_vcpu_run = default_after_vcpu_run, }, { .name = "dirty-ring", .supported = dirty_ring_supported, .create_vm_done = dirty_ring_create_vm_done, .collect_dirty_pages = dirty_ring_collect_dirty_pages, .after_vcpu_run = dirty_ring_after_vcpu_run, }, }; static void log_modes_dump(void) { int i; printf("all"); for (i = 0; i < LOG_MODE_NUM; i++) printf(", %s", log_modes[i].name); printf("\n"); } static bool log_mode_supported(void) { struct log_mode *mode = &log_modes[host_log_mode]; if (mode->supported) return mode->supported(); return true; } static void log_mode_create_vm_done(struct kvm_vm *vm) { struct log_mode *mode = &log_modes[host_log_mode]; if (mode->create_vm_done) mode->create_vm_done(vm); } static void log_mode_collect_dirty_pages(struct kvm_vcpu *vcpu, int slot, void *bitmap, uint32_t num_pages, uint32_t *ring_buf_idx) { struct log_mode *mode = &log_modes[host_log_mode]; TEST_ASSERT(mode->collect_dirty_pages != NULL, "collect_dirty_pages() is required for any log mode!"); mode->collect_dirty_pages(vcpu, slot, bitmap, num_pages, ring_buf_idx); } static void log_mode_after_vcpu_run(struct kvm_vcpu *vcpu) { struct log_mode *mode = &log_modes[host_log_mode]; if (mode->after_vcpu_run) mode->after_vcpu_run(vcpu); } static void *vcpu_worker(void *data) { struct kvm_vcpu *vcpu = data; sem_wait(&sem_vcpu_cont); while (!READ_ONCE(host_quit)) { /* Let the guest dirty the random pages */ vcpu_run(vcpu); log_mode_after_vcpu_run(vcpu); } return NULL; } static void vm_dirty_log_verify(enum vm_guest_mode mode, unsigned long **bmap) { uint64_t page, nr_dirty_pages = 0, nr_clean_pages = 0; uint64_t step = vm_num_host_pages(mode, 1); for (page = 0; page < host_num_pages; page += step) { uint64_t val = *(uint64_t *)(host_test_mem + page * host_page_size); bool bmap0_dirty = __test_and_clear_bit_le(page, bmap[0]); /* * Ensure both bitmaps are cleared, as a page can be written * multiple times per iteration, i.e. can show up in both * bitmaps, and the dirty ring is additive, i.e. doesn't purge * bitmap entries from previous collections. */ if (__test_and_clear_bit_le(page, bmap[1]) || bmap0_dirty) { nr_dirty_pages++; /* * If the page is dirty, the value written to memory * should be the current iteration number. */ if (val == iteration) continue; if (host_log_mode == LOG_MODE_DIRTY_RING) { /* * The last page in the ring from previous * iteration can be written with the value * from the previous iteration, as the value to * be written may be cached in a CPU register. */ if (page == dirty_ring_prev_iteration_last_page && val == iteration - 1) continue; /* * Any value from a previous iteration is legal * for the last entry, as the write may not yet * have retired, i.e. the page may hold whatever * it had before this iteration started. */ if (page == dirty_ring_last_page && val < iteration) continue; } else if (!val && iteration == 1 && bmap0_dirty) { /* * When testing get+clear, the dirty bitmap * starts with all bits set, and so the first * iteration can observe a "dirty" page that * was never written, but only in the first * bitmap (collecting the bitmap also clears * all dirty pages). */ continue; } TEST_FAIL("Dirty page %lu value (%lu) != iteration (%lu) " "(last = %lu, prev_last = %lu)", page, val, iteration, dirty_ring_last_page, dirty_ring_prev_iteration_last_page); } else { nr_clean_pages++; /* * If cleared, the value written can be any * value smaller than the iteration number. */ TEST_ASSERT(val < iteration, "Clear page %lu value (%lu) >= iteration (%lu) " "(last = %lu, prev_last = %lu)", page, val, iteration, dirty_ring_last_page, dirty_ring_prev_iteration_last_page); } } pr_info("Iteration %2ld: dirty: %-6lu clean: %-6lu writes: %-6lu\n", iteration, nr_dirty_pages, nr_clean_pages, nr_writes); host_dirty_count += nr_dirty_pages; host_clear_count += nr_clean_pages; } static struct kvm_vm *create_vm(enum vm_guest_mode mode, struct kvm_vcpu **vcpu, uint64_t extra_mem_pages, void *guest_code) { struct kvm_vm *vm; pr_info("Testing guest mode: %s\n", vm_guest_mode_string(mode)); vm = __vm_create(VM_SHAPE(mode), 1, extra_mem_pages); log_mode_create_vm_done(vm); *vcpu = vm_vcpu_add(vm, 0, guest_code); return vm; } struct test_params { unsigned long iterations; unsigned long interval; uint64_t phys_offset; }; static void run_test(enum vm_guest_mode mode, void *arg) { struct test_params *p = arg; struct kvm_vcpu *vcpu; struct kvm_vm *vm; unsigned long *bmap[2]; uint32_t ring_buf_idx = 0; int sem_val; if (!log_mode_supported()) { print_skip("Log mode '%s' not supported", log_modes[host_log_mode].name); return; } /* * We reserve page table for 2 times of extra dirty mem which * will definitely cover the original (1G+) test range. Here * we do the calculation with 4K page size which is the * smallest so the page number will be enough for all archs * (e.g., 64K page size guest will need even less memory for * page tables). */ vm = create_vm(mode, &vcpu, 2ul << (DIRTY_MEM_BITS - PAGE_SHIFT_4K), guest_code); guest_page_size = vm->page_size; /* * A little more than 1G of guest page sized pages. Cover the * case where the size is not aligned to 64 pages. */ guest_num_pages = (1ul << (DIRTY_MEM_BITS - vm->page_shift)) + 3; guest_num_pages = vm_adjust_num_guest_pages(mode, guest_num_pages); host_page_size = getpagesize(); host_num_pages = vm_num_host_pages(mode, guest_num_pages); if (!p->phys_offset) { guest_test_phys_mem = (vm->max_gfn - guest_num_pages) * guest_page_size; guest_test_phys_mem = align_down(guest_test_phys_mem, host_page_size); } else { guest_test_phys_mem = p->phys_offset; } #ifdef __s390x__ /* Align to 1M (segment size) */ guest_test_phys_mem = align_down(guest_test_phys_mem, 1 << 20); /* * The workaround in guest_code() to write all pages prior to the first * iteration isn't compatible with the dirty ring, as the dirty ring * support relies on the vCPU to actually stop when vcpu_stop is set so * that the vCPU doesn't hang waiting for the dirty ring to be emptied. */ TEST_ASSERT(host_log_mode != LOG_MODE_DIRTY_RING, "Test needs to be updated to support s390 dirty ring"); #endif pr_info("guest physical test memory offset: 0x%lx\n", guest_test_phys_mem); bmap[0] = bitmap_zalloc(host_num_pages); bmap[1] = bitmap_zalloc(host_num_pages); /* Add an extra memory slot for testing dirty logging */ vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS, guest_test_phys_mem, TEST_MEM_SLOT_INDEX, guest_num_pages, KVM_MEM_LOG_DIRTY_PAGES); /* Do mapping for the dirty track memory slot */ virt_map(vm, guest_test_virt_mem, guest_test_phys_mem, guest_num_pages); /* Cache the HVA pointer of the region */ host_test_mem = addr_gpa2hva(vm, (vm_paddr_t)guest_test_phys_mem); /* Export the shared variables to the guest */ sync_global_to_guest(vm, host_page_size); sync_global_to_guest(vm, guest_page_size); sync_global_to_guest(vm, guest_test_virt_mem); sync_global_to_guest(vm, guest_num_pages); host_dirty_count = 0; host_clear_count = 0; WRITE_ONCE(host_quit, false); /* * Ensure the previous iteration didn't leave a dangling semaphore, i.e. * that the main task and vCPU worker were synchronized and completed * verification of all iterations. */ sem_getvalue(&sem_vcpu_stop, &sem_val); TEST_ASSERT_EQ(sem_val, 0); sem_getvalue(&sem_vcpu_cont, &sem_val); TEST_ASSERT_EQ(sem_val, 0); TEST_ASSERT_EQ(vcpu_stop, false); pthread_create(&vcpu_thread, NULL, vcpu_worker, vcpu); for (iteration = 1; iteration <= p->iterations; iteration++) { unsigned long i; sync_global_to_guest(vm, iteration); WRITE_ONCE(nr_writes, 0); sync_global_to_guest(vm, nr_writes); dirty_ring_prev_iteration_last_page = dirty_ring_last_page; WRITE_ONCE(dirty_ring_vcpu_ring_full, false); sem_post(&sem_vcpu_cont); /* * Let the vCPU run beyond the configured interval until it has * performed the minimum number of writes. This verifies the * guest is making forward progress, e.g. isn't stuck because * of a KVM bug, and puts a firm floor on test coverage. */ for (i = 0; i < p->interval || nr_writes < TEST_MIN_WRITES_PER_ITERATION; i++) { /* * Sleep in 1ms chunks to keep the interval math simple * and so that the test doesn't run too far beyond the * specified interval. */ usleep(1000); sync_global_from_guest(vm, nr_writes); /* * Reap dirty pages while the guest is running so that * dirty ring full events are resolved, i.e. so that a * larger interval doesn't always end up with a vCPU * that's effectively blocked. Collecting while the * guest is running also verifies KVM doesn't lose any * state. * * For bitmap modes, KVM overwrites the entire bitmap, * i.e. collecting the bitmaps is destructive. Collect * the bitmap only on the first pass, otherwise this * test would lose track of dirty pages. */ if (i && host_log_mode != LOG_MODE_DIRTY_RING) continue; /* * For the dirty ring, empty the ring on subsequent * passes only if the ring was filled at least once, * to verify KVM's handling of a full ring (emptying * the ring on every pass would make it unlikely the * vCPU would ever fill the fing). */ if (i && !READ_ONCE(dirty_ring_vcpu_ring_full)) continue; log_mode_collect_dirty_pages(vcpu, TEST_MEM_SLOT_INDEX, bmap[0], host_num_pages, &ring_buf_idx); } /* * Stop the vCPU prior to collecting and verifying the dirty * log. If the vCPU is allowed to run during collection, then * pages that are written during this iteration may be missed, * i.e. collected in the next iteration. And if the vCPU is * writing memory during verification, pages that this thread * sees as clean may be written with this iteration's value. */ WRITE_ONCE(vcpu_stop, true); sync_global_to_guest(vm, vcpu_stop); sem_wait(&sem_vcpu_stop); /* * Clear vcpu_stop after the vCPU thread has acknowledge the * stop request and is waiting, i.e. is definitely not running! */ WRITE_ONCE(vcpu_stop, false); sync_global_to_guest(vm, vcpu_stop); /* * Sync the number of writes performed before verification, the * info will be printed along with the dirty/clean page counts. */ sync_global_from_guest(vm, nr_writes); /* * NOTE: for dirty ring, it's possible that we didn't stop at * GUEST_SYNC but instead we stopped because ring is full; * that's okay too because ring full means we're only missing * the flush of the last page, and since we handle the last * page specially verification will succeed anyway. */ log_mode_collect_dirty_pages(vcpu, TEST_MEM_SLOT_INDEX, bmap[1], host_num_pages, &ring_buf_idx); vm_dirty_log_verify(mode, bmap); } WRITE_ONCE(host_quit, true); sem_post(&sem_vcpu_cont); pthread_join(vcpu_thread, NULL); pr_info("Total bits checked: dirty (%lu), clear (%lu)\n", host_dirty_count, host_clear_count); free(bmap[0]); free(bmap[1]); kvm_vm_free(vm); } static void help(char *name) { puts(""); printf("usage: %s [-h] [-i iterations] [-I interval] " "[-p offset] [-m mode]\n", name); puts(""); printf(" -c: hint to dirty ring size, in number of entries\n"); printf(" (only useful for dirty-ring test; default: %"PRIu32")\n", TEST_DIRTY_RING_COUNT); printf(" -i: specify iteration counts (default: %"PRIu64")\n", TEST_HOST_LOOP_N); printf(" -I: specify interval in ms (default: %"PRIu64" ms)\n", TEST_HOST_LOOP_INTERVAL); printf(" -p: specify guest physical test memory offset\n" " Warning: a low offset can conflict with the loaded test code.\n"); printf(" -M: specify the host logging mode " "(default: run all log modes). Supported modes: \n\t"); log_modes_dump(); guest_modes_help(); puts(""); exit(0); } int main(int argc, char *argv[]) { struct test_params p = { .iterations = TEST_HOST_LOOP_N, .interval = TEST_HOST_LOOP_INTERVAL, }; int opt, i; sem_init(&sem_vcpu_stop, 0, 0); sem_init(&sem_vcpu_cont, 0, 0); guest_modes_append_default(); while ((opt = getopt(argc, argv, "c:hi:I:p:m:M:")) != -1) { switch (opt) { case 'c': test_dirty_ring_count = strtol(optarg, NULL, 10); break; case 'i': p.iterations = strtol(optarg, NULL, 10); break; case 'I': p.interval = strtol(optarg, NULL, 10); break; case 'p': p.phys_offset = strtoull(optarg, NULL, 0); break; case 'm': guest_modes_cmdline(optarg); break; case 'M': if (!strcmp(optarg, "all")) { host_log_mode_option = LOG_MODE_ALL; break; } for (i = 0; i < LOG_MODE_NUM; i++) { if (!strcmp(optarg, log_modes[i].name)) { pr_info("Setting log mode to: '%s'\n", optarg); host_log_mode_option = i; break; } } if (i == LOG_MODE_NUM) { printf("Log mode '%s' invalid. Please choose " "from: ", optarg); log_modes_dump(); exit(1); } break; case 'h': default: help(argv[0]); break; } } TEST_ASSERT(p.iterations > 0, "Iterations must be greater than zero"); TEST_ASSERT(p.interval > 0, "Interval must be greater than zero"); pr_info("Test iterations: %"PRIu64", interval: %"PRIu64" (ms)\n", p.iterations, p.interval); if (host_log_mode_option == LOG_MODE_ALL) { /* Run each log mode */ for (i = 0; i < LOG_MODE_NUM; i++) { pr_info("Testing Log Mode '%s'\n", log_modes[i].name); host_log_mode = i; for_each_guest_mode(run_test, &p); } } else { host_log_mode = host_log_mode_option; for_each_guest_mode(run_test, &p); } return 0; }