/* * Driver for AT73C213 16-bit stereo DAC connected to Atmel SSC * * Copyright (C) 2006-2007 Atmel Norway * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 as published by * the Free Software Foundation. */ /*#define DEBUG*/ #include <linux/clk.h> #include <linux/err.h> #include <linux/delay.h> #include <linux/device.h> #include <linux/dma-mapping.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/io.h> #include <sound/driver.h> #include <sound/initval.h> #include <sound/control.h> #include <sound/core.h> #include <sound/pcm.h> #include <linux/atmel-ssc.h> #include <linux/spi/spi.h> #include <linux/spi/at73c213.h> #include "at73c213.h" #define BITRATE_MIN 8000 /* Hardware limit? */ #define BITRATE_TARGET CONFIG_SND_AT73C213_TARGET_BITRATE #define BITRATE_MAX 50000 /* Hardware limit. */ /* Initial (hardware reset) AT73C213 register values. */ static u8 snd_at73c213_original_image[18] = { 0x00, /* 00 - CTRL */ 0x05, /* 01 - LLIG */ 0x05, /* 02 - RLIG */ 0x08, /* 03 - LPMG */ 0x08, /* 04 - RPMG */ 0x00, /* 05 - LLOG */ 0x00, /* 06 - RLOG */ 0x22, /* 07 - OLC */ 0x09, /* 08 - MC */ 0x00, /* 09 - CSFC */ 0x00, /* 0A - MISC */ 0x00, /* 0B - */ 0x00, /* 0C - PRECH */ 0x05, /* 0D - AUXG */ 0x00, /* 0E - */ 0x00, /* 0F - */ 0x00, /* 10 - RST */ 0x00, /* 11 - PA_CTRL */ }; struct snd_at73c213 { struct snd_card *card; struct snd_pcm *pcm; struct snd_pcm_substream *substream; struct at73c213_board_info *board; int irq; int period; unsigned long bitrate; struct clk *bitclk; struct ssc_device *ssc; struct spi_device *spi; u8 spi_wbuffer[2]; u8 spi_rbuffer[2]; /* Image of the SPI registers in AT73C213. */ u8 reg_image[18]; /* Protect registers against concurrent access. */ spinlock_t lock; }; #define get_chip(card) ((struct snd_at73c213 *)card->private_data) static int snd_at73c213_write_reg(struct snd_at73c213 *chip, u8 reg, u8 val) { struct spi_message msg; struct spi_transfer msg_xfer = { .len = 2, .cs_change = 0, }; int retval; spi_message_init(&msg); chip->spi_wbuffer[0] = reg; chip->spi_wbuffer[1] = val; msg_xfer.tx_buf = chip->spi_wbuffer; msg_xfer.rx_buf = chip->spi_rbuffer; spi_message_add_tail(&msg_xfer, &msg); retval = spi_sync(chip->spi, &msg); if (!retval) chip->reg_image[reg] = val; return retval; } static struct snd_pcm_hardware snd_at73c213_playback_hw = { .info = SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_BLOCK_TRANSFER, .formats = SNDRV_PCM_FMTBIT_S16_BE, .rates = SNDRV_PCM_RATE_CONTINUOUS, .rate_min = 8000, /* Replaced by chip->bitrate later. */ .rate_max = 50000, /* Replaced by chip->bitrate later. */ .channels_min = 2, .channels_max = 2, .buffer_bytes_max = 64 * 1024 - 1, .period_bytes_min = 512, .period_bytes_max = 64 * 1024 - 1, .periods_min = 4, .periods_max = 1024, }; /* * Calculate and set bitrate and divisions. */ static int snd_at73c213_set_bitrate(struct snd_at73c213 *chip) { unsigned long ssc_rate = clk_get_rate(chip->ssc->clk); unsigned long dac_rate_new, ssc_div, status; unsigned long ssc_div_max, ssc_div_min; int max_tries; /* * We connect two clocks here, picking divisors so the I2S clocks * out data at the same rate the DAC clocks it in ... and as close * as practical to the desired target rate. * * The DAC master clock (MCLK) is programmable, and is either 256 * or (not here) 384 times the I2S output clock (BCLK). */ /* SSC clock / (bitrate * stereo * 16-bit). */ ssc_div = ssc_rate / (BITRATE_TARGET * 2 * 16); ssc_div_min = ssc_rate / (BITRATE_MAX * 2 * 16); ssc_div_max = ssc_rate / (BITRATE_MIN * 2 * 16); max_tries = (ssc_div_max - ssc_div_min) / 2; if (max_tries < 1) max_tries = 1; /* ssc_div must be a power of 2. */ ssc_div = (ssc_div + 1) & ~1UL; if ((ssc_rate / (ssc_div * 2 * 16)) < BITRATE_MIN) { ssc_div -= 2; if ((ssc_rate / (ssc_div * 2 * 16)) > BITRATE_MAX) return -ENXIO; } /* Search for a possible bitrate. */ do { /* SSC clock / (ssc divider * 16-bit * stereo). */ if ((ssc_rate / (ssc_div * 2 * 16)) < BITRATE_MIN) return -ENXIO; /* 256 / (2 * 16) = 8 */ dac_rate_new = 8 * (ssc_rate / ssc_div); status = clk_round_rate(chip->board->dac_clk, dac_rate_new); if (status < 0) return status; /* Ignore difference smaller than 256 Hz. */ if ((status/256) == (dac_rate_new/256)) goto set_rate; ssc_div += 2; } while (--max_tries); /* Not able to find a valid bitrate. */ return -ENXIO; set_rate: status = clk_set_rate(chip->board->dac_clk, status); if (status < 0) return status; /* Set divider in SSC device. */ ssc_writel(chip->ssc->regs, CMR, ssc_div/2); /* SSC clock / (ssc divider * 16-bit * stereo). */ chip->bitrate = ssc_rate / (ssc_div * 16 * 2); dev_info(&chip->spi->dev, "at73c213: supported bitrate is %lu (%lu divider)\n", chip->bitrate, ssc_div); return 0; } static int snd_at73c213_pcm_open(struct snd_pcm_substream *substream) { struct snd_at73c213 *chip = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; snd_at73c213_playback_hw.rate_min = chip->bitrate; snd_at73c213_playback_hw.rate_max = chip->bitrate; runtime->hw = snd_at73c213_playback_hw; chip->substream = substream; return 0; } static int snd_at73c213_pcm_close(struct snd_pcm_substream *substream) { struct snd_at73c213 *chip = snd_pcm_substream_chip(substream); chip->substream = NULL; return 0; } static int snd_at73c213_pcm_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *hw_params) { return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params)); } static int snd_at73c213_pcm_hw_free(struct snd_pcm_substream *substream) { return snd_pcm_lib_free_pages(substream); } static int snd_at73c213_pcm_prepare(struct snd_pcm_substream *substream) { struct snd_at73c213 *chip = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; int block_size; block_size = frames_to_bytes(runtime, runtime->period_size); chip->period = 0; ssc_writel(chip->ssc->regs, PDC_TPR, (long)runtime->dma_addr); ssc_writel(chip->ssc->regs, PDC_TCR, runtime->period_size * 2); ssc_writel(chip->ssc->regs, PDC_TNPR, (long)runtime->dma_addr + block_size); ssc_writel(chip->ssc->regs, PDC_TNCR, runtime->period_size * 2); return 0; } static int snd_at73c213_pcm_trigger(struct snd_pcm_substream *substream, int cmd) { struct snd_at73c213 *chip = snd_pcm_substream_chip(substream); int retval = 0; spin_lock(&chip->lock); switch (cmd) { case SNDRV_PCM_TRIGGER_START: ssc_writel(chip->ssc->regs, IER, SSC_BIT(IER_ENDTX)); ssc_writel(chip->ssc->regs, PDC_PTCR, SSC_BIT(PDC_PTCR_TXTEN)); break; case SNDRV_PCM_TRIGGER_STOP: ssc_writel(chip->ssc->regs, PDC_PTCR, SSC_BIT(PDC_PTCR_TXTDIS)); ssc_writel(chip->ssc->regs, IDR, SSC_BIT(IDR_ENDTX)); break; default: dev_dbg(&chip->spi->dev, "spurious command %x\n", cmd); retval = -EINVAL; break; } spin_unlock(&chip->lock); return retval; } static snd_pcm_uframes_t snd_at73c213_pcm_pointer(struct snd_pcm_substream *substream) { struct snd_at73c213 *chip = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; snd_pcm_uframes_t pos; unsigned long bytes; bytes = ssc_readl(chip->ssc->regs, PDC_TPR) - (unsigned long)runtime->dma_addr; pos = bytes_to_frames(runtime, bytes); if (pos >= runtime->buffer_size) pos -= runtime->buffer_size; return pos; } static struct snd_pcm_ops at73c213_playback_ops = { .open = snd_at73c213_pcm_open, .close = snd_at73c213_pcm_close, .ioctl = snd_pcm_lib_ioctl, .hw_params = snd_at73c213_pcm_hw_params, .hw_free = snd_at73c213_pcm_hw_free, .prepare = snd_at73c213_pcm_prepare, .trigger = snd_at73c213_pcm_trigger, .pointer = snd_at73c213_pcm_pointer, }; static void snd_at73c213_pcm_free(struct snd_pcm *pcm) { struct snd_at73c213 *chip = snd_pcm_chip(pcm); if (chip->pcm) { snd_pcm_lib_preallocate_free_for_all(chip->pcm); chip->pcm = NULL; } } static int __devinit snd_at73c213_pcm_new(struct snd_at73c213 *chip, int device) { struct snd_pcm *pcm; int retval; retval = snd_pcm_new(chip->card, chip->card->shortname, device, 1, 0, &pcm); if (retval < 0) goto out; pcm->private_data = chip; pcm->private_free = snd_at73c213_pcm_free; pcm->info_flags = SNDRV_PCM_INFO_BLOCK_TRANSFER; strcpy(pcm->name, "at73c213"); chip->pcm = pcm; snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &at73c213_playback_ops); retval = snd_pcm_lib_preallocate_pages_for_all(chip->pcm, SNDRV_DMA_TYPE_DEV, &chip->ssc->pdev->dev, 64 * 1024, 64 * 1024); out: return retval; } static irqreturn_t snd_at73c213_interrupt(int irq, void *dev_id) { struct snd_at73c213 *chip = dev_id; struct snd_pcm_runtime *runtime = chip->substream->runtime; u32 status; int offset; int block_size; int next_period; int retval = IRQ_NONE; spin_lock(&chip->lock); block_size = frames_to_bytes(runtime, runtime->period_size); status = ssc_readl(chip->ssc->regs, IMR); if (status & SSC_BIT(IMR_ENDTX)) { chip->period++; if (chip->period == runtime->periods) chip->period = 0; next_period = chip->period + 1; if (next_period == runtime->periods) next_period = 0; offset = block_size * next_period; ssc_writel(chip->ssc->regs, PDC_TNPR, (long)runtime->dma_addr + offset); ssc_writel(chip->ssc->regs, PDC_TNCR, runtime->period_size * 2); retval = IRQ_HANDLED; } ssc_readl(chip->ssc->regs, IMR); spin_unlock(&chip->lock); if (status & SSC_BIT(IMR_ENDTX)) snd_pcm_period_elapsed(chip->substream); return retval; } /* * Mixer functions. */ static int snd_at73c213_mono_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_at73c213 *chip = snd_kcontrol_chip(kcontrol); int reg = kcontrol->private_value & 0xff; int shift = (kcontrol->private_value >> 8) & 0xff; int mask = (kcontrol->private_value >> 16) & 0xff; int invert = (kcontrol->private_value >> 24) & 0xff; spin_lock_irq(&chip->lock); ucontrol->value.integer.value[0] = (chip->reg_image[reg] >> shift) & mask; if (invert) ucontrol->value.integer.value[0] = mask - ucontrol->value.integer.value[0]; spin_unlock_irq(&chip->lock); return 0; } static int snd_at73c213_mono_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_at73c213 *chip = snd_kcontrol_chip(kcontrol); int reg = kcontrol->private_value & 0xff; int shift = (kcontrol->private_value >> 8) & 0xff; int mask = (kcontrol->private_value >> 16) & 0xff; int invert = (kcontrol->private_value >> 24) & 0xff; int change, retval; unsigned short val; val = (ucontrol->value.integer.value[0] & mask); if (invert) val = mask - val; val <<= shift; spin_lock_irq(&chip->lock); val = (chip->reg_image[reg] & ~(mask << shift)) | val; change = val != chip->reg_image[reg]; retval = snd_at73c213_write_reg(chip, reg, val); spin_unlock_irq(&chip->lock); if (retval) return retval; return change; } static int snd_at73c213_stereo_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { int mask = (kcontrol->private_value >> 24) & 0xff; if (mask == 1) uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN; else uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = 2; uinfo->value.integer.min = 0; uinfo->value.integer.max = mask; return 0; } static int snd_at73c213_stereo_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_at73c213 *chip = snd_kcontrol_chip(kcontrol); int left_reg = kcontrol->private_value & 0xff; int right_reg = (kcontrol->private_value >> 8) & 0xff; int shift_left = (kcontrol->private_value >> 16) & 0x07; int shift_right = (kcontrol->private_value >> 19) & 0x07; int mask = (kcontrol->private_value >> 24) & 0xff; int invert = (kcontrol->private_value >> 22) & 1; spin_lock_irq(&chip->lock); ucontrol->value.integer.value[0] = (chip->reg_image[left_reg] >> shift_left) & mask; ucontrol->value.integer.value[1] = (chip->reg_image[right_reg] >> shift_right) & mask; if (invert) { ucontrol->value.integer.value[0] = mask - ucontrol->value.integer.value[0]; ucontrol->value.integer.value[1] = mask - ucontrol->value.integer.value[1]; } spin_unlock_irq(&chip->lock); return 0; } static int snd_at73c213_stereo_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_at73c213 *chip = snd_kcontrol_chip(kcontrol); int left_reg = kcontrol->private_value & 0xff; int right_reg = (kcontrol->private_value >> 8) & 0xff; int shift_left = (kcontrol->private_value >> 16) & 0x07; int shift_right = (kcontrol->private_value >> 19) & 0x07; int mask = (kcontrol->private_value >> 24) & 0xff; int invert = (kcontrol->private_value >> 22) & 1; int change, retval; unsigned short val1, val2; val1 = ucontrol->value.integer.value[0] & mask; val2 = ucontrol->value.integer.value[1] & mask; if (invert) { val1 = mask - val1; val2 = mask - val2; } val1 <<= shift_left; val2 <<= shift_right; spin_lock_irq(&chip->lock); val1 = (chip->reg_image[left_reg] & ~(mask << shift_left)) | val1; val2 = (chip->reg_image[right_reg] & ~(mask << shift_right)) | val2; change = val1 != chip->reg_image[left_reg] || val2 != chip->reg_image[right_reg]; retval = snd_at73c213_write_reg(chip, left_reg, val1); if (retval) { spin_unlock_irq(&chip->lock); goto out; } retval = snd_at73c213_write_reg(chip, right_reg, val2); if (retval) { spin_unlock_irq(&chip->lock); goto out; } spin_unlock_irq(&chip->lock); return change; out: return retval; } #define snd_at73c213_mono_switch_info snd_ctl_boolean_mono_info static int snd_at73c213_mono_switch_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_at73c213 *chip = snd_kcontrol_chip(kcontrol); int reg = kcontrol->private_value & 0xff; int shift = (kcontrol->private_value >> 8) & 0xff; int invert = (kcontrol->private_value >> 24) & 0xff; spin_lock_irq(&chip->lock); ucontrol->value.integer.value[0] = (chip->reg_image[reg] >> shift) & 0x01; if (invert) ucontrol->value.integer.value[0] = 0x01 - ucontrol->value.integer.value[0]; spin_unlock_irq(&chip->lock); return 0; } static int snd_at73c213_mono_switch_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_at73c213 *chip = snd_kcontrol_chip(kcontrol); int reg = kcontrol->private_value & 0xff; int shift = (kcontrol->private_value >> 8) & 0xff; int mask = (kcontrol->private_value >> 16) & 0xff; int invert = (kcontrol->private_value >> 24) & 0xff; int change, retval; unsigned short val; if (ucontrol->value.integer.value[0]) val = mask; else val = 0; if (invert) val = mask - val; val <<= shift; spin_lock_irq(&chip->lock); val |= (chip->reg_image[reg] & ~(mask << shift)); change = val != chip->reg_image[reg]; retval = snd_at73c213_write_reg(chip, reg, val); spin_unlock_irq(&chip->lock); if (retval) return retval; return change; } static int snd_at73c213_pa_volume_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = 1; uinfo->value.integer.min = 0; uinfo->value.integer.max = ((kcontrol->private_value >> 16) & 0xff) - 1; return 0; } static int snd_at73c213_line_capture_volume_info( struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = 2; /* When inverted will give values 0x10001 => 0. */ uinfo->value.integer.min = 14; uinfo->value.integer.max = 31; return 0; } static int snd_at73c213_aux_capture_volume_info( struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = 1; /* When inverted will give values 0x10001 => 0. */ uinfo->value.integer.min = 14; uinfo->value.integer.max = 31; return 0; } #define AT73C213_MONO_SWITCH(xname, xindex, reg, shift, mask, invert) \ { \ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ .name = xname, \ .index = xindex, \ .info = snd_at73c213_mono_switch_info, \ .get = snd_at73c213_mono_switch_get, \ .put = snd_at73c213_mono_switch_put, \ .private_value = (reg | (shift << 8) | (mask << 16) | (invert << 24)) \ } #define AT73C213_STEREO(xname, xindex, left_reg, right_reg, shift_left, shift_right, mask, invert) \ { \ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ .name = xname, \ .index = xindex, \ .info = snd_at73c213_stereo_info, \ .get = snd_at73c213_stereo_get, \ .put = snd_at73c213_stereo_put, \ .private_value = (left_reg | (right_reg << 8) \ | (shift_left << 16) | (shift_right << 19) \ | (mask << 24) | (invert << 22)) \ } static struct snd_kcontrol_new snd_at73c213_controls[] __devinitdata = { AT73C213_STEREO("Master Playback Volume", 0, DAC_LMPG, DAC_RMPG, 0, 0, 0x1f, 1), AT73C213_STEREO("Master Playback Switch", 0, DAC_LMPG, DAC_RMPG, 5, 5, 1, 1), AT73C213_STEREO("PCM Playback Volume", 0, DAC_LLOG, DAC_RLOG, 0, 0, 0x1f, 1), AT73C213_STEREO("PCM Playback Switch", 0, DAC_LLOG, DAC_RLOG, 5, 5, 1, 1), AT73C213_MONO_SWITCH("Mono PA Playback Switch", 0, DAC_CTRL, DAC_CTRL_ONPADRV, 0x01, 0), { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "PA Playback Volume", .index = 0, .info = snd_at73c213_pa_volume_info, .get = snd_at73c213_mono_get, .put = snd_at73c213_mono_put, .private_value = PA_CTRL | (PA_CTRL_APAGAIN << 8) | \ (0x0f << 16) | (1 << 24), }, AT73C213_MONO_SWITCH("PA High Gain Playback Switch", 0, PA_CTRL, PA_CTRL_APALP, 0x01, 1), AT73C213_MONO_SWITCH("PA Playback Switch", 0, PA_CTRL, PA_CTRL_APAON, 0x01, 0), { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Aux Capture Volume", .index = 0, .info = snd_at73c213_aux_capture_volume_info, .get = snd_at73c213_mono_get, .put = snd_at73c213_mono_put, .private_value = DAC_AUXG | (0 << 8) | (0x1f << 16) | (1 << 24), }, AT73C213_MONO_SWITCH("Aux Capture Switch", 0, DAC_CTRL, DAC_CTRL_ONAUXIN, 0x01, 0), { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Line Capture Volume", .index = 0, .info = snd_at73c213_line_capture_volume_info, .get = snd_at73c213_stereo_get, .put = snd_at73c213_stereo_put, .private_value = DAC_LLIG | (DAC_RLIG << 8) | (0 << 16) | (0 << 19) | (0x1f << 24) | (1 << 22), }, AT73C213_MONO_SWITCH("Line Capture Switch", 0, DAC_CTRL, 0, 0x03, 0), }; static int __devinit snd_at73c213_mixer(struct snd_at73c213 *chip) { struct snd_card *card; int errval, idx; if (chip == NULL || chip->pcm == NULL) return -EINVAL; card = chip->card; strcpy(card->mixername, chip->pcm->name); for (idx = 0; idx < ARRAY_SIZE(snd_at73c213_controls); idx++) { errval = snd_ctl_add(card, snd_ctl_new1(&snd_at73c213_controls[idx], chip)); if (errval < 0) goto cleanup; } return 0; cleanup: for (idx = 1; idx < ARRAY_SIZE(snd_at73c213_controls) + 1; idx++) { struct snd_kcontrol *kctl; kctl = snd_ctl_find_numid(card, idx); if (kctl) snd_ctl_remove(card, kctl); } return errval; } /* * Device functions */ static int snd_at73c213_ssc_init(struct snd_at73c213 *chip) { /* * Continuous clock output. * Starts on falling TF. * Delay 1 cycle (1 bit). * Periode is 16 bit (16 - 1). */ ssc_writel(chip->ssc->regs, TCMR, SSC_BF(TCMR_CKO, 1) | SSC_BF(TCMR_START, 4) | SSC_BF(TCMR_STTDLY, 1) | SSC_BF(TCMR_PERIOD, 16 - 1)); /* * Data length is 16 bit (16 - 1). * Transmit MSB first. * Transmit 2 words each transfer. * Frame sync length is 16 bit (16 - 1). * Frame starts on negative pulse. */ ssc_writel(chip->ssc->regs, TFMR, SSC_BF(TFMR_DATLEN, 16 - 1) | SSC_BIT(TFMR_MSBF) | SSC_BF(TFMR_DATNB, 1) | SSC_BF(TFMR_FSLEN, 16 - 1) | SSC_BF(TFMR_FSOS, 1)); return 0; } static int snd_at73c213_chip_init(struct snd_at73c213 *chip) { int retval; unsigned char dac_ctrl = 0; retval = snd_at73c213_set_bitrate(chip); if (retval) goto out; /* Enable DAC master clock. */ clk_enable(chip->board->dac_clk); /* Initialize at73c213 on SPI bus. */ retval = snd_at73c213_write_reg(chip, DAC_RST, 0x04); if (retval) goto out_clk; msleep(1); retval = snd_at73c213_write_reg(chip, DAC_RST, 0x03); if (retval) goto out_clk; /* Precharge everything. */ retval = snd_at73c213_write_reg(chip, DAC_PRECH, 0xff); if (retval) goto out_clk; retval = snd_at73c213_write_reg(chip, PA_CTRL, (1<<PA_CTRL_APAPRECH)); if (retval) goto out_clk; retval = snd_at73c213_write_reg(chip, DAC_CTRL, (1<<DAC_CTRL_ONLNOL) | (1<<DAC_CTRL_ONLNOR)); if (retval) goto out_clk; msleep(50); /* Stop precharging PA. */ retval = snd_at73c213_write_reg(chip, PA_CTRL, (1<<PA_CTRL_APALP) | 0x0f); if (retval) goto out_clk; msleep(450); /* Stop precharging DAC, turn on master power. */ retval = snd_at73c213_write_reg(chip, DAC_PRECH, (1<<DAC_PRECH_ONMSTR)); if (retval) goto out_clk; msleep(1); /* Turn on DAC. */ dac_ctrl = (1<<DAC_CTRL_ONDACL) | (1<<DAC_CTRL_ONDACR) | (1<<DAC_CTRL_ONLNOL) | (1<<DAC_CTRL_ONLNOR); retval = snd_at73c213_write_reg(chip, DAC_CTRL, dac_ctrl); if (retval) goto out_clk; /* Mute sound. */ retval = snd_at73c213_write_reg(chip, DAC_LMPG, 0x3f); if (retval) goto out_clk; retval = snd_at73c213_write_reg(chip, DAC_RMPG, 0x3f); if (retval) goto out_clk; retval = snd_at73c213_write_reg(chip, DAC_LLOG, 0x3f); if (retval) goto out_clk; retval = snd_at73c213_write_reg(chip, DAC_RLOG, 0x3f); if (retval) goto out_clk; retval = snd_at73c213_write_reg(chip, DAC_LLIG, 0x11); if (retval) goto out_clk; retval = snd_at73c213_write_reg(chip, DAC_RLIG, 0x11); if (retval) goto out_clk; retval = snd_at73c213_write_reg(chip, DAC_AUXG, 0x11); if (retval) goto out_clk; /* Enable I2S device, i.e. clock output. */ ssc_writel(chip->ssc->regs, CR, SSC_BIT(CR_TXEN)); goto out; out_clk: clk_disable(chip->board->dac_clk); out: return retval; } static int snd_at73c213_dev_free(struct snd_device *device) { struct snd_at73c213 *chip = device->device_data; ssc_writel(chip->ssc->regs, CR, SSC_BIT(CR_TXDIS)); if (chip->irq >= 0) { free_irq(chip->irq, chip); chip->irq = -1; } return 0; } static int __devinit snd_at73c213_dev_init(struct snd_card *card, struct spi_device *spi) { static struct snd_device_ops ops = { .dev_free = snd_at73c213_dev_free, }; struct snd_at73c213 *chip = get_chip(card); int irq, retval; irq = chip->ssc->irq; if (irq < 0) return irq; spin_lock_init(&chip->lock); chip->card = card; chip->irq = -1; retval = request_irq(irq, snd_at73c213_interrupt, 0, "at73c213", chip); if (retval) { dev_dbg(&chip->spi->dev, "unable to request irq %d\n", irq); goto out; } chip->irq = irq; memcpy(&chip->reg_image, &snd_at73c213_original_image, sizeof(snd_at73c213_original_image)); retval = snd_at73c213_ssc_init(chip); if (retval) goto out_irq; retval = snd_at73c213_chip_init(chip); if (retval) goto out_irq; retval = snd_at73c213_pcm_new(chip, 0); if (retval) goto out_irq; retval = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops); if (retval) goto out_irq; retval = snd_at73c213_mixer(chip); if (retval) goto out_snd_dev; snd_card_set_dev(card, &spi->dev); goto out; out_snd_dev: snd_device_free(card, chip); out_irq: free_irq(chip->irq, chip); chip->irq = -1; out: return retval; } static int snd_at73c213_probe(struct spi_device *spi) { struct snd_card *card; struct snd_at73c213 *chip; struct at73c213_board_info *board; int retval; char id[16]; board = spi->dev.platform_data; if (!board) { dev_dbg(&spi->dev, "no platform_data\n"); return -ENXIO; } if (!board->dac_clk) { dev_dbg(&spi->dev, "no DAC clk\n"); return -ENXIO; } if (IS_ERR(board->dac_clk)) { dev_dbg(&spi->dev, "no DAC clk\n"); return PTR_ERR(board->dac_clk); } retval = -ENOMEM; /* Allocate "card" using some unused identifiers. */ snprintf(id, sizeof id, "at73c213_%d", board->ssc_id); card = snd_card_new(-1, id, THIS_MODULE, sizeof(struct snd_at73c213)); if (!card) goto out; chip = card->private_data; chip->spi = spi; chip->board = board; chip->ssc = ssc_request(board->ssc_id); if (IS_ERR(chip->ssc)) { dev_dbg(&spi->dev, "could not get ssc%d device\n", board->ssc_id); retval = PTR_ERR(chip->ssc); goto out_card; } retval = snd_at73c213_dev_init(card, spi); if (retval) goto out_ssc; strcpy(card->driver, "at73c213"); strcpy(card->shortname, board->shortname); sprintf(card->longname, "%s on irq %d", card->shortname, chip->irq); retval = snd_card_register(card); if (retval) goto out_ssc; dev_set_drvdata(&spi->dev, card); goto out; out_ssc: ssc_free(chip->ssc); out_card: snd_card_free(card); out: return retval; } static int __devexit snd_at73c213_remove(struct spi_device *spi) { struct snd_card *card = dev_get_drvdata(&spi->dev); struct snd_at73c213 *chip = card->private_data; int retval; /* Stop playback. */ ssc_writel(chip->ssc->regs, CR, SSC_BIT(CR_TXDIS)); /* Mute sound. */ retval = snd_at73c213_write_reg(chip, DAC_LMPG, 0x3f); if (retval) goto out; retval = snd_at73c213_write_reg(chip, DAC_RMPG, 0x3f); if (retval) goto out; retval = snd_at73c213_write_reg(chip, DAC_LLOG, 0x3f); if (retval) goto out; retval = snd_at73c213_write_reg(chip, DAC_RLOG, 0x3f); if (retval) goto out; retval = snd_at73c213_write_reg(chip, DAC_LLIG, 0x11); if (retval) goto out; retval = snd_at73c213_write_reg(chip, DAC_RLIG, 0x11); if (retval) goto out; retval = snd_at73c213_write_reg(chip, DAC_AUXG, 0x11); if (retval) goto out; /* Turn off PA. */ retval = snd_at73c213_write_reg(chip, PA_CTRL, chip->reg_image[PA_CTRL] | 0x0f); if (retval) goto out; msleep(10); retval = snd_at73c213_write_reg(chip, PA_CTRL, (1 << PA_CTRL_APALP) | 0x0f); if (retval) goto out; /* Turn off external DAC. */ retval = snd_at73c213_write_reg(chip, DAC_CTRL, 0x0c); if (retval) goto out; msleep(2); retval = snd_at73c213_write_reg(chip, DAC_CTRL, 0x00); if (retval) goto out; /* Turn off master power. */ retval = snd_at73c213_write_reg(chip, DAC_PRECH, 0x00); if (retval) goto out; out: /* Stop DAC master clock. */ clk_disable(chip->board->dac_clk); ssc_free(chip->ssc); snd_card_free(card); dev_set_drvdata(&spi->dev, NULL); return 0; } #ifdef CONFIG_PM static int snd_at73c213_suspend(struct spi_device *spi, pm_message_t msg) { struct snd_card *card = dev_get_drvdata(&spi->dev); struct snd_at73c213 *chip = card->private_data; ssc_writel(chip->ssc->regs, CR, SSC_BIT(CR_TXDIS)); clk_disable(chip->board->dac_clk); return 0; } static int snd_at73c213_resume(struct spi_device *spi) { struct snd_card *card = dev_get_drvdata(&spi->dev); struct snd_at73c213 *chip = card->private_data; clk_enable(chip->board->dac_clk); ssc_writel(chip->ssc->regs, CR, SSC_BIT(CR_TXEN)); return 0; } #else #define snd_at73c213_suspend NULL #define snd_at73c213_resume NULL #endif static struct spi_driver at73c213_driver = { .driver = { .name = "at73c213", }, .probe = snd_at73c213_probe, .suspend = snd_at73c213_suspend, .resume = snd_at73c213_resume, .remove = __devexit_p(snd_at73c213_remove), }; static int __init at73c213_init(void) { return spi_register_driver(&at73c213_driver); } module_init(at73c213_init); static void __exit at73c213_exit(void) { spi_unregister_driver(&at73c213_driver); } module_exit(at73c213_exit); MODULE_AUTHOR("Hans-Christian Egtvedt <hcegtvedt@atmel.com>"); MODULE_DESCRIPTION("Sound driver for AT73C213 with Atmel SSC"); MODULE_LICENSE("GPL");