// SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause) // // This file is provided under a dual BSD/GPLv2 license. When using or // redistributing this file, you may do so under either license. // // Copyright(c) 2018 Intel Corporation. All rights reserved. // // Authors: Liam Girdwood // Ranjani Sridharan // Rander Wang // Keyon Jie // /* * Hardware interface for HDA DSP code loader */ #include #include #include #include #include #include #include "ext_manifest.h" #include "../ipc4-priv.h" #include "../ops.h" #include "../sof-priv.h" #include "hda.h" static void hda_ssp_set_cbp_cfp(struct snd_sof_dev *sdev) { struct sof_intel_hda_dev *hda = sdev->pdata->hw_pdata; const struct sof_intel_dsp_desc *chip = hda->desc; int i; /* DSP is powered up, set all SSPs to clock consumer/codec provider mode */ for (i = 0; i < chip->ssp_count; i++) { snd_sof_dsp_update_bits_unlocked(sdev, HDA_DSP_BAR, chip->ssp_base_offset + i * SSP_DEV_MEM_SIZE + SSP_SSC1_OFFSET, SSP_SET_CBP_CFP, SSP_SET_CBP_CFP); } } struct hdac_ext_stream *hda_cl_prepare(struct device *dev, unsigned int format, unsigned int size, struct snd_dma_buffer *dmab, int direction, bool is_iccmax) { struct snd_sof_dev *sdev = dev_get_drvdata(dev); struct hdac_ext_stream *hext_stream; struct hdac_stream *hstream; int ret; hext_stream = hda_dsp_stream_get(sdev, direction, 0); if (!hext_stream) { dev_err(sdev->dev, "error: no stream available\n"); return ERR_PTR(-ENODEV); } hstream = &hext_stream->hstream; hstream->substream = NULL; /* allocate DMA buffer */ ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV_SG, dev, size, dmab); if (ret < 0) { dev_err(sdev->dev, "error: memory alloc failed: %d\n", ret); goto out_put; } hstream->period_bytes = 0;/* initialize period_bytes */ hstream->format_val = format; hstream->bufsize = size; if (is_iccmax) { ret = hda_dsp_iccmax_stream_hw_params(sdev, hext_stream, dmab, NULL); if (ret < 0) { dev_err(sdev->dev, "error: iccmax stream prepare failed: %d\n", ret); goto out_free; } } else { ret = hda_dsp_stream_hw_params(sdev, hext_stream, dmab, NULL); if (ret < 0) { dev_err(sdev->dev, "error: hdac prepare failed: %d\n", ret); goto out_free; } hda_dsp_stream_spib_config(sdev, hext_stream, HDA_DSP_SPIB_ENABLE, size); } return hext_stream; out_free: snd_dma_free_pages(dmab); out_put: hda_dsp_stream_put(sdev, direction, hstream->stream_tag); return ERR_PTR(ret); } EXPORT_SYMBOL_NS(hda_cl_prepare, SND_SOC_SOF_INTEL_HDA_COMMON); /* * first boot sequence has some extra steps. * power on all host managed cores and only unstall/run the boot core to boot the * DSP then turn off all non boot cores (if any) is powered on. */ int cl_dsp_init(struct snd_sof_dev *sdev, int stream_tag, bool imr_boot) { struct sof_intel_hda_dev *hda = sdev->pdata->hw_pdata; const struct sof_intel_dsp_desc *chip = hda->desc; unsigned int status, target_status; u32 flags, ipc_hdr, j; unsigned long mask; char *dump_msg; int ret; /* step 1: power up corex */ ret = hda_dsp_core_power_up(sdev, chip->host_managed_cores_mask); if (ret < 0) { if (hda->boot_iteration == HDA_FW_BOOT_ATTEMPTS) dev_err(sdev->dev, "error: dsp core 0/1 power up failed\n"); goto err; } hda_ssp_set_cbp_cfp(sdev); /* step 2: Send ROM_CONTROL command (stream_tag is ignored for IMR boot) */ ipc_hdr = chip->ipc_req_mask | HDA_DSP_ROM_IPC_CONTROL; if (!imr_boot) ipc_hdr |= HDA_DSP_ROM_IPC_PURGE_FW | ((stream_tag - 1) << 9); snd_sof_dsp_write(sdev, HDA_DSP_BAR, chip->ipc_req, ipc_hdr); /* step 3: unset core 0 reset state & unstall/run core 0 */ ret = hda_dsp_core_run(sdev, chip->init_core_mask); if (ret < 0) { if (hda->boot_iteration == HDA_FW_BOOT_ATTEMPTS) dev_err(sdev->dev, "error: dsp core start failed %d\n", ret); ret = -EIO; goto err; } /* step 4: wait for IPC DONE bit from ROM */ ret = snd_sof_dsp_read_poll_timeout(sdev, HDA_DSP_BAR, chip->ipc_ack, status, ((status & chip->ipc_ack_mask) == chip->ipc_ack_mask), HDA_DSP_REG_POLL_INTERVAL_US, HDA_DSP_INIT_TIMEOUT_US); if (ret < 0) { if (hda->boot_iteration == HDA_FW_BOOT_ATTEMPTS) dev_err(sdev->dev, "error: %s: timeout for HIPCIE done\n", __func__); goto err; } /* set DONE bit to clear the reply IPC message */ snd_sof_dsp_update_bits_forced(sdev, HDA_DSP_BAR, chip->ipc_ack, chip->ipc_ack_mask, chip->ipc_ack_mask); /* step 5: power down cores that are no longer needed */ ret = hda_dsp_core_reset_power_down(sdev, chip->host_managed_cores_mask & ~(chip->init_core_mask)); if (ret < 0) { if (hda->boot_iteration == HDA_FW_BOOT_ATTEMPTS) dev_err(sdev->dev, "error: dsp core x power down failed\n"); goto err; } /* step 6: enable IPC interrupts */ hda_dsp_ipc_int_enable(sdev); /* * step 7: * - Cold/Full boot: wait for ROM init to proceed to download the firmware * - IMR boot: wait for ROM firmware entered (firmware booted up from IMR) */ if (imr_boot) target_status = FSR_STATE_FW_ENTERED; else target_status = FSR_STATE_INIT_DONE; ret = snd_sof_dsp_read_poll_timeout(sdev, HDA_DSP_BAR, chip->rom_status_reg, status, (FSR_TO_STATE_CODE(status) == target_status), HDA_DSP_REG_POLL_INTERVAL_US, chip->rom_init_timeout * USEC_PER_MSEC); if (!ret) { /* set enabled cores mask and increment ref count for cores in init_core_mask */ sdev->enabled_cores_mask |= chip->init_core_mask; mask = sdev->enabled_cores_mask; for_each_set_bit(j, &mask, SOF_MAX_DSP_NUM_CORES) sdev->dsp_core_ref_count[j]++; return 0; } if (hda->boot_iteration == HDA_FW_BOOT_ATTEMPTS) dev_err(sdev->dev, "%s: timeout with rom_status_reg (%#x) read\n", __func__, chip->rom_status_reg); err: flags = SOF_DBG_DUMP_PCI | SOF_DBG_DUMP_MBOX | SOF_DBG_DUMP_OPTIONAL; /* after max boot attempts make sure that the dump is printed */ if (hda->boot_iteration == HDA_FW_BOOT_ATTEMPTS) flags &= ~SOF_DBG_DUMP_OPTIONAL; dump_msg = kasprintf(GFP_KERNEL, "Boot iteration failed: %d/%d", hda->boot_iteration, HDA_FW_BOOT_ATTEMPTS); snd_sof_dsp_dbg_dump(sdev, dump_msg, flags); hda_dsp_core_reset_power_down(sdev, chip->host_managed_cores_mask); kfree(dump_msg); return ret; } int hda_cl_trigger(struct device *dev, struct hdac_ext_stream *hext_stream, int cmd) { struct snd_sof_dev *sdev = dev_get_drvdata(dev); struct hdac_stream *hstream = &hext_stream->hstream; int sd_offset = SOF_STREAM_SD_OFFSET(hstream); struct sof_intel_hda_stream *hda_stream; /* code loader is special case that reuses stream ops */ switch (cmd) { case SNDRV_PCM_TRIGGER_START: hda_stream = container_of(hext_stream, struct sof_intel_hda_stream, hext_stream); reinit_completion(&hda_stream->ioc); snd_sof_dsp_update_bits(sdev, HDA_DSP_HDA_BAR, SOF_HDA_INTCTL, 1 << hstream->index, 1 << hstream->index); snd_sof_dsp_update_bits(sdev, HDA_DSP_HDA_BAR, sd_offset, SOF_HDA_SD_CTL_DMA_START | SOF_HDA_CL_DMA_SD_INT_MASK, SOF_HDA_SD_CTL_DMA_START | SOF_HDA_CL_DMA_SD_INT_MASK); hstream->running = true; return 0; default: return hda_dsp_stream_trigger(sdev, hext_stream, cmd); } } EXPORT_SYMBOL_NS(hda_cl_trigger, SND_SOC_SOF_INTEL_HDA_COMMON); int hda_cl_cleanup(struct device *dev, struct snd_dma_buffer *dmab, struct hdac_ext_stream *hext_stream) { struct snd_sof_dev *sdev = dev_get_drvdata(dev); struct hdac_stream *hstream = &hext_stream->hstream; int sd_offset = SOF_STREAM_SD_OFFSET(hstream); int ret = 0; if (hstream->direction == SNDRV_PCM_STREAM_PLAYBACK) ret = hda_dsp_stream_spib_config(sdev, hext_stream, HDA_DSP_SPIB_DISABLE, 0); else snd_sof_dsp_update_bits(sdev, HDA_DSP_HDA_BAR, sd_offset, SOF_HDA_SD_CTL_DMA_START, 0); hda_dsp_stream_put(sdev, hstream->direction, hstream->stream_tag); hstream->running = 0; hstream->substream = NULL; /* reset BDL address */ snd_sof_dsp_write(sdev, HDA_DSP_HDA_BAR, sd_offset + SOF_HDA_ADSP_REG_SD_BDLPL, 0); snd_sof_dsp_write(sdev, HDA_DSP_HDA_BAR, sd_offset + SOF_HDA_ADSP_REG_SD_BDLPU, 0); snd_sof_dsp_write(sdev, HDA_DSP_HDA_BAR, sd_offset, 0); snd_dma_free_pages(dmab); dmab->area = NULL; hstream->bufsize = 0; hstream->format_val = 0; return ret; } EXPORT_SYMBOL_NS(hda_cl_cleanup, SND_SOC_SOF_INTEL_HDA_COMMON); #define HDA_CL_DMA_IOC_TIMEOUT_MS 500 int hda_cl_copy_fw(struct snd_sof_dev *sdev, struct hdac_ext_stream *hext_stream) { struct sof_intel_hda_dev *hda = sdev->pdata->hw_pdata; const struct sof_intel_dsp_desc *chip = hda->desc; struct sof_intel_hda_stream *hda_stream; unsigned long time_left; unsigned int reg; int ret, status; hda_stream = container_of(hext_stream, struct sof_intel_hda_stream, hext_stream); dev_dbg(sdev->dev, "Code loader DMA starting\n"); ret = hda_cl_trigger(sdev->dev, hext_stream, SNDRV_PCM_TRIGGER_START); if (ret < 0) { dev_err(sdev->dev, "error: DMA trigger start failed\n"); return ret; } /* Wait for completion of transfer */ time_left = wait_for_completion_timeout(&hda_stream->ioc, msecs_to_jiffies(HDA_CL_DMA_IOC_TIMEOUT_MS)); if (!time_left) { dev_err(sdev->dev, "Code loader DMA did not complete\n"); return -ETIMEDOUT; } dev_dbg(sdev->dev, "Code loader DMA done, waiting for FW_ENTERED status\n"); status = snd_sof_dsp_read_poll_timeout(sdev, HDA_DSP_BAR, chip->rom_status_reg, reg, (FSR_TO_STATE_CODE(reg) == FSR_STATE_FW_ENTERED), HDA_DSP_REG_POLL_INTERVAL_US, HDA_DSP_BASEFW_TIMEOUT_US); /* * even in case of errors we still need to stop the DMAs, * but we return the initial error should the DMA stop also fail */ if (status < 0) { dev_err(sdev->dev, "%s: timeout with rom_status_reg (%#x) read\n", __func__, chip->rom_status_reg); } else { dev_dbg(sdev->dev, "Code loader FW_ENTERED status\n"); } ret = hda_cl_trigger(sdev->dev, hext_stream, SNDRV_PCM_TRIGGER_STOP); if (ret < 0) { dev_err(sdev->dev, "error: DMA trigger stop failed\n"); if (!status) status = ret; } else { dev_dbg(sdev->dev, "Code loader DMA stopped\n"); } return status; } int hda_dsp_cl_boot_firmware_iccmax(struct snd_sof_dev *sdev) { struct hdac_ext_stream *iccmax_stream; struct snd_dma_buffer dmab_bdl; int ret, ret1; u8 original_gb; /* save the original LTRP guardband value */ original_gb = snd_sof_dsp_read8(sdev, HDA_DSP_HDA_BAR, HDA_VS_INTEL_LTRP) & HDA_VS_INTEL_LTRP_GB_MASK; /* * Prepare capture stream for ICCMAX. We do not need to store * the data, so use a buffer of PAGE_SIZE for receiving. */ iccmax_stream = hda_cl_prepare(sdev->dev, HDA_CL_STREAM_FORMAT, PAGE_SIZE, &dmab_bdl, SNDRV_PCM_STREAM_CAPTURE, true); if (IS_ERR(iccmax_stream)) { dev_err(sdev->dev, "error: dma prepare for ICCMAX stream failed\n"); return PTR_ERR(iccmax_stream); } ret = hda_dsp_cl_boot_firmware(sdev); /* * Perform iccmax stream cleanup. This should be done even if firmware loading fails. * If the cleanup also fails, we return the initial error */ ret1 = hda_cl_cleanup(sdev->dev, &dmab_bdl, iccmax_stream); if (ret1 < 0) { dev_err(sdev->dev, "error: ICCMAX stream cleanup failed\n"); /* set return value to indicate cleanup failure */ if (!ret) ret = ret1; } /* restore the original guardband value after FW boot */ snd_sof_dsp_update8(sdev, HDA_DSP_HDA_BAR, HDA_VS_INTEL_LTRP, HDA_VS_INTEL_LTRP_GB_MASK, original_gb); return ret; } static int hda_dsp_boot_imr(struct snd_sof_dev *sdev) { const struct sof_intel_dsp_desc *chip_info; int ret; chip_info = get_chip_info(sdev->pdata); if (chip_info->cl_init) ret = chip_info->cl_init(sdev, 0, true); else ret = -EINVAL; if (!ret) hda_sdw_process_wakeen(sdev); return ret; } int hda_dsp_cl_boot_firmware(struct snd_sof_dev *sdev) { struct sof_intel_hda_dev *hda = sdev->pdata->hw_pdata; struct snd_sof_pdata *plat_data = sdev->pdata; const struct sof_dev_desc *desc = plat_data->desc; const struct sof_intel_dsp_desc *chip_info; struct hdac_ext_stream *hext_stream; struct firmware stripped_firmware; struct snd_dma_buffer dmab; int ret, ret1, i; if (hda->imrboot_supported && !sdev->first_boot && !hda->skip_imr_boot) { dev_dbg(sdev->dev, "IMR restore supported, booting from IMR directly\n"); hda->boot_iteration = 0; ret = hda_dsp_boot_imr(sdev); if (!ret) { hda->booted_from_imr = true; return 0; } dev_warn(sdev->dev, "IMR restore failed, trying to cold boot\n"); } hda->booted_from_imr = false; chip_info = desc->chip_info; if (sdev->basefw.fw->size <= sdev->basefw.payload_offset) { dev_err(sdev->dev, "error: firmware size must be greater than firmware offset\n"); return -EINVAL; } stripped_firmware.data = sdev->basefw.fw->data + sdev->basefw.payload_offset; stripped_firmware.size = sdev->basefw.fw->size - sdev->basefw.payload_offset; /* init for booting wait */ init_waitqueue_head(&sdev->boot_wait); /* prepare DMA for code loader stream */ hext_stream = hda_cl_prepare(sdev->dev, HDA_CL_STREAM_FORMAT, stripped_firmware.size, &dmab, SNDRV_PCM_STREAM_PLAYBACK, false); if (IS_ERR(hext_stream)) { dev_err(sdev->dev, "error: dma prepare for fw loading failed\n"); return PTR_ERR(hext_stream); } memcpy(dmab.area, stripped_firmware.data, stripped_firmware.size); /* try ROM init a few times before giving up */ for (i = 0; i < HDA_FW_BOOT_ATTEMPTS; i++) { dev_dbg(sdev->dev, "Attempting iteration %d of Core En/ROM load...\n", i); hda->boot_iteration = i + 1; if (chip_info->cl_init) ret = chip_info->cl_init(sdev, hext_stream->hstream.stream_tag, false); else ret = -EINVAL; /* don't retry anymore if successful */ if (!ret) break; } if (i == HDA_FW_BOOT_ATTEMPTS) { dev_err(sdev->dev, "error: dsp init failed after %d attempts with err: %d\n", i, ret); goto cleanup; } /* * When a SoundWire link is in clock stop state, a Slave * device may trigger in-band wakes for events such as jack * insertion or acoustic event detection. This event will lead * to a WAKEEN interrupt, handled by the PCI device and routed * to PME if the PCI device is in D3. The resume function in * audio PCI driver will be invoked by ACPI for PME event and * initialize the device and process WAKEEN interrupt. * * The WAKEEN interrupt should be processed ASAP to prevent an * interrupt flood, otherwise other interrupts, such IPC, * cannot work normally. The WAKEEN is handled after the ROM * is initialized successfully, which ensures power rails are * enabled before accessing the SoundWire SHIM registers */ if (!sdev->first_boot) hda_sdw_process_wakeen(sdev); /* * Set the boot_iteration to the last attempt, indicating that the * DSP ROM has been initialized and from this point there will be no * retry done to boot. * * Continue with code loading and firmware boot */ hda->boot_iteration = HDA_FW_BOOT_ATTEMPTS; ret = hda_cl_copy_fw(sdev, hext_stream); if (!ret) { dev_dbg(sdev->dev, "Firmware download successful, booting...\n"); hda->skip_imr_boot = false; } else { snd_sof_dsp_dbg_dump(sdev, "Firmware download failed", SOF_DBG_DUMP_PCI | SOF_DBG_DUMP_MBOX); hda->skip_imr_boot = true; } cleanup: /* * Perform codeloader stream cleanup. * This should be done even if firmware loading fails. * If the cleanup also fails, we return the initial error */ ret1 = hda_cl_cleanup(sdev->dev, &dmab, hext_stream); if (ret1 < 0) { dev_err(sdev->dev, "error: Code loader DSP cleanup failed\n"); /* set return value to indicate cleanup failure */ if (!ret) ret = ret1; } /* * return primary core id if both fw copy * and stream clean up are successful */ if (!ret) return chip_info->init_core_mask; /* disable DSP */ hda_dsp_ctrl_ppcap_enable(sdev, false); return ret; } int hda_dsp_ipc4_load_library(struct snd_sof_dev *sdev, struct sof_ipc4_fw_library *fw_lib, bool reload) { struct sof_intel_hda_dev *hda = sdev->pdata->hw_pdata; struct sof_ipc4_fw_data *ipc4_data = sdev->private; struct hdac_ext_stream *hext_stream; struct firmware stripped_firmware; struct sof_ipc4_msg msg = {}; struct snd_dma_buffer dmab; int ret, ret1; /* if IMR booting is enabled and fw context is saved for D3 state, skip the loading */ if (reload && hda->booted_from_imr && ipc4_data->fw_context_save) return 0; /* the fw_lib has been verified during loading, we can trust the validity here */ stripped_firmware.data = fw_lib->sof_fw.fw->data + fw_lib->sof_fw.payload_offset; stripped_firmware.size = fw_lib->sof_fw.fw->size - fw_lib->sof_fw.payload_offset; /* prepare DMA for code loader stream */ hext_stream = hda_cl_prepare(sdev->dev, HDA_CL_STREAM_FORMAT, stripped_firmware.size, &dmab, SNDRV_PCM_STREAM_PLAYBACK, false); if (IS_ERR(hext_stream)) { dev_err(sdev->dev, "%s: DMA prepare failed\n", __func__); return PTR_ERR(hext_stream); } memcpy(dmab.area, stripped_firmware.data, stripped_firmware.size); /* * 1st stage: SOF_IPC4_GLB_LOAD_LIBRARY_PREPARE * Message includes the dma_id to be prepared for the library loading. * If the firmware does not have support for the message, we will * receive -EOPNOTSUPP. In this case we will use single step library * loading and proceed to send the LOAD_LIBRARY message. */ msg.primary = hext_stream->hstream.stream_tag - 1; msg.primary |= SOF_IPC4_MSG_TYPE_SET(SOF_IPC4_GLB_LOAD_LIBRARY_PREPARE); msg.primary |= SOF_IPC4_MSG_DIR(SOF_IPC4_MSG_REQUEST); msg.primary |= SOF_IPC4_MSG_TARGET(SOF_IPC4_FW_GEN_MSG); ret = sof_ipc_tx_message_no_reply(sdev->ipc, &msg, 0); if (!ret) { int sd_offset = SOF_STREAM_SD_OFFSET(&hext_stream->hstream); unsigned int status; /* * Make sure that the FIFOS value is not 0 in SDxFIFOS register * which indicates that the firmware set the GEN bit and we can * continue to start the DMA */ ret = snd_sof_dsp_read_poll_timeout(sdev, HDA_DSP_HDA_BAR, sd_offset + SOF_HDA_ADSP_REG_SD_FIFOSIZE, status, status & SOF_HDA_SD_FIFOSIZE_FIFOS_MASK, HDA_DSP_REG_POLL_INTERVAL_US, HDA_DSP_BASEFW_TIMEOUT_US); if (ret < 0) dev_warn(sdev->dev, "%s: timeout waiting for FIFOS\n", __func__); } else if (ret != -EOPNOTSUPP) { goto cleanup; } ret = hda_cl_trigger(sdev->dev, hext_stream, SNDRV_PCM_TRIGGER_START); if (ret < 0) { dev_err(sdev->dev, "%s: DMA trigger start failed\n", __func__); goto cleanup; } /* * 2nd stage: LOAD_LIBRARY * Message includes the dma_id and the lib_id, the dma_id must be * identical to the one sent via LOAD_LIBRARY_PREPARE */ msg.primary &= ~SOF_IPC4_MSG_TYPE_MASK; msg.primary |= SOF_IPC4_MSG_TYPE_SET(SOF_IPC4_GLB_LOAD_LIBRARY); msg.primary |= SOF_IPC4_GLB_LOAD_LIBRARY_LIB_ID(fw_lib->id); ret = sof_ipc_tx_message_no_reply(sdev->ipc, &msg, 0); /* Stop the DMA channel */ ret1 = hda_cl_trigger(sdev->dev, hext_stream, SNDRV_PCM_TRIGGER_STOP); if (ret1 < 0) { dev_err(sdev->dev, "%s: DMA trigger stop failed\n", __func__); if (!ret) ret = ret1; } cleanup: /* clean up even in case of error and return the first error */ ret1 = hda_cl_cleanup(sdev->dev, &dmab, hext_stream); if (ret1 < 0) { dev_err(sdev->dev, "%s: Code loader DSP cleanup failed\n", __func__); /* set return value to indicate cleanup failure */ if (!ret) ret = ret1; } return ret; } /* pre fw run operations */ int hda_dsp_pre_fw_run(struct snd_sof_dev *sdev) { /* disable clock gating and power gating */ return hda_dsp_ctrl_clock_power_gating(sdev, false); } /* post fw run operations */ int hda_dsp_post_fw_run(struct snd_sof_dev *sdev) { int ret; if (sdev->first_boot) { struct sof_intel_hda_dev *hdev = sdev->pdata->hw_pdata; ret = hda_sdw_startup(sdev); if (ret < 0) { dev_err(sdev->dev, "error: could not startup SoundWire links\n"); return ret; } /* Check if IMR boot is usable */ if (!sof_debug_check_flag(SOF_DBG_IGNORE_D3_PERSISTENT) && (sdev->fw_ready.flags & SOF_IPC_INFO_D3_PERSISTENT || sdev->pdata->ipc_type == SOF_IPC_TYPE_4)) { hdev->imrboot_supported = true; debugfs_create_bool("skip_imr_boot", 0644, sdev->debugfs_root, &hdev->skip_imr_boot); } } hda_sdw_int_enable(sdev, true); /* re-enable clock gating and power gating */ return hda_dsp_ctrl_clock_power_gating(sdev, true); } int hda_dsp_ext_man_get_cavs_config_data(struct snd_sof_dev *sdev, const struct sof_ext_man_elem_header *hdr) { const struct sof_ext_man_cavs_config_data *config_data = container_of(hdr, struct sof_ext_man_cavs_config_data, hdr); struct sof_intel_hda_dev *hda = sdev->pdata->hw_pdata; int i, elem_num; /* calculate total number of config data elements */ elem_num = (hdr->size - sizeof(struct sof_ext_man_elem_header)) / sizeof(struct sof_config_elem); if (elem_num <= 0) { dev_err(sdev->dev, "cavs config data is inconsistent: %d\n", elem_num); return -EINVAL; } for (i = 0; i < elem_num; i++) switch (config_data->elems[i].token) { case SOF_EXT_MAN_CAVS_CONFIG_EMPTY: /* skip empty token */ break; case SOF_EXT_MAN_CAVS_CONFIG_CAVS_LPRO: hda->clk_config_lpro = config_data->elems[i].value; dev_dbg(sdev->dev, "FW clock config: %s\n", hda->clk_config_lpro ? "LPRO" : "HPRO"); break; case SOF_EXT_MAN_CAVS_CONFIG_OUTBOX_SIZE: case SOF_EXT_MAN_CAVS_CONFIG_INBOX_SIZE: /* These elements are defined but not being used yet. No warn is required */ break; default: dev_info(sdev->dev, "unsupported token type: %d\n", config_data->elems[i].token); } return 0; }