/* * skl-topology.c - Implements Platform component ALSA controls/widget * handlers. * * Copyright (C) 2014-2015 Intel Corp * Author: Jeeja KP * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as version 2, as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. */ #include #include #include #include #include #include "skl-sst-dsp.h" #include "skl-sst-ipc.h" #include "skl-topology.h" #include "skl.h" #include "skl-tplg-interface.h" #define SKL_CH_FIXUP_MASK (1 << 0) #define SKL_RATE_FIXUP_MASK (1 << 1) #define SKL_FMT_FIXUP_MASK (1 << 2) /* * SKL DSP driver modelling uses only few DAPM widgets so for rest we will * ignore. This helpers checks if the SKL driver handles this widget type */ static int is_skl_dsp_widget_type(struct snd_soc_dapm_widget *w) { switch (w->id) { case snd_soc_dapm_dai_link: case snd_soc_dapm_dai_in: case snd_soc_dapm_aif_in: case snd_soc_dapm_aif_out: case snd_soc_dapm_dai_out: case snd_soc_dapm_switch: return false; default: return true; } } /* * Each pipelines needs memory to be allocated. Check if we have free memory * from available pool. Then only add this to pool * This is freed when pipe is deleted * Note: DSP does actual memory management we only keep track for complete * pool */ static bool skl_tplg_alloc_pipe_mem(struct skl *skl, struct skl_module_cfg *mconfig) { struct skl_sst *ctx = skl->skl_sst; if (skl->resource.mem + mconfig->pipe->memory_pages > skl->resource.max_mem) { dev_err(ctx->dev, "%s: module_id %d instance %d\n", __func__, mconfig->id.module_id, mconfig->id.instance_id); dev_err(ctx->dev, "exceeds ppl memory available %d mem %d\n", skl->resource.max_mem, skl->resource.mem); return false; } skl->resource.mem += mconfig->pipe->memory_pages; return true; } /* * Pipeline needs needs DSP CPU resources for computation, this is * quantified in MCPS (Million Clocks Per Second) required for module/pipe * * Each pipelines needs mcps to be allocated. Check if we have mcps for this * pipe. This adds the mcps to driver counter * This is removed on pipeline delete */ static bool skl_tplg_alloc_pipe_mcps(struct skl *skl, struct skl_module_cfg *mconfig) { struct skl_sst *ctx = skl->skl_sst; if (skl->resource.mcps + mconfig->mcps > skl->resource.max_mcps) { dev_err(ctx->dev, "%s: module_id %d instance %d\n", __func__, mconfig->id.module_id, mconfig->id.instance_id); dev_err(ctx->dev, "exceeds ppl memory available %d > mem %d\n", skl->resource.max_mcps, skl->resource.mcps); return false; } skl->resource.mcps += mconfig->mcps; return true; } /* * Free the mcps when tearing down */ static void skl_tplg_free_pipe_mcps(struct skl *skl, struct skl_module_cfg *mconfig) { skl->resource.mcps -= mconfig->mcps; } /* * Free the memory when tearing down */ static void skl_tplg_free_pipe_mem(struct skl *skl, struct skl_module_cfg *mconfig) { skl->resource.mem -= mconfig->pipe->memory_pages; } static void skl_dump_mconfig(struct skl_sst *ctx, struct skl_module_cfg *mcfg) { dev_dbg(ctx->dev, "Dumping config\n"); dev_dbg(ctx->dev, "Input Format:\n"); dev_dbg(ctx->dev, "channels = %d\n", mcfg->in_fmt.channels); dev_dbg(ctx->dev, "s_freq = %d\n", mcfg->in_fmt.s_freq); dev_dbg(ctx->dev, "ch_cfg = %d\n", mcfg->in_fmt.ch_cfg); dev_dbg(ctx->dev, "valid bit depth = %d\n", mcfg->in_fmt.valid_bit_depth); dev_dbg(ctx->dev, "Output Format:\n"); dev_dbg(ctx->dev, "channels = %d\n", mcfg->out_fmt.channels); dev_dbg(ctx->dev, "s_freq = %d\n", mcfg->out_fmt.s_freq); dev_dbg(ctx->dev, "valid bit depth = %d\n", mcfg->out_fmt.valid_bit_depth); dev_dbg(ctx->dev, "ch_cfg = %d\n", mcfg->out_fmt.ch_cfg); } static void skl_tplg_update_params(struct skl_module_fmt *fmt, struct skl_pipe_params *params, int fixup) { if (fixup & SKL_RATE_FIXUP_MASK) fmt->s_freq = params->s_freq; if (fixup & SKL_CH_FIXUP_MASK) fmt->channels = params->ch; if (fixup & SKL_FMT_FIXUP_MASK) fmt->valid_bit_depth = params->s_fmt; } /* * A pipeline may have modules which impact the pcm parameters, like SRC, * channel converter, format converter. * We need to calculate the output params by applying the 'fixup' * Topology will tell driver which type of fixup is to be applied by * supplying the fixup mask, so based on that we calculate the output * * Now In FE the pcm hw_params is source/target format. Same is applicable * for BE with its hw_params invoked. * here based on FE, BE pipeline and direction we calculate the input and * outfix and then apply that for a module */ static void skl_tplg_update_params_fixup(struct skl_module_cfg *m_cfg, struct skl_pipe_params *params, bool is_fe) { int in_fixup, out_fixup; struct skl_module_fmt *in_fmt, *out_fmt; in_fmt = &m_cfg->in_fmt; out_fmt = &m_cfg->out_fmt; if (params->stream == SNDRV_PCM_STREAM_PLAYBACK) { if (is_fe) { in_fixup = m_cfg->params_fixup; out_fixup = (~m_cfg->converter) & m_cfg->params_fixup; } else { out_fixup = m_cfg->params_fixup; in_fixup = (~m_cfg->converter) & m_cfg->params_fixup; } } else { if (is_fe) { out_fixup = m_cfg->params_fixup; in_fixup = (~m_cfg->converter) & m_cfg->params_fixup; } else { in_fixup = m_cfg->params_fixup; out_fixup = (~m_cfg->converter) & m_cfg->params_fixup; } } skl_tplg_update_params(in_fmt, params, in_fixup); skl_tplg_update_params(out_fmt, params, out_fixup); } /* * A module needs input and output buffers, which are dependent upon pcm * params, so once we have calculate params, we need buffer calculation as * well. */ static void skl_tplg_update_buffer_size(struct skl_sst *ctx, struct skl_module_cfg *mcfg) { int multiplier = 1; if (mcfg->m_type == SKL_MODULE_TYPE_SRCINT) multiplier = 5; mcfg->ibs = (mcfg->in_fmt.s_freq / 1000) * (mcfg->in_fmt.channels) * (mcfg->in_fmt.bit_depth >> 3) * multiplier; mcfg->obs = (mcfg->out_fmt.s_freq / 1000) * (mcfg->out_fmt.channels) * (mcfg->out_fmt.bit_depth >> 3) * multiplier; } static void skl_tplg_update_module_params(struct snd_soc_dapm_widget *w, struct skl_sst *ctx) { struct skl_module_cfg *m_cfg = w->priv; struct skl_pipe_params *params = m_cfg->pipe->p_params; int p_conn_type = m_cfg->pipe->conn_type; bool is_fe; if (!m_cfg->params_fixup) return; dev_dbg(ctx->dev, "Mconfig for widget=%s BEFORE updation\n", w->name); skl_dump_mconfig(ctx, m_cfg); if (p_conn_type == SKL_PIPE_CONN_TYPE_FE) is_fe = true; else is_fe = false; skl_tplg_update_params_fixup(m_cfg, params, is_fe); skl_tplg_update_buffer_size(ctx, m_cfg); dev_dbg(ctx->dev, "Mconfig for widget=%s AFTER updation\n", w->name); skl_dump_mconfig(ctx, m_cfg); } /* * A pipe can have multiple modules, each of them will be a DAPM widget as * well. While managing a pipeline we need to get the list of all the * widgets in a pipelines, so this helper - skl_tplg_get_pipe_widget() helps * to get the SKL type widgets in that pipeline */ static int skl_tplg_alloc_pipe_widget(struct device *dev, struct snd_soc_dapm_widget *w, struct skl_pipe *pipe) { struct skl_module_cfg *src_module = NULL; struct snd_soc_dapm_path *p = NULL; struct skl_pipe_module *p_module = NULL; p_module = devm_kzalloc(dev, sizeof(*p_module), GFP_KERNEL); if (!p_module) return -ENOMEM; p_module->w = w; list_add_tail(&p_module->node, &pipe->w_list); snd_soc_dapm_widget_for_each_sink_path(w, p) { if ((p->sink->priv == NULL) && (!is_skl_dsp_widget_type(w))) continue; if ((p->sink->priv != NULL) && p->connect && is_skl_dsp_widget_type(p->sink)) { src_module = p->sink->priv; if (pipe->ppl_id == src_module->pipe->ppl_id) skl_tplg_alloc_pipe_widget(dev, p->sink, pipe); } } return 0; } /* * Inside a pipe instance, we can have various modules. These modules need * to instantiated in DSP by invoking INIT_MODULE IPC, which is achieved by * skl_init_module() routine, so invoke that for all modules in a pipeline */ static int skl_tplg_init_pipe_modules(struct skl *skl, struct skl_pipe *pipe) { struct skl_pipe_module *w_module; struct snd_soc_dapm_widget *w; struct skl_module_cfg *mconfig; struct skl_sst *ctx = skl->skl_sst; int ret = 0; list_for_each_entry(w_module, &pipe->w_list, node) { w = w_module->w; mconfig = w->priv; /* check resource available */ if (!skl_tplg_alloc_pipe_mcps(skl, mconfig)) return -ENOMEM; /* * apply fix/conversion to module params based on * FE/BE params */ skl_tplg_update_module_params(w, ctx); ret = skl_init_module(ctx, mconfig, NULL); if (ret < 0) return ret; } return 0; } /* * Mixer module represents a pipeline. So in the Pre-PMU event of mixer we * need create the pipeline. So we do following: * - check the resources * - Create the pipeline * - Initialize the modules in pipeline * - finally bind all modules together */ static int skl_tplg_mixer_dapm_pre_pmu_event(struct snd_soc_dapm_widget *w, struct skl *skl) { int ret; struct skl_module_cfg *mconfig = w->priv; struct skl_pipe_module *w_module; struct skl_pipe *s_pipe = mconfig->pipe; struct skl_module_cfg *src_module = NULL, *dst_module; struct skl_sst *ctx = skl->skl_sst; /* check resource available */ if (!skl_tplg_alloc_pipe_mcps(skl, mconfig)) return -EBUSY; if (!skl_tplg_alloc_pipe_mem(skl, mconfig)) return -ENOMEM; /* * Create a list of modules for pipe. * This list contains modules from source to sink */ ret = skl_create_pipeline(ctx, mconfig->pipe); if (ret < 0) return ret; /* * we create a w_list of all widgets in that pipe. This list is not * freed on PMD event as widgets within a pipe are static. This * saves us cycles to get widgets in pipe every time. * * So if we have already initialized all the widgets of a pipeline * we skip, so check for list_empty and create the list if empty */ if (list_empty(&s_pipe->w_list)) { ret = skl_tplg_alloc_pipe_widget(ctx->dev, w, s_pipe); if (ret < 0) return ret; } /* Init all pipe modules from source to sink */ ret = skl_tplg_init_pipe_modules(skl, s_pipe); if (ret < 0) return ret; /* Bind modules from source to sink */ list_for_each_entry(w_module, &s_pipe->w_list, node) { dst_module = w_module->w->priv; if (src_module == NULL) { src_module = dst_module; continue; } ret = skl_bind_modules(ctx, src_module, dst_module); if (ret < 0) return ret; src_module = dst_module; } return 0; } /* * A PGA represents a module in a pipeline. So in the Pre-PMU event of PGA * we need to do following: * - Bind to sink pipeline * Since the sink pipes can be running and we don't get mixer event on * connect for already running mixer, we need to find the sink pipes * here and bind to them. This way dynamic connect works. * - Start sink pipeline, if not running * - Then run current pipe */ static int skl_tplg_pga_dapm_pre_pmu_event(struct snd_soc_dapm_widget *w, struct skl *skl) { struct snd_soc_dapm_path *p; struct snd_soc_dapm_widget *source, *sink; struct skl_module_cfg *src_mconfig, *sink_mconfig; struct skl_sst *ctx = skl->skl_sst; int ret = 0; source = w; src_mconfig = source->priv; /* * find which sink it is connected to, bind with the sink, * if sink is not started, start sink pipe first, then start * this pipe */ snd_soc_dapm_widget_for_each_source_path(w, p) { if (!p->connect) continue; dev_dbg(ctx->dev, "%s: src widget=%s\n", __func__, w->name); dev_dbg(ctx->dev, "%s: sink widget=%s\n", __func__, p->sink->name); /* * here we will check widgets in sink pipelines, so that * can be any widgets type and we are only interested if * they are ones used for SKL so check that first */ if ((p->sink->priv != NULL) && is_skl_dsp_widget_type(p->sink)) { sink = p->sink; src_mconfig = source->priv; sink_mconfig = sink->priv; /* Bind source to sink, mixin is always source */ ret = skl_bind_modules(ctx, src_mconfig, sink_mconfig); if (ret) return ret; /* Start sinks pipe first */ if (sink_mconfig->pipe->state != SKL_PIPE_STARTED) { ret = skl_run_pipe(ctx, sink_mconfig->pipe); if (ret) return ret; } break; } } /* Start source pipe last after starting all sinks */ ret = skl_run_pipe(ctx, src_mconfig->pipe); if (ret) return ret; return 0; } /* * in the Post-PMU event of mixer we need to do following: * - Check if this pipe is running * - if not, then * - bind this pipeline to its source pipeline * if source pipe is already running, this means it is a dynamic * connection and we need to bind only to that pipe * - start this pipeline */ static int skl_tplg_mixer_dapm_post_pmu_event(struct snd_soc_dapm_widget *w, struct skl *skl) { int ret = 0; struct snd_soc_dapm_path *p; struct snd_soc_dapm_widget *source, *sink; struct skl_module_cfg *src_mconfig, *sink_mconfig; struct skl_sst *ctx = skl->skl_sst; int src_pipe_started = 0; sink = w; sink_mconfig = sink->priv; /* * If source pipe is already started, that means source is driving * one more sink before this sink got connected, Since source is * started, bind this sink to source and start this pipe. */ snd_soc_dapm_widget_for_each_sink_path(w, p) { if (!p->connect) continue; dev_dbg(ctx->dev, "sink widget=%s\n", w->name); dev_dbg(ctx->dev, "src widget=%s\n", p->source->name); /* * here we will check widgets in sink pipelines, so that * can be any widgets type and we are only interested if * they are ones used for SKL so check that first */ if ((p->source->priv != NULL) && is_skl_dsp_widget_type(p->source)) { source = p->source; src_mconfig = source->priv; sink_mconfig = sink->priv; src_pipe_started = 1; /* * check pipe state, then no need to bind or start * the pipe */ if (src_mconfig->pipe->state != SKL_PIPE_STARTED) src_pipe_started = 0; } } if (src_pipe_started) { ret = skl_bind_modules(ctx, src_mconfig, sink_mconfig); if (ret) return ret; ret = skl_run_pipe(ctx, sink_mconfig->pipe); } return ret; } /* * in the Pre-PMD event of mixer we need to do following: * - Stop the pipe * - find the source connections and remove that from dapm_path_list * - unbind with source pipelines if still connected */ static int skl_tplg_mixer_dapm_pre_pmd_event(struct snd_soc_dapm_widget *w, struct skl *skl) { struct skl_module_cfg *src_mconfig, *sink_mconfig; int ret = 0, i; struct skl_sst *ctx = skl->skl_sst; sink_mconfig = w->priv; /* Stop the pipe */ ret = skl_stop_pipe(ctx, sink_mconfig->pipe); if (ret) return ret; for (i = 0; i < sink_mconfig->max_in_queue; i++) { if (sink_mconfig->m_in_pin[i].pin_state == SKL_PIN_BIND_DONE) { src_mconfig = sink_mconfig->m_in_pin[i].tgt_mcfg; if (!src_mconfig) continue; /* * If path_found == 1, that means pmd for source * pipe has not occurred, source is connected to * some other sink. so its responsibility of sink * to unbind itself from source. */ ret = skl_stop_pipe(ctx, src_mconfig->pipe); if (ret < 0) return ret; ret = skl_unbind_modules(ctx, src_mconfig, sink_mconfig); } } return ret; } /* * in the Post-PMD event of mixer we need to do following: * - Free the mcps used * - Free the mem used * - Unbind the modules within the pipeline * - Delete the pipeline (modules are not required to be explicitly * deleted, pipeline delete is enough here */ static int skl_tplg_mixer_dapm_post_pmd_event(struct snd_soc_dapm_widget *w, struct skl *skl) { struct skl_module_cfg *mconfig = w->priv; struct skl_pipe_module *w_module; struct skl_module_cfg *src_module = NULL, *dst_module; struct skl_sst *ctx = skl->skl_sst; struct skl_pipe *s_pipe = mconfig->pipe; int ret = 0; skl_tplg_free_pipe_mcps(skl, mconfig); list_for_each_entry(w_module, &s_pipe->w_list, node) { dst_module = w_module->w->priv; if (src_module == NULL) { src_module = dst_module; continue; } ret = skl_unbind_modules(ctx, src_module, dst_module); if (ret < 0) return ret; src_module = dst_module; } ret = skl_delete_pipe(ctx, mconfig->pipe); skl_tplg_free_pipe_mem(skl, mconfig); return ret; } /* * in the Post-PMD event of PGA we need to do following: * - Free the mcps used * - Stop the pipeline * - In source pipe is connected, unbind with source pipelines */ static int skl_tplg_pga_dapm_post_pmd_event(struct snd_soc_dapm_widget *w, struct skl *skl) { struct skl_module_cfg *src_mconfig, *sink_mconfig; int ret = 0, i; struct skl_sst *ctx = skl->skl_sst; src_mconfig = w->priv; skl_tplg_free_pipe_mcps(skl, src_mconfig); /* Stop the pipe since this is a mixin module */ ret = skl_stop_pipe(ctx, src_mconfig->pipe); if (ret) return ret; for (i = 0; i < src_mconfig->max_out_queue; i++) { if (src_mconfig->m_out_pin[i].pin_state == SKL_PIN_BIND_DONE) { sink_mconfig = src_mconfig->m_out_pin[i].tgt_mcfg; if (!sink_mconfig) continue; /* * This is a connecter and if path is found that means * unbind between source and sink has not happened yet */ ret = skl_stop_pipe(ctx, sink_mconfig->pipe); if (ret < 0) return ret; ret = skl_unbind_modules(ctx, src_mconfig, sink_mconfig); } } return ret; } /* * In modelling, we assume there will be ONLY one mixer in a pipeline. If * mixer is not required then it is treated as static mixer aka vmixer with * a hard path to source module * So we don't need to check if source is started or not as hard path puts * dependency on each other */ static int skl_tplg_vmixer_event(struct snd_soc_dapm_widget *w, struct snd_kcontrol *k, int event) { struct snd_soc_dapm_context *dapm = w->dapm; struct skl *skl = get_skl_ctx(dapm->dev); switch (event) { case SND_SOC_DAPM_PRE_PMU: return skl_tplg_mixer_dapm_pre_pmu_event(w, skl); case SND_SOC_DAPM_POST_PMD: return skl_tplg_mixer_dapm_post_pmd_event(w, skl); } return 0; } /* * In modelling, we assume there will be ONLY one mixer in a pipeline. If a * second one is required that is created as another pipe entity. * The mixer is responsible for pipe management and represent a pipeline * instance */ static int skl_tplg_mixer_event(struct snd_soc_dapm_widget *w, struct snd_kcontrol *k, int event) { struct snd_soc_dapm_context *dapm = w->dapm; struct skl *skl = get_skl_ctx(dapm->dev); switch (event) { case SND_SOC_DAPM_PRE_PMU: return skl_tplg_mixer_dapm_pre_pmu_event(w, skl); case SND_SOC_DAPM_POST_PMU: return skl_tplg_mixer_dapm_post_pmu_event(w, skl); case SND_SOC_DAPM_PRE_PMD: return skl_tplg_mixer_dapm_pre_pmd_event(w, skl); case SND_SOC_DAPM_POST_PMD: return skl_tplg_mixer_dapm_post_pmd_event(w, skl); } return 0; } /* * In modelling, we assumed rest of the modules in pipeline are PGA. But we * are interested in last PGA (leaf PGA) in a pipeline to disconnect with * the sink when it is running (two FE to one BE or one FE to two BE) * scenarios */ static int skl_tplg_pga_event(struct snd_soc_dapm_widget *w, struct snd_kcontrol *k, int event) { struct snd_soc_dapm_context *dapm = w->dapm; struct skl *skl = get_skl_ctx(dapm->dev); switch (event) { case SND_SOC_DAPM_PRE_PMU: return skl_tplg_pga_dapm_pre_pmu_event(w, skl); case SND_SOC_DAPM_POST_PMD: return skl_tplg_pga_dapm_post_pmd_event(w, skl); } return 0; } /* * The FE params are passed by hw_params of the DAI. * On hw_params, the params are stored in Gateway module of the FE and we * need to calculate the format in DSP module configuration, that * conversion is done here */ int skl_tplg_update_pipe_params(struct device *dev, struct skl_module_cfg *mconfig, struct skl_pipe_params *params) { struct skl_pipe *pipe = mconfig->pipe; struct skl_module_fmt *format = NULL; memcpy(pipe->p_params, params, sizeof(*params)); if (params->stream == SNDRV_PCM_STREAM_PLAYBACK) format = &mconfig->in_fmt; else format = &mconfig->out_fmt; /* set the hw_params */ format->s_freq = params->s_freq; format->channels = params->ch; format->valid_bit_depth = skl_get_bit_depth(params->s_fmt); /* * 16 bit is 16 bit container whereas 24 bit is in 32 bit * container so update bit depth accordingly */ switch (format->valid_bit_depth) { case SKL_DEPTH_16BIT: format->bit_depth = format->valid_bit_depth; break; case SKL_DEPTH_24BIT: case SKL_DEPTH_32BIT: format->bit_depth = SKL_DEPTH_32BIT; break; default: dev_err(dev, "Invalid bit depth %x for pipe\n", format->valid_bit_depth); return -EINVAL; } if (params->stream == SNDRV_PCM_STREAM_PLAYBACK) { mconfig->ibs = (format->s_freq / 1000) * (format->channels) * (format->bit_depth >> 3); } else { mconfig->obs = (format->s_freq / 1000) * (format->channels) * (format->bit_depth >> 3); } return 0; } /* * Query the module config for the FE DAI * This is used to find the hw_params set for that DAI and apply to FE * pipeline */ struct skl_module_cfg * skl_tplg_fe_get_cpr_module(struct snd_soc_dai *dai, int stream) { struct snd_soc_dapm_widget *w; struct snd_soc_dapm_path *p = NULL; if (stream == SNDRV_PCM_STREAM_PLAYBACK) { w = dai->playback_widget; snd_soc_dapm_widget_for_each_sink_path(w, p) { if (p->connect && p->sink->power && !is_skl_dsp_widget_type(p->sink)) continue; if (p->sink->priv) { dev_dbg(dai->dev, "set params for %s\n", p->sink->name); return p->sink->priv; } } } else { w = dai->capture_widget; snd_soc_dapm_widget_for_each_source_path(w, p) { if (p->connect && p->source->power && !is_skl_dsp_widget_type(p->source)) continue; if (p->source->priv) { dev_dbg(dai->dev, "set params for %s\n", p->source->name); return p->source->priv; } } } return NULL; } static u8 skl_tplg_be_link_type(int dev_type) { int ret; switch (dev_type) { case SKL_DEVICE_BT: ret = NHLT_LINK_SSP; break; case SKL_DEVICE_DMIC: ret = NHLT_LINK_DMIC; break; case SKL_DEVICE_I2S: ret = NHLT_LINK_SSP; break; case SKL_DEVICE_HDALINK: ret = NHLT_LINK_HDA; break; default: ret = NHLT_LINK_INVALID; break; } return ret; } /* * Fill the BE gateway parameters * The BE gateway expects a blob of parameters which are kept in the ACPI * NHLT blob, so query the blob for interface type (i2s/pdm) and instance. * The port can have multiple settings so pick based on the PCM * parameters */ static int skl_tplg_be_fill_pipe_params(struct snd_soc_dai *dai, struct skl_module_cfg *mconfig, struct skl_pipe_params *params) { struct skl_pipe *pipe = mconfig->pipe; struct nhlt_specific_cfg *cfg; struct skl *skl = get_skl_ctx(dai->dev); int link_type = skl_tplg_be_link_type(mconfig->dev_type); memcpy(pipe->p_params, params, sizeof(*params)); if (link_type == NHLT_LINK_HDA) return 0; /* update the blob based on virtual bus_id*/ cfg = skl_get_ep_blob(skl, mconfig->vbus_id, link_type, params->s_fmt, params->ch, params->s_freq, params->stream); if (cfg) { mconfig->formats_config.caps_size = cfg->size; mconfig->formats_config.caps = (u32 *) &cfg->caps; } else { dev_err(dai->dev, "Blob NULL for id %x type %d dirn %d\n", mconfig->vbus_id, link_type, params->stream); dev_err(dai->dev, "PCM: ch %d, freq %d, fmt %d\n", params->ch, params->s_freq, params->s_fmt); return -EINVAL; } return 0; } static int skl_tplg_be_set_src_pipe_params(struct snd_soc_dai *dai, struct snd_soc_dapm_widget *w, struct skl_pipe_params *params) { struct snd_soc_dapm_path *p; int ret = -EIO; snd_soc_dapm_widget_for_each_source_path(w, p) { if (p->connect && is_skl_dsp_widget_type(p->source) && p->source->priv) { if (!p->source->power) { ret = skl_tplg_be_fill_pipe_params( dai, p->source->priv, params); if (ret < 0) return ret; } else { return -EBUSY; } } else { ret = skl_tplg_be_set_src_pipe_params( dai, p->source, params); if (ret < 0) return ret; } } return ret; } static int skl_tplg_be_set_sink_pipe_params(struct snd_soc_dai *dai, struct snd_soc_dapm_widget *w, struct skl_pipe_params *params) { struct snd_soc_dapm_path *p = NULL; int ret = -EIO; snd_soc_dapm_widget_for_each_sink_path(w, p) { if (p->connect && is_skl_dsp_widget_type(p->sink) && p->sink->priv) { if (!p->sink->power) { ret = skl_tplg_be_fill_pipe_params( dai, p->sink->priv, params); if (ret < 0) return ret; } else { return -EBUSY; } } else { ret = skl_tplg_be_set_sink_pipe_params( dai, p->sink, params); if (ret < 0) return ret; } } return ret; } /* * BE hw_params can be a source parameters (capture) or sink parameters * (playback). Based on sink and source we need to either find the source * list or the sink list and set the pipeline parameters */ int skl_tplg_be_update_params(struct snd_soc_dai *dai, struct skl_pipe_params *params) { struct snd_soc_dapm_widget *w; if (params->stream == SNDRV_PCM_STREAM_PLAYBACK) { w = dai->playback_widget; return skl_tplg_be_set_src_pipe_params(dai, w, params); } else { w = dai->capture_widget; return skl_tplg_be_set_sink_pipe_params(dai, w, params); } return 0; } static const struct snd_soc_tplg_widget_events skl_tplg_widget_ops[] = { {SKL_MIXER_EVENT, skl_tplg_mixer_event}, {SKL_VMIXER_EVENT, skl_tplg_vmixer_event}, {SKL_PGA_EVENT, skl_tplg_pga_event}, }; /* * The topology binary passes the pin info for a module so initialize the pin * info passed into module instance */ static void skl_fill_module_pin_info(struct skl_dfw_module_pin *dfw_pin, struct skl_module_pin *m_pin, bool is_dynamic, int max_pin) { int i; for (i = 0; i < max_pin; i++) { m_pin[i].id.module_id = dfw_pin[i].module_id; m_pin[i].id.instance_id = dfw_pin[i].instance_id; m_pin[i].in_use = false; m_pin[i].is_dynamic = is_dynamic; m_pin[i].pin_state = SKL_PIN_UNBIND; } } /* * Add pipeline from topology binary into driver pipeline list * * If already added we return that instance * Otherwise we create a new instance and add into driver list */ static struct skl_pipe *skl_tplg_add_pipe(struct device *dev, struct skl *skl, struct skl_dfw_pipe *dfw_pipe) { struct skl_pipeline *ppl; struct skl_pipe *pipe; struct skl_pipe_params *params; list_for_each_entry(ppl, &skl->ppl_list, node) { if (ppl->pipe->ppl_id == dfw_pipe->pipe_id) return ppl->pipe; } ppl = devm_kzalloc(dev, sizeof(*ppl), GFP_KERNEL); if (!ppl) return NULL; pipe = devm_kzalloc(dev, sizeof(*pipe), GFP_KERNEL); if (!pipe) return NULL; params = devm_kzalloc(dev, sizeof(*params), GFP_KERNEL); if (!params) return NULL; pipe->ppl_id = dfw_pipe->pipe_id; pipe->memory_pages = dfw_pipe->memory_pages; pipe->pipe_priority = dfw_pipe->pipe_priority; pipe->conn_type = dfw_pipe->conn_type; pipe->state = SKL_PIPE_INVALID; pipe->p_params = params; INIT_LIST_HEAD(&pipe->w_list); ppl->pipe = pipe; list_add(&ppl->node, &skl->ppl_list); return ppl->pipe; } /* * Topology core widget load callback * * This is used to save the private data for each widget which gives * information to the driver about module and pipeline parameters which DSP * FW expects like ids, resource values, formats etc */ static int skl_tplg_widget_load(struct snd_soc_component *cmpnt, struct snd_soc_dapm_widget *w, struct snd_soc_tplg_dapm_widget *tplg_w) { int ret; struct hdac_ext_bus *ebus = snd_soc_component_get_drvdata(cmpnt); struct skl *skl = ebus_to_skl(ebus); struct hdac_bus *bus = ebus_to_hbus(ebus); struct skl_module_cfg *mconfig; struct skl_pipe *pipe; struct skl_dfw_module *dfw_config = (struct skl_dfw_module *)tplg_w->priv.data; if (!tplg_w->priv.size) goto bind_event; mconfig = devm_kzalloc(bus->dev, sizeof(*mconfig), GFP_KERNEL); if (!mconfig) return -ENOMEM; w->priv = mconfig; mconfig->id.module_id = dfw_config->module_id; mconfig->id.instance_id = dfw_config->instance_id; mconfig->mcps = dfw_config->max_mcps; mconfig->ibs = dfw_config->ibs; mconfig->obs = dfw_config->obs; mconfig->core_id = dfw_config->core_id; mconfig->max_in_queue = dfw_config->max_in_queue; mconfig->max_out_queue = dfw_config->max_out_queue; mconfig->is_loadable = dfw_config->is_loadable; mconfig->in_fmt.channels = dfw_config->in_fmt.channels; mconfig->in_fmt.s_freq = dfw_config->in_fmt.freq; mconfig->in_fmt.bit_depth = dfw_config->in_fmt.bit_depth; mconfig->in_fmt.valid_bit_depth = dfw_config->in_fmt.valid_bit_depth; mconfig->in_fmt.ch_cfg = dfw_config->in_fmt.ch_cfg; mconfig->out_fmt.channels = dfw_config->out_fmt.channels; mconfig->out_fmt.s_freq = dfw_config->out_fmt.freq; mconfig->out_fmt.bit_depth = dfw_config->out_fmt.bit_depth; mconfig->out_fmt.valid_bit_depth = dfw_config->out_fmt.valid_bit_depth; mconfig->out_fmt.ch_cfg = dfw_config->out_fmt.ch_cfg; mconfig->params_fixup = dfw_config->params_fixup; mconfig->converter = dfw_config->converter; mconfig->m_type = dfw_config->module_type; mconfig->vbus_id = dfw_config->vbus_id; pipe = skl_tplg_add_pipe(bus->dev, skl, &dfw_config->pipe); if (pipe) mconfig->pipe = pipe; mconfig->dev_type = dfw_config->dev_type; mconfig->hw_conn_type = dfw_config->hw_conn_type; mconfig->time_slot = dfw_config->time_slot; mconfig->formats_config.caps_size = dfw_config->caps.caps_size; mconfig->m_in_pin = devm_kzalloc(bus->dev, (mconfig->max_in_queue) * sizeof(*mconfig->m_in_pin), GFP_KERNEL); if (!mconfig->m_in_pin) return -ENOMEM; mconfig->m_out_pin = devm_kzalloc(bus->dev, (mconfig->max_out_queue) * sizeof(*mconfig->m_out_pin), GFP_KERNEL); if (!mconfig->m_out_pin) return -ENOMEM; skl_fill_module_pin_info(dfw_config->in_pin, mconfig->m_in_pin, dfw_config->is_dynamic_in_pin, mconfig->max_in_queue); skl_fill_module_pin_info(dfw_config->out_pin, mconfig->m_out_pin, dfw_config->is_dynamic_out_pin, mconfig->max_out_queue); if (mconfig->formats_config.caps_size == 0) goto bind_event; mconfig->formats_config.caps = (u32 *)devm_kzalloc(bus->dev, mconfig->formats_config.caps_size, GFP_KERNEL); if (mconfig->formats_config.caps == NULL) return -ENOMEM; memcpy(mconfig->formats_config.caps, dfw_config->caps.caps, dfw_config->caps.caps_size); bind_event: if (tplg_w->event_type == 0) { dev_dbg(bus->dev, "ASoC: No event handler required\n"); return 0; } ret = snd_soc_tplg_widget_bind_event(w, skl_tplg_widget_ops, ARRAY_SIZE(skl_tplg_widget_ops), tplg_w->event_type); if (ret) { dev_err(bus->dev, "%s: No matching event handlers found for %d\n", __func__, tplg_w->event_type); return -EINVAL; } return 0; } static struct snd_soc_tplg_ops skl_tplg_ops = { .widget_load = skl_tplg_widget_load, }; /* This will be read from topology manifest, currently defined here */ #define SKL_MAX_MCPS 30000000 #define SKL_FW_MAX_MEM 1000000 /* * SKL topology init routine */ int skl_tplg_init(struct snd_soc_platform *platform, struct hdac_ext_bus *ebus) { int ret; const struct firmware *fw; struct hdac_bus *bus = ebus_to_hbus(ebus); struct skl *skl = ebus_to_skl(ebus); ret = request_firmware(&fw, "dfw_sst.bin", bus->dev); if (ret < 0) { dev_err(bus->dev, "tplg fw %s load failed with %d\n", "dfw_sst.bin", ret); return ret; } /* * The complete tplg for SKL is loaded as index 0, we don't use * any other index */ ret = snd_soc_tplg_component_load(&platform->component, &skl_tplg_ops, fw, 0); if (ret < 0) { dev_err(bus->dev, "tplg component load failed%d\n", ret); return -EINVAL; } skl->resource.max_mcps = SKL_MAX_MCPS; skl->resource.max_mem = SKL_FW_MAX_MEM; return 0; }