/*
 * Copyright (C) 2007 Jens Axboe <jens.axboe@oracle.com>
 *
 * Scatterlist handling helpers.
 *
 * This source code is licensed under the GNU General Public License,
 * Version 2. See the file COPYING for more details.
 */
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/scatterlist.h>
#include <linux/highmem.h>
#include <linux/kmemleak.h>

/**
 * sg_next - return the next scatterlist entry in a list
 * @sg:		The current sg entry
 *
 * Description:
 *   Usually the next entry will be @sg@ + 1, but if this sg element is part
 *   of a chained scatterlist, it could jump to the start of a new
 *   scatterlist array.
 *
 **/
struct scatterlist *sg_next(struct scatterlist *sg)
{
#ifdef CONFIG_DEBUG_SG
	BUG_ON(sg->sg_magic != SG_MAGIC);
#endif
	if (sg_is_last(sg))
		return NULL;

	sg++;
	if (unlikely(sg_is_chain(sg)))
		sg = sg_chain_ptr(sg);

	return sg;
}
EXPORT_SYMBOL(sg_next);

/**
 * sg_last - return the last scatterlist entry in a list
 * @sgl:	First entry in the scatterlist
 * @nents:	Number of entries in the scatterlist
 *
 * Description:
 *   Should only be used casually, it (currently) scans the entire list
 *   to get the last entry.
 *
 *   Note that the @sgl@ pointer passed in need not be the first one,
 *   the important bit is that @nents@ denotes the number of entries that
 *   exist from @sgl@.
 *
 **/
struct scatterlist *sg_last(struct scatterlist *sgl, unsigned int nents)
{
#ifndef ARCH_HAS_SG_CHAIN
	struct scatterlist *ret = &sgl[nents - 1];
#else
	struct scatterlist *sg, *ret = NULL;
	unsigned int i;

	for_each_sg(sgl, sg, nents, i)
		ret = sg;

#endif
#ifdef CONFIG_DEBUG_SG
	BUG_ON(sgl[0].sg_magic != SG_MAGIC);
	BUG_ON(!sg_is_last(ret));
#endif
	return ret;
}
EXPORT_SYMBOL(sg_last);

/**
 * sg_init_table - Initialize SG table
 * @sgl:	   The SG table
 * @nents:	   Number of entries in table
 *
 * Notes:
 *   If this is part of a chained sg table, sg_mark_end() should be
 *   used only on the last table part.
 *
 **/
void sg_init_table(struct scatterlist *sgl, unsigned int nents)
{
	memset(sgl, 0, sizeof(*sgl) * nents);
#ifdef CONFIG_DEBUG_SG
	{
		unsigned int i;
		for (i = 0; i < nents; i++)
			sgl[i].sg_magic = SG_MAGIC;
	}
#endif
	sg_mark_end(&sgl[nents - 1]);
}
EXPORT_SYMBOL(sg_init_table);

/**
 * sg_init_one - Initialize a single entry sg list
 * @sg:		 SG entry
 * @buf:	 Virtual address for IO
 * @buflen:	 IO length
 *
 **/
void sg_init_one(struct scatterlist *sg, const void *buf, unsigned int buflen)
{
	sg_init_table(sg, 1);
	sg_set_buf(sg, buf, buflen);
}
EXPORT_SYMBOL(sg_init_one);

/*
 * The default behaviour of sg_alloc_table() is to use these kmalloc/kfree
 * helpers.
 */
static struct scatterlist *sg_kmalloc(unsigned int nents, gfp_t gfp_mask)
{
	if (nents == SG_MAX_SINGLE_ALLOC) {
		/*
		 * Kmemleak doesn't track page allocations as they are not
		 * commonly used (in a raw form) for kernel data structures.
		 * As we chain together a list of pages and then a normal
		 * kmalloc (tracked by kmemleak), in order to for that last
		 * allocation not to become decoupled (and thus a
		 * false-positive) we need to inform kmemleak of all the
		 * intermediate allocations.
		 */
		void *ptr = (void *) __get_free_page(gfp_mask);
		kmemleak_alloc(ptr, PAGE_SIZE, 1, gfp_mask);
		return ptr;
	} else
		return kmalloc(nents * sizeof(struct scatterlist), gfp_mask);
}

static void sg_kfree(struct scatterlist *sg, unsigned int nents)
{
	if (nents == SG_MAX_SINGLE_ALLOC) {
		kmemleak_free(sg);
		free_page((unsigned long) sg);
	} else
		kfree(sg);
}

/**
 * __sg_free_table - Free a previously mapped sg table
 * @table:	The sg table header to use
 * @max_ents:	The maximum number of entries per single scatterlist
 * @free_fn:	Free function
 *
 *  Description:
 *    Free an sg table previously allocated and setup with
 *    __sg_alloc_table().  The @max_ents value must be identical to
 *    that previously used with __sg_alloc_table().
 *
 **/
void __sg_free_table(struct sg_table *table, unsigned int max_ents,
		     sg_free_fn *free_fn)
{
	struct scatterlist *sgl, *next;

	if (unlikely(!table->sgl))
		return;

	sgl = table->sgl;
	while (table->orig_nents) {
		unsigned int alloc_size = table->orig_nents;
		unsigned int sg_size;

		/*
		 * If we have more than max_ents segments left,
		 * then assign 'next' to the sg table after the current one.
		 * sg_size is then one less than alloc size, since the last
		 * element is the chain pointer.
		 */
		if (alloc_size > max_ents) {
			next = sg_chain_ptr(&sgl[max_ents - 1]);
			alloc_size = max_ents;
			sg_size = alloc_size - 1;
		} else {
			sg_size = alloc_size;
			next = NULL;
		}

		table->orig_nents -= sg_size;
		free_fn(sgl, alloc_size);
		sgl = next;
	}

	table->sgl = NULL;
}
EXPORT_SYMBOL(__sg_free_table);

/**
 * sg_free_table - Free a previously allocated sg table
 * @table:	The mapped sg table header
 *
 **/
void sg_free_table(struct sg_table *table)
{
	__sg_free_table(table, SG_MAX_SINGLE_ALLOC, sg_kfree);
}
EXPORT_SYMBOL(sg_free_table);

/**
 * __sg_alloc_table - Allocate and initialize an sg table with given allocator
 * @table:	The sg table header to use
 * @nents:	Number of entries in sg list
 * @max_ents:	The maximum number of entries the allocator returns per call
 * @gfp_mask:	GFP allocation mask
 * @alloc_fn:	Allocator to use
 *
 * Description:
 *   This function returns a @table @nents long. The allocator is
 *   defined to return scatterlist chunks of maximum size @max_ents.
 *   Thus if @nents is bigger than @max_ents, the scatterlists will be
 *   chained in units of @max_ents.
 *
 * Notes:
 *   If this function returns non-0 (eg failure), the caller must call
 *   __sg_free_table() to cleanup any leftover allocations.
 *
 **/
int __sg_alloc_table(struct sg_table *table, unsigned int nents,
		     unsigned int max_ents, gfp_t gfp_mask,
		     sg_alloc_fn *alloc_fn)
{
	struct scatterlist *sg, *prv;
	unsigned int left;

#ifndef ARCH_HAS_SG_CHAIN
	BUG_ON(nents > max_ents);
#endif

	memset(table, 0, sizeof(*table));

	left = nents;
	prv = NULL;
	do {
		unsigned int sg_size, alloc_size = left;

		if (alloc_size > max_ents) {
			alloc_size = max_ents;
			sg_size = alloc_size - 1;
		} else
			sg_size = alloc_size;

		left -= sg_size;

		sg = alloc_fn(alloc_size, gfp_mask);
		if (unlikely(!sg))
			return -ENOMEM;

		sg_init_table(sg, alloc_size);
		table->nents = table->orig_nents += sg_size;

		/*
		 * If this is the first mapping, assign the sg table header.
		 * If this is not the first mapping, chain previous part.
		 */
		if (prv)
			sg_chain(prv, max_ents, sg);
		else
			table->sgl = sg;

		/*
		 * If no more entries after this one, mark the end
		 */
		if (!left)
			sg_mark_end(&sg[sg_size - 1]);

		/*
		 * only really needed for mempool backed sg allocations (like
		 * SCSI), a possible improvement here would be to pass the
		 * table pointer into the allocator and let that clear these
		 * flags
		 */
		gfp_mask &= ~__GFP_WAIT;
		gfp_mask |= __GFP_HIGH;
		prv = sg;
	} while (left);

	return 0;
}
EXPORT_SYMBOL(__sg_alloc_table);

/**
 * sg_alloc_table - Allocate and initialize an sg table
 * @table:	The sg table header to use
 * @nents:	Number of entries in sg list
 * @gfp_mask:	GFP allocation mask
 *
 *  Description:
 *    Allocate and initialize an sg table. If @nents@ is larger than
 *    SG_MAX_SINGLE_ALLOC a chained sg table will be setup.
 *
 **/
int sg_alloc_table(struct sg_table *table, unsigned int nents, gfp_t gfp_mask)
{
	int ret;

	ret = __sg_alloc_table(table, nents, SG_MAX_SINGLE_ALLOC,
			       gfp_mask, sg_kmalloc);
	if (unlikely(ret))
		__sg_free_table(table, SG_MAX_SINGLE_ALLOC, sg_kfree);

	return ret;
}
EXPORT_SYMBOL(sg_alloc_table);

/**
 * sg_miter_start - start mapping iteration over a sg list
 * @miter: sg mapping iter to be started
 * @sgl: sg list to iterate over
 * @nents: number of sg entries
 *
 * Description:
 *   Starts mapping iterator @miter.
 *
 * Context:
 *   Don't care.
 */
void sg_miter_start(struct sg_mapping_iter *miter, struct scatterlist *sgl,
		    unsigned int nents, unsigned int flags)
{
	memset(miter, 0, sizeof(struct sg_mapping_iter));

	miter->__sg = sgl;
	miter->__nents = nents;
	miter->__offset = 0;
	WARN_ON(!(flags & (SG_MITER_TO_SG | SG_MITER_FROM_SG)));
	miter->__flags = flags;
}
EXPORT_SYMBOL(sg_miter_start);

/**
 * sg_miter_next - proceed mapping iterator to the next mapping
 * @miter: sg mapping iter to proceed
 *
 * Description:
 *   Proceeds @miter@ to the next mapping.  @miter@ should have been
 *   started using sg_miter_start().  On successful return,
 *   @miter@->page, @miter@->addr and @miter@->length point to the
 *   current mapping.
 *
 * Context:
 *   IRQ disabled if SG_MITER_ATOMIC.  IRQ must stay disabled till
 *   @miter@ is stopped.  May sleep if !SG_MITER_ATOMIC.
 *
 * Returns:
 *   true if @miter contains the next mapping.  false if end of sg
 *   list is reached.
 */
bool sg_miter_next(struct sg_mapping_iter *miter)
{
	unsigned int off, len;

	/* check for end and drop resources from the last iteration */
	if (!miter->__nents)
		return false;

	sg_miter_stop(miter);

	/* get to the next sg if necessary.  __offset is adjusted by stop */
	while (miter->__offset == miter->__sg->length) {
		if (--miter->__nents) {
			miter->__sg = sg_next(miter->__sg);
			miter->__offset = 0;
		} else
			return false;
	}

	/* map the next page */
	off = miter->__sg->offset + miter->__offset;
	len = miter->__sg->length - miter->__offset;

	miter->page = nth_page(sg_page(miter->__sg), off >> PAGE_SHIFT);
	off &= ~PAGE_MASK;
	miter->length = min_t(unsigned int, len, PAGE_SIZE - off);
	miter->consumed = miter->length;

	if (miter->__flags & SG_MITER_ATOMIC)
		miter->addr = kmap_atomic(miter->page, KM_BIO_SRC_IRQ) + off;
	else
		miter->addr = kmap(miter->page) + off;

	return true;
}
EXPORT_SYMBOL(sg_miter_next);

/**
 * sg_miter_stop - stop mapping iteration
 * @miter: sg mapping iter to be stopped
 *
 * Description:
 *   Stops mapping iterator @miter.  @miter should have been started
 *   started using sg_miter_start().  A stopped iteration can be
 *   resumed by calling sg_miter_next() on it.  This is useful when
 *   resources (kmap) need to be released during iteration.
 *
 * Context:
 *   IRQ disabled if the SG_MITER_ATOMIC is set.  Don't care otherwise.
 */
void sg_miter_stop(struct sg_mapping_iter *miter)
{
	WARN_ON(miter->consumed > miter->length);

	/* drop resources from the last iteration */
	if (miter->addr) {
		miter->__offset += miter->consumed;

		if (miter->__flags & SG_MITER_TO_SG)
			flush_kernel_dcache_page(miter->page);

		if (miter->__flags & SG_MITER_ATOMIC) {
			WARN_ON(!irqs_disabled());
			kunmap_atomic(miter->addr, KM_BIO_SRC_IRQ);
		} else
			kunmap(miter->page);

		miter->page = NULL;
		miter->addr = NULL;
		miter->length = 0;
		miter->consumed = 0;
	}
}
EXPORT_SYMBOL(sg_miter_stop);

/**
 * sg_copy_buffer - Copy data between a linear buffer and an SG list
 * @sgl:		 The SG list
 * @nents:		 Number of SG entries
 * @buf:		 Where to copy from
 * @buflen:		 The number of bytes to copy
 * @to_buffer: 		 transfer direction (non zero == from an sg list to a
 * 			 buffer, 0 == from a buffer to an sg list
 *
 * Returns the number of copied bytes.
 *
 **/
static size_t sg_copy_buffer(struct scatterlist *sgl, unsigned int nents,
			     void *buf, size_t buflen, int to_buffer)
{
	unsigned int offset = 0;
	struct sg_mapping_iter miter;
	unsigned long flags;
	unsigned int sg_flags = SG_MITER_ATOMIC;

	if (to_buffer)
		sg_flags |= SG_MITER_FROM_SG;
	else
		sg_flags |= SG_MITER_TO_SG;

	sg_miter_start(&miter, sgl, nents, sg_flags);

	local_irq_save(flags);

	while (sg_miter_next(&miter) && offset < buflen) {
		unsigned int len;

		len = min(miter.length, buflen - offset);

		if (to_buffer)
			memcpy(buf + offset, miter.addr, len);
		else
			memcpy(miter.addr, buf + offset, len);

		offset += len;
	}

	sg_miter_stop(&miter);

	local_irq_restore(flags);
	return offset;
}

/**
 * sg_copy_from_buffer - Copy from a linear buffer to an SG list
 * @sgl:		 The SG list
 * @nents:		 Number of SG entries
 * @buf:		 Where to copy from
 * @buflen:		 The number of bytes to copy
 *
 * Returns the number of copied bytes.
 *
 **/
size_t sg_copy_from_buffer(struct scatterlist *sgl, unsigned int nents,
			   void *buf, size_t buflen)
{
	return sg_copy_buffer(sgl, nents, buf, buflen, 0);
}
EXPORT_SYMBOL(sg_copy_from_buffer);

/**
 * sg_copy_to_buffer - Copy from an SG list to a linear buffer
 * @sgl:		 The SG list
 * @nents:		 Number of SG entries
 * @buf:		 Where to copy to
 * @buflen:		 The number of bytes to copy
 *
 * Returns the number of copied bytes.
 *
 **/
size_t sg_copy_to_buffer(struct scatterlist *sgl, unsigned int nents,
			 void *buf, size_t buflen)
{
	return sg_copy_buffer(sgl, nents, buf, buflen, 1);
}
EXPORT_SYMBOL(sg_copy_to_buffer);