/* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_MIN_HEAP_H #define _LINUX_MIN_HEAP_H #include #include #include /** * Data structure to hold a min-heap. * @nr: Number of elements currently in the heap. * @size: Maximum number of elements that can be held in current storage. * @data: Pointer to the start of array holding the heap elements. * @preallocated: Start of the static preallocated array holding the heap elements. */ #define MIN_HEAP_PREALLOCATED(_type, _name, _nr) \ struct _name { \ int nr; \ int size; \ _type *data; \ _type preallocated[_nr]; \ } #define DEFINE_MIN_HEAP(_type, _name) MIN_HEAP_PREALLOCATED(_type, _name, 0) typedef DEFINE_MIN_HEAP(char, min_heap_char) min_heap_char; #define __minheap_cast(_heap) (typeof((_heap)->data[0]) *) #define __minheap_obj_size(_heap) sizeof((_heap)->data[0]) /** * struct min_heap_callbacks - Data/functions to customise the min_heap. * @less: Partial order function for this heap. * @swp: Swap elements function. */ struct min_heap_callbacks { bool (*less)(const void *lhs, const void *rhs, void *args); void (*swp)(void *lhs, void *rhs, void *args); }; /* Initialize a min-heap. */ static __always_inline void __min_heap_init(min_heap_char *heap, void *data, int size) { heap->nr = 0; heap->size = size; if (data) heap->data = data; else heap->data = heap->preallocated; } #define min_heap_init(_heap, _data, _size) \ __min_heap_init((min_heap_char *)_heap, _data, _size) /* Get the minimum element from the heap. */ static __always_inline void *__min_heap_peek(struct min_heap_char *heap) { return heap->nr ? heap->data : NULL; } #define min_heap_peek(_heap) \ (__minheap_cast(_heap) __min_heap_peek((min_heap_char *)_heap)) /* Check if the heap is full. */ static __always_inline bool __min_heap_full(min_heap_char *heap) { return heap->nr == heap->size; } #define min_heap_full(_heap) \ __min_heap_full((min_heap_char *)_heap) /* Sift the element at pos down the heap. */ static __always_inline void __min_heapify(min_heap_char *heap, int pos, size_t elem_size, const struct min_heap_callbacks *func, void *args) { void *left, *right; void *data = heap->data; void *root = data + pos * elem_size; int i = pos, j; /* Find the sift-down path all the way to the leaves. */ for (;;) { if (i * 2 + 2 >= heap->nr) break; left = data + (i * 2 + 1) * elem_size; right = data + (i * 2 + 2) * elem_size; i = func->less(left, right, args) ? i * 2 + 1 : i * 2 + 2; } /* Special case for the last leaf with no sibling. */ if (i * 2 + 2 == heap->nr) i = i * 2 + 1; /* Backtrack to the correct location. */ while (i != pos && func->less(root, data + i * elem_size, args)) i = (i - 1) / 2; /* Shift the element into its correct place. */ j = i; while (i != pos) { i = (i - 1) / 2; func->swp(data + i * elem_size, data + j * elem_size, args); } } #define min_heapify(_heap, _pos, _func, _args) \ __min_heapify((min_heap_char *)_heap, _pos, __minheap_obj_size(_heap), _func, _args) /* Floyd's approach to heapification that is O(nr). */ static __always_inline void __min_heapify_all(min_heap_char *heap, size_t elem_size, const struct min_heap_callbacks *func, void *args) { int i; for (i = heap->nr / 2 - 1; i >= 0; i--) __min_heapify(heap, i, elem_size, func, args); } #define min_heapify_all(_heap, _func, _args) \ __min_heapify_all((min_heap_char *)_heap, __minheap_obj_size(_heap), _func, _args) /* Remove minimum element from the heap, O(log2(nr)). */ static __always_inline void __min_heap_pop(min_heap_char *heap, size_t elem_size, const struct min_heap_callbacks *func, void *args) { void *data = heap->data; if (WARN_ONCE(heap->nr <= 0, "Popping an empty heap")) return; /* Place last element at the root (position 0) and then sift down. */ heap->nr--; memcpy(data, data + (heap->nr * elem_size), elem_size); __min_heapify(heap, 0, elem_size, func, args); } #define min_heap_pop(_heap, _func, _args) \ __min_heap_pop((min_heap_char *)_heap, __minheap_obj_size(_heap), _func, _args) /* * Remove the minimum element and then push the given element. The * implementation performs 1 sift (O(log2(nr))) and is therefore more * efficient than a pop followed by a push that does 2. */ static __always_inline void __min_heap_pop_push(min_heap_char *heap, const void *element, size_t elem_size, const struct min_heap_callbacks *func, void *args) { memcpy(heap->data, element, elem_size); __min_heapify(heap, 0, elem_size, func, args); } #define min_heap_pop_push(_heap, _element, _func, _args) \ __min_heap_pop_push((min_heap_char *)_heap, _element, __minheap_obj_size(_heap), _func, _args) /* Push an element on to the heap, O(log2(nr)). */ static __always_inline void __min_heap_push(min_heap_char *heap, const void *element, size_t elem_size, const struct min_heap_callbacks *func, void *args) { void *data = heap->data; void *child, *parent; int pos; if (WARN_ONCE(heap->nr >= heap->size, "Pushing on a full heap")) return; /* Place at the end of data. */ pos = heap->nr; memcpy(data + (pos * elem_size), element, elem_size); heap->nr++; /* Sift child at pos up. */ for (; pos > 0; pos = (pos - 1) / 2) { child = data + (pos * elem_size); parent = data + ((pos - 1) / 2) * elem_size; if (func->less(parent, child, args)) break; func->swp(parent, child, args); } } #define min_heap_push(_heap, _element, _func, _args) \ __min_heap_push((min_heap_char *)_heap, _element, __minheap_obj_size(_heap), _func, _args) #endif /* _LINUX_MIN_HEAP_H */