// SPDX-License-Identifier: GPL-2.0 #ifndef NO_BCACHEFS_FS #include "bcachefs.h" #include "alloc_foreground.h" #include "bkey_buf.h" #include "btree_update.h" #include "buckets.h" #include "clock.h" #include "error.h" #include "extents.h" #include "extent_update.h" #include "fs.h" #include "fs-io.h" #include "fsck.h" #include "inode.h" #include "journal.h" #include "io.h" #include "keylist.h" #include "quota.h" #include "reflink.h" #include "trace.h" #include #include #include #include #include #include #include #include #include #include #include #include struct nocow_flush { struct closure *cl; struct bch_dev *ca; struct bio bio; }; static void nocow_flush_endio(struct bio *_bio) { struct nocow_flush *bio = container_of(_bio, struct nocow_flush, bio); closure_put(bio->cl); percpu_ref_put(&bio->ca->io_ref); bio_put(&bio->bio); } static void bch2_inode_flush_nocow_writes_async(struct bch_fs *c, struct bch_inode_info *inode, struct closure *cl) { struct nocow_flush *bio; struct bch_dev *ca; struct bch_devs_mask devs; unsigned dev; dev = find_first_bit(inode->ei_devs_need_flush.d, BCH_SB_MEMBERS_MAX); if (dev == BCH_SB_MEMBERS_MAX) return; devs = inode->ei_devs_need_flush; memset(&inode->ei_devs_need_flush, 0, sizeof(inode->ei_devs_need_flush)); for_each_set_bit(dev, devs.d, BCH_SB_MEMBERS_MAX) { rcu_read_lock(); ca = rcu_dereference(c->devs[dev]); if (ca && !percpu_ref_tryget(&ca->io_ref)) ca = NULL; rcu_read_unlock(); if (!ca) continue; bio = container_of(bio_alloc_bioset(ca->disk_sb.bdev, 0, REQ_OP_FLUSH, GFP_KERNEL, &c->nocow_flush_bioset), struct nocow_flush, bio); bio->cl = cl; bio->ca = ca; bio->bio.bi_end_io = nocow_flush_endio; closure_bio_submit(&bio->bio, cl); } } static int bch2_inode_flush_nocow_writes(struct bch_fs *c, struct bch_inode_info *inode) { struct closure cl; closure_init_stack(&cl); bch2_inode_flush_nocow_writes_async(c, inode, &cl); closure_sync(&cl); return 0; } static inline bool bio_full(struct bio *bio, unsigned len) { if (bio->bi_vcnt >= bio->bi_max_vecs) return true; if (bio->bi_iter.bi_size > UINT_MAX - len) return true; return false; } static inline struct address_space *faults_disabled_mapping(void) { return (void *) (((unsigned long) current->faults_disabled_mapping) & ~1UL); } static inline void set_fdm_dropped_locks(void) { current->faults_disabled_mapping = (void *) (((unsigned long) current->faults_disabled_mapping)|1); } static inline bool fdm_dropped_locks(void) { return ((unsigned long) current->faults_disabled_mapping) & 1; } struct quota_res { u64 sectors; }; struct bch_writepage_io { struct bch_inode_info *inode; /* must be last: */ struct bch_write_op op; }; struct dio_write { struct kiocb *req; struct address_space *mapping; struct bch_inode_info *inode; struct mm_struct *mm; unsigned loop:1, extending:1, sync:1, flush:1, free_iov:1; struct quota_res quota_res; u64 written; struct iov_iter iter; struct iovec inline_vecs[2]; /* must be last: */ struct bch_write_op op; }; struct dio_read { struct closure cl; struct kiocb *req; long ret; bool should_dirty; struct bch_read_bio rbio; }; /* pagecache_block must be held */ static noinline int write_invalidate_inode_pages_range(struct address_space *mapping, loff_t start, loff_t end) { int ret; /* * XXX: the way this is currently implemented, we can spin if a process * is continually redirtying a specific page */ do { if (!mapping->nrpages) return 0; ret = filemap_write_and_wait_range(mapping, start, end); if (ret) break; if (!mapping->nrpages) return 0; ret = invalidate_inode_pages2_range(mapping, start >> PAGE_SHIFT, end >> PAGE_SHIFT); } while (ret == -EBUSY); return ret; } /* quotas */ #ifdef CONFIG_BCACHEFS_QUOTA static void __bch2_quota_reservation_put(struct bch_fs *c, struct bch_inode_info *inode, struct quota_res *res) { BUG_ON(res->sectors > inode->ei_quota_reserved); bch2_quota_acct(c, inode->ei_qid, Q_SPC, -((s64) res->sectors), KEY_TYPE_QUOTA_PREALLOC); inode->ei_quota_reserved -= res->sectors; res->sectors = 0; } static void bch2_quota_reservation_put(struct bch_fs *c, struct bch_inode_info *inode, struct quota_res *res) { if (res->sectors) { mutex_lock(&inode->ei_quota_lock); __bch2_quota_reservation_put(c, inode, res); mutex_unlock(&inode->ei_quota_lock); } } static int bch2_quota_reservation_add(struct bch_fs *c, struct bch_inode_info *inode, struct quota_res *res, u64 sectors, bool check_enospc) { int ret; mutex_lock(&inode->ei_quota_lock); ret = bch2_quota_acct(c, inode->ei_qid, Q_SPC, sectors, check_enospc ? KEY_TYPE_QUOTA_PREALLOC : KEY_TYPE_QUOTA_NOCHECK); if (likely(!ret)) { inode->ei_quota_reserved += sectors; res->sectors += sectors; } mutex_unlock(&inode->ei_quota_lock); return ret; } #else static void __bch2_quota_reservation_put(struct bch_fs *c, struct bch_inode_info *inode, struct quota_res *res) {} static void bch2_quota_reservation_put(struct bch_fs *c, struct bch_inode_info *inode, struct quota_res *res) {} static int bch2_quota_reservation_add(struct bch_fs *c, struct bch_inode_info *inode, struct quota_res *res, unsigned sectors, bool check_enospc) { return 0; } #endif /* i_size updates: */ struct inode_new_size { loff_t new_size; u64 now; unsigned fields; }; static int inode_set_size(struct bch_inode_info *inode, struct bch_inode_unpacked *bi, void *p) { struct inode_new_size *s = p; bi->bi_size = s->new_size; if (s->fields & ATTR_ATIME) bi->bi_atime = s->now; if (s->fields & ATTR_MTIME) bi->bi_mtime = s->now; if (s->fields & ATTR_CTIME) bi->bi_ctime = s->now; return 0; } int __must_check bch2_write_inode_size(struct bch_fs *c, struct bch_inode_info *inode, loff_t new_size, unsigned fields) { struct inode_new_size s = { .new_size = new_size, .now = bch2_current_time(c), .fields = fields, }; return bch2_write_inode(c, inode, inode_set_size, &s, fields); } static void __i_sectors_acct(struct bch_fs *c, struct bch_inode_info *inode, struct quota_res *quota_res, s64 sectors) { bch2_fs_inconsistent_on((s64) inode->v.i_blocks + sectors < 0, c, "inode %lu i_blocks underflow: %llu + %lli < 0 (ondisk %lli)", inode->v.i_ino, (u64) inode->v.i_blocks, sectors, inode->ei_inode.bi_sectors); inode->v.i_blocks += sectors; #ifdef CONFIG_BCACHEFS_QUOTA if (quota_res && sectors > 0) { BUG_ON(sectors > quota_res->sectors); BUG_ON(sectors > inode->ei_quota_reserved); quota_res->sectors -= sectors; inode->ei_quota_reserved -= sectors; } else { bch2_quota_acct(c, inode->ei_qid, Q_SPC, sectors, KEY_TYPE_QUOTA_WARN); } #endif } static void i_sectors_acct(struct bch_fs *c, struct bch_inode_info *inode, struct quota_res *quota_res, s64 sectors) { if (sectors) { mutex_lock(&inode->ei_quota_lock); __i_sectors_acct(c, inode, quota_res, sectors); mutex_unlock(&inode->ei_quota_lock); } } /* page state: */ /* stored in page->private: */ struct bch_page_sector { /* Uncompressed, fully allocated replicas (or on disk reservation): */ unsigned nr_replicas:4; /* Owns PAGE_SECTORS * replicas_reserved sized in memory reservation: */ unsigned replicas_reserved:4; /* i_sectors: */ enum { SECTOR_UNALLOCATED, SECTOR_RESERVED, SECTOR_DIRTY, SECTOR_DIRTY_RESERVED, SECTOR_ALLOCATED, } state:8; }; struct bch_page_state { spinlock_t lock; atomic_t write_count; bool uptodate; struct bch_page_sector s[PAGE_SECTORS]; }; static inline struct bch_page_state *__bch2_page_state(struct page *page) { return page_has_private(page) ? (struct bch_page_state *) page_private(page) : NULL; } static inline struct bch_page_state *bch2_page_state(struct page *page) { EBUG_ON(!PageLocked(page)); return __bch2_page_state(page); } /* for newly allocated pages: */ static void __bch2_page_state_release(struct page *page) { kfree(detach_page_private(page)); } static void bch2_page_state_release(struct page *page) { EBUG_ON(!PageLocked(page)); __bch2_page_state_release(page); } /* for newly allocated pages: */ static struct bch_page_state *__bch2_page_state_create(struct page *page, gfp_t gfp) { struct bch_page_state *s; s = kzalloc(sizeof(*s), GFP_NOFS|gfp); if (!s) return NULL; spin_lock_init(&s->lock); attach_page_private(page, s); return s; } static struct bch_page_state *bch2_page_state_create(struct page *page, gfp_t gfp) { return bch2_page_state(page) ?: __bch2_page_state_create(page, gfp); } static unsigned bkey_to_sector_state(struct bkey_s_c k) { if (bkey_extent_is_reservation(k)) return SECTOR_RESERVED; if (bkey_extent_is_allocation(k.k)) return SECTOR_ALLOCATED; return SECTOR_UNALLOCATED; } static void __bch2_page_state_set(struct page *page, unsigned pg_offset, unsigned pg_len, unsigned nr_ptrs, unsigned state) { struct bch_page_state *s = bch2_page_state_create(page, __GFP_NOFAIL); unsigned i; BUG_ON(pg_offset >= PAGE_SECTORS); BUG_ON(pg_offset + pg_len > PAGE_SECTORS); spin_lock(&s->lock); for (i = pg_offset; i < pg_offset + pg_len; i++) { s->s[i].nr_replicas = nr_ptrs; s->s[i].state = state; } if (i == PAGE_SECTORS) s->uptodate = true; spin_unlock(&s->lock); } static int bch2_page_state_set(struct bch_fs *c, subvol_inum inum, struct page **pages, unsigned nr_pages) { struct btree_trans trans; struct btree_iter iter; struct bkey_s_c k; u64 offset = pages[0]->index << PAGE_SECTORS_SHIFT; unsigned pg_idx = 0; u32 snapshot; int ret; bch2_trans_init(&trans, c, 0, 0); retry: bch2_trans_begin(&trans); ret = bch2_subvolume_get_snapshot(&trans, inum.subvol, &snapshot); if (ret) goto err; for_each_btree_key_norestart(&trans, iter, BTREE_ID_extents, SPOS(inum.inum, offset, snapshot), BTREE_ITER_SLOTS, k, ret) { unsigned nr_ptrs = bch2_bkey_nr_ptrs_fully_allocated(k); unsigned state = bkey_to_sector_state(k); while (pg_idx < nr_pages) { struct page *page = pages[pg_idx]; u64 pg_start = page->index << PAGE_SECTORS_SHIFT; u64 pg_end = (page->index + 1) << PAGE_SECTORS_SHIFT; unsigned pg_offset = max(bkey_start_offset(k.k), pg_start) - pg_start; unsigned pg_len = min(k.k->p.offset, pg_end) - pg_offset - pg_start; BUG_ON(k.k->p.offset < pg_start); BUG_ON(bkey_start_offset(k.k) > pg_end); if (!bch2_page_state_create(page, __GFP_NOFAIL)->uptodate) __bch2_page_state_set(page, pg_offset, pg_len, nr_ptrs, state); if (k.k->p.offset < pg_end) break; pg_idx++; } if (pg_idx == nr_pages) break; } offset = iter.pos.offset; bch2_trans_iter_exit(&trans, &iter); err: if (bch2_err_matches(ret, BCH_ERR_transaction_restart)) goto retry; bch2_trans_exit(&trans); return ret; } static void bch2_bio_page_state_set(struct bio *bio, struct bkey_s_c k) { struct bvec_iter iter; struct bio_vec bv; unsigned nr_ptrs = k.k->type == KEY_TYPE_reflink_v ? 0 : bch2_bkey_nr_ptrs_fully_allocated(k); unsigned state = bkey_to_sector_state(k); bio_for_each_segment(bv, bio, iter) __bch2_page_state_set(bv.bv_page, bv.bv_offset >> 9, bv.bv_len >> 9, nr_ptrs, state); } static void mark_pagecache_unallocated(struct bch_inode_info *inode, u64 start, u64 end) { pgoff_t index = start >> PAGE_SECTORS_SHIFT; pgoff_t end_index = (end - 1) >> PAGE_SECTORS_SHIFT; struct folio_batch fbatch; unsigned i, j; if (end <= start) return; folio_batch_init(&fbatch); while (filemap_get_folios(inode->v.i_mapping, &index, end_index, &fbatch)) { for (i = 0; i < folio_batch_count(&fbatch); i++) { struct folio *folio = fbatch.folios[i]; u64 pg_start = folio->index << PAGE_SECTORS_SHIFT; u64 pg_end = (folio->index + 1) << PAGE_SECTORS_SHIFT; unsigned pg_offset = max(start, pg_start) - pg_start; unsigned pg_len = min(end, pg_end) - pg_offset - pg_start; struct bch_page_state *s; BUG_ON(end <= pg_start); BUG_ON(pg_offset >= PAGE_SECTORS); BUG_ON(pg_offset + pg_len > PAGE_SECTORS); folio_lock(folio); s = bch2_page_state(&folio->page); if (s) { spin_lock(&s->lock); for (j = pg_offset; j < pg_offset + pg_len; j++) s->s[j].nr_replicas = 0; spin_unlock(&s->lock); } folio_unlock(folio); } folio_batch_release(&fbatch); cond_resched(); } } static void mark_pagecache_reserved(struct bch_inode_info *inode, u64 start, u64 end) { struct bch_fs *c = inode->v.i_sb->s_fs_info; pgoff_t index = start >> PAGE_SECTORS_SHIFT; pgoff_t end_index = (end - 1) >> PAGE_SECTORS_SHIFT; struct folio_batch fbatch; s64 i_sectors_delta = 0; unsigned i, j; if (end <= start) return; folio_batch_init(&fbatch); while (filemap_get_folios(inode->v.i_mapping, &index, end_index, &fbatch)) { for (i = 0; i < folio_batch_count(&fbatch); i++) { struct folio *folio = fbatch.folios[i]; u64 pg_start = folio->index << PAGE_SECTORS_SHIFT; u64 pg_end = (folio->index + 1) << PAGE_SECTORS_SHIFT; unsigned pg_offset = max(start, pg_start) - pg_start; unsigned pg_len = min(end, pg_end) - pg_offset - pg_start; struct bch_page_state *s; BUG_ON(end <= pg_start); BUG_ON(pg_offset >= PAGE_SECTORS); BUG_ON(pg_offset + pg_len > PAGE_SECTORS); folio_lock(folio); s = bch2_page_state(&folio->page); if (s) { spin_lock(&s->lock); for (j = pg_offset; j < pg_offset + pg_len; j++) switch (s->s[j].state) { case SECTOR_UNALLOCATED: s->s[j].state = SECTOR_RESERVED; break; case SECTOR_DIRTY: s->s[j].state = SECTOR_DIRTY_RESERVED; i_sectors_delta--; break; default: break; } spin_unlock(&s->lock); } folio_unlock(folio); } folio_batch_release(&fbatch); cond_resched(); } i_sectors_acct(c, inode, NULL, i_sectors_delta); } static inline unsigned inode_nr_replicas(struct bch_fs *c, struct bch_inode_info *inode) { /* XXX: this should not be open coded */ return inode->ei_inode.bi_data_replicas ? inode->ei_inode.bi_data_replicas - 1 : c->opts.data_replicas; } static inline unsigned sectors_to_reserve(struct bch_page_sector *s, unsigned nr_replicas) { return max(0, (int) nr_replicas - s->nr_replicas - s->replicas_reserved); } static int bch2_get_page_disk_reservation(struct bch_fs *c, struct bch_inode_info *inode, struct page *page, bool check_enospc) { struct bch_page_state *s = bch2_page_state_create(page, 0); unsigned nr_replicas = inode_nr_replicas(c, inode); struct disk_reservation disk_res = { 0 }; unsigned i, disk_res_sectors = 0; int ret; if (!s) return -ENOMEM; for (i = 0; i < ARRAY_SIZE(s->s); i++) disk_res_sectors += sectors_to_reserve(&s->s[i], nr_replicas); if (!disk_res_sectors) return 0; ret = bch2_disk_reservation_get(c, &disk_res, disk_res_sectors, 1, !check_enospc ? BCH_DISK_RESERVATION_NOFAIL : 0); if (unlikely(ret)) return ret; for (i = 0; i < ARRAY_SIZE(s->s); i++) s->s[i].replicas_reserved += sectors_to_reserve(&s->s[i], nr_replicas); return 0; } struct bch2_page_reservation { struct disk_reservation disk; struct quota_res quota; }; static void bch2_page_reservation_init(struct bch_fs *c, struct bch_inode_info *inode, struct bch2_page_reservation *res) { memset(res, 0, sizeof(*res)); res->disk.nr_replicas = inode_nr_replicas(c, inode); } static void bch2_page_reservation_put(struct bch_fs *c, struct bch_inode_info *inode, struct bch2_page_reservation *res) { bch2_disk_reservation_put(c, &res->disk); bch2_quota_reservation_put(c, inode, &res->quota); } static int bch2_page_reservation_get(struct bch_fs *c, struct bch_inode_info *inode, struct page *page, struct bch2_page_reservation *res, unsigned offset, unsigned len) { struct bch_page_state *s = bch2_page_state_create(page, 0); unsigned i, disk_sectors = 0, quota_sectors = 0; int ret; if (!s) return -ENOMEM; BUG_ON(!s->uptodate); for (i = round_down(offset, block_bytes(c)) >> 9; i < round_up(offset + len, block_bytes(c)) >> 9; i++) { disk_sectors += sectors_to_reserve(&s->s[i], res->disk.nr_replicas); quota_sectors += s->s[i].state == SECTOR_UNALLOCATED; } if (disk_sectors) { ret = bch2_disk_reservation_add(c, &res->disk, disk_sectors, 0); if (unlikely(ret)) return ret; } if (quota_sectors) { ret = bch2_quota_reservation_add(c, inode, &res->quota, quota_sectors, true); if (unlikely(ret)) { struct disk_reservation tmp = { .sectors = disk_sectors }; bch2_disk_reservation_put(c, &tmp); res->disk.sectors -= disk_sectors; return ret; } } return 0; } static void bch2_clear_page_bits(struct page *page) { struct bch_inode_info *inode = to_bch_ei(page->mapping->host); struct bch_fs *c = inode->v.i_sb->s_fs_info; struct bch_page_state *s = bch2_page_state(page); struct disk_reservation disk_res = { 0 }; int i, dirty_sectors = 0; if (!s) return; EBUG_ON(!PageLocked(page)); EBUG_ON(PageWriteback(page)); for (i = 0; i < ARRAY_SIZE(s->s); i++) { disk_res.sectors += s->s[i].replicas_reserved; s->s[i].replicas_reserved = 0; switch (s->s[i].state) { case SECTOR_DIRTY: s->s[i].state = SECTOR_UNALLOCATED; --dirty_sectors; break; case SECTOR_DIRTY_RESERVED: s->s[i].state = SECTOR_RESERVED; break; default: break; } } bch2_disk_reservation_put(c, &disk_res); i_sectors_acct(c, inode, NULL, dirty_sectors); bch2_page_state_release(page); } static void bch2_set_page_dirty(struct bch_fs *c, struct bch_inode_info *inode, struct page *page, struct bch2_page_reservation *res, unsigned offset, unsigned len) { struct bch_page_state *s = bch2_page_state(page); unsigned i, dirty_sectors = 0; WARN_ON((u64) page_offset(page) + offset + len > round_up((u64) i_size_read(&inode->v), block_bytes(c))); spin_lock(&s->lock); for (i = round_down(offset, block_bytes(c)) >> 9; i < round_up(offset + len, block_bytes(c)) >> 9; i++) { unsigned sectors = sectors_to_reserve(&s->s[i], res->disk.nr_replicas); /* * This can happen if we race with the error path in * bch2_writepage_io_done(): */ sectors = min_t(unsigned, sectors, res->disk.sectors); s->s[i].replicas_reserved += sectors; res->disk.sectors -= sectors; switch (s->s[i].state) { case SECTOR_UNALLOCATED: s->s[i].state = SECTOR_DIRTY; dirty_sectors++; break; case SECTOR_RESERVED: s->s[i].state = SECTOR_DIRTY_RESERVED; break; default: break; } } spin_unlock(&s->lock); i_sectors_acct(c, inode, &res->quota, dirty_sectors); if (!PageDirty(page)) filemap_dirty_folio(inode->v.i_mapping, page_folio(page)); } vm_fault_t bch2_page_fault(struct vm_fault *vmf) { struct file *file = vmf->vma->vm_file; struct address_space *mapping = file->f_mapping; struct address_space *fdm = faults_disabled_mapping(); struct bch_inode_info *inode = file_bch_inode(file); int ret; if (fdm == mapping) return VM_FAULT_SIGBUS; /* Lock ordering: */ if (fdm > mapping) { struct bch_inode_info *fdm_host = to_bch_ei(fdm->host); if (bch2_pagecache_add_tryget(inode)) goto got_lock; bch2_pagecache_block_put(fdm_host); bch2_pagecache_add_get(inode); bch2_pagecache_add_put(inode); bch2_pagecache_block_get(fdm_host); /* Signal that lock has been dropped: */ set_fdm_dropped_locks(); return VM_FAULT_SIGBUS; } bch2_pagecache_add_get(inode); got_lock: ret = filemap_fault(vmf); bch2_pagecache_add_put(inode); return ret; } vm_fault_t bch2_page_mkwrite(struct vm_fault *vmf) { struct page *page = vmf->page; struct file *file = vmf->vma->vm_file; struct bch_inode_info *inode = file_bch_inode(file); struct address_space *mapping = file->f_mapping; struct bch_fs *c = inode->v.i_sb->s_fs_info; struct bch2_page_reservation res; unsigned len; loff_t isize; int ret; bch2_page_reservation_init(c, inode, &res); sb_start_pagefault(inode->v.i_sb); file_update_time(file); /* * Not strictly necessary, but helps avoid dio writes livelocking in * write_invalidate_inode_pages_range() - can drop this if/when we get * a write_invalidate_inode_pages_range() that works without dropping * page lock before invalidating page */ bch2_pagecache_add_get(inode); lock_page(page); isize = i_size_read(&inode->v); if (page->mapping != mapping || page_offset(page) >= isize) { unlock_page(page); ret = VM_FAULT_NOPAGE; goto out; } len = min_t(loff_t, PAGE_SIZE, isize - page_offset(page)); if (!bch2_page_state_create(page, __GFP_NOFAIL)->uptodate) { if (bch2_page_state_set(c, inode_inum(inode), &page, 1)) { unlock_page(page); ret = VM_FAULT_SIGBUS; goto out; } } if (bch2_page_reservation_get(c, inode, page, &res, 0, len)) { unlock_page(page); ret = VM_FAULT_SIGBUS; goto out; } bch2_set_page_dirty(c, inode, page, &res, 0, len); bch2_page_reservation_put(c, inode, &res); wait_for_stable_page(page); ret = VM_FAULT_LOCKED; out: bch2_pagecache_add_put(inode); sb_end_pagefault(inode->v.i_sb); return ret; } void bch2_invalidate_folio(struct folio *folio, size_t offset, size_t length) { if (offset || length < folio_size(folio)) return; bch2_clear_page_bits(&folio->page); } bool bch2_release_folio(struct folio *folio, gfp_t gfp_mask) { if (folio_test_dirty(folio) || folio_test_writeback(folio)) return false; bch2_clear_page_bits(&folio->page); return true; } /* readpage(s): */ static void bch2_readpages_end_io(struct bio *bio) { struct bvec_iter_all iter; struct bio_vec *bv; bio_for_each_segment_all(bv, bio, iter) { struct page *page = bv->bv_page; if (!bio->bi_status) { SetPageUptodate(page); } else { ClearPageUptodate(page); SetPageError(page); } unlock_page(page); } bio_put(bio); } struct readpages_iter { struct address_space *mapping; struct page **pages; unsigned nr_pages; unsigned idx; pgoff_t offset; }; static int readpages_iter_init(struct readpages_iter *iter, struct readahead_control *ractl) { unsigned i, nr_pages = readahead_count(ractl); memset(iter, 0, sizeof(*iter)); iter->mapping = ractl->mapping; iter->offset = readahead_index(ractl); iter->nr_pages = nr_pages; iter->pages = kmalloc_array(nr_pages, sizeof(struct page *), GFP_NOFS); if (!iter->pages) return -ENOMEM; nr_pages = __readahead_batch(ractl, iter->pages, nr_pages); for (i = 0; i < nr_pages; i++) { __bch2_page_state_create(iter->pages[i], __GFP_NOFAIL); put_page(iter->pages[i]); } return 0; } static inline struct page *readpage_iter_next(struct readpages_iter *iter) { if (iter->idx >= iter->nr_pages) return NULL; EBUG_ON(iter->pages[iter->idx]->index != iter->offset + iter->idx); return iter->pages[iter->idx]; } static bool extent_partial_reads_expensive(struct bkey_s_c k) { struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); struct bch_extent_crc_unpacked crc; const union bch_extent_entry *i; bkey_for_each_crc(k.k, ptrs, crc, i) if (crc.csum_type || crc.compression_type) return true; return false; } static void readpage_bio_extend(struct readpages_iter *iter, struct bio *bio, unsigned sectors_this_extent, bool get_more) { while (bio_sectors(bio) < sectors_this_extent && bio->bi_vcnt < bio->bi_max_vecs) { pgoff_t page_offset = bio_end_sector(bio) >> PAGE_SECTORS_SHIFT; struct page *page = readpage_iter_next(iter); int ret; if (page) { if (iter->offset + iter->idx != page_offset) break; iter->idx++; } else { if (!get_more) break; page = xa_load(&iter->mapping->i_pages, page_offset); if (page && !xa_is_value(page)) break; page = __page_cache_alloc(readahead_gfp_mask(iter->mapping)); if (!page) break; if (!__bch2_page_state_create(page, 0)) { put_page(page); break; } ret = add_to_page_cache_lru(page, iter->mapping, page_offset, GFP_NOFS); if (ret) { __bch2_page_state_release(page); put_page(page); break; } put_page(page); } BUG_ON(!bio_add_page(bio, page, PAGE_SIZE, 0)); } } static void bchfs_read(struct btree_trans *trans, struct bch_read_bio *rbio, subvol_inum inum, struct readpages_iter *readpages_iter) { struct bch_fs *c = trans->c; struct btree_iter iter; struct bkey_buf sk; int flags = BCH_READ_RETRY_IF_STALE| BCH_READ_MAY_PROMOTE; u32 snapshot; int ret = 0; rbio->c = c; rbio->start_time = local_clock(); rbio->subvol = inum.subvol; bch2_bkey_buf_init(&sk); retry: bch2_trans_begin(trans); iter = (struct btree_iter) { NULL }; ret = bch2_subvolume_get_snapshot(trans, inum.subvol, &snapshot); if (ret) goto err; bch2_trans_iter_init(trans, &iter, BTREE_ID_extents, SPOS(inum.inum, rbio->bio.bi_iter.bi_sector, snapshot), BTREE_ITER_SLOTS); while (1) { struct bkey_s_c k; unsigned bytes, sectors, offset_into_extent; enum btree_id data_btree = BTREE_ID_extents; /* * read_extent -> io_time_reset may cause a transaction restart * without returning an error, we need to check for that here: */ ret = bch2_trans_relock(trans); if (ret) break; bch2_btree_iter_set_pos(&iter, POS(inum.inum, rbio->bio.bi_iter.bi_sector)); k = bch2_btree_iter_peek_slot(&iter); ret = bkey_err(k); if (ret) break; offset_into_extent = iter.pos.offset - bkey_start_offset(k.k); sectors = k.k->size - offset_into_extent; bch2_bkey_buf_reassemble(&sk, c, k); ret = bch2_read_indirect_extent(trans, &data_btree, &offset_into_extent, &sk); if (ret) break; k = bkey_i_to_s_c(sk.k); sectors = min(sectors, k.k->size - offset_into_extent); if (readpages_iter) readpage_bio_extend(readpages_iter, &rbio->bio, sectors, extent_partial_reads_expensive(k)); bytes = min(sectors, bio_sectors(&rbio->bio)) << 9; swap(rbio->bio.bi_iter.bi_size, bytes); if (rbio->bio.bi_iter.bi_size == bytes) flags |= BCH_READ_LAST_FRAGMENT; bch2_bio_page_state_set(&rbio->bio, k); bch2_read_extent(trans, rbio, iter.pos, data_btree, k, offset_into_extent, flags); if (flags & BCH_READ_LAST_FRAGMENT) break; swap(rbio->bio.bi_iter.bi_size, bytes); bio_advance(&rbio->bio, bytes); ret = btree_trans_too_many_iters(trans); if (ret) break; } err: bch2_trans_iter_exit(trans, &iter); if (bch2_err_matches(ret, BCH_ERR_transaction_restart)) goto retry; if (ret) { bch_err_inum_offset_ratelimited(c, iter.pos.inode, iter.pos.offset << 9, "read error %i from btree lookup", ret); rbio->bio.bi_status = BLK_STS_IOERR; bio_endio(&rbio->bio); } bch2_bkey_buf_exit(&sk, c); } void bch2_readahead(struct readahead_control *ractl) { struct bch_inode_info *inode = to_bch_ei(ractl->mapping->host); struct bch_fs *c = inode->v.i_sb->s_fs_info; struct bch_io_opts opts; struct btree_trans trans; struct page *page; struct readpages_iter readpages_iter; int ret; bch2_inode_opts_get(&opts, c, &inode->ei_inode); ret = readpages_iter_init(&readpages_iter, ractl); BUG_ON(ret); bch2_trans_init(&trans, c, 0, 0); bch2_pagecache_add_get(inode); while ((page = readpage_iter_next(&readpages_iter))) { pgoff_t index = readpages_iter.offset + readpages_iter.idx; unsigned n = min_t(unsigned, readpages_iter.nr_pages - readpages_iter.idx, BIO_MAX_VECS); struct bch_read_bio *rbio = rbio_init(bio_alloc_bioset(NULL, n, REQ_OP_READ, GFP_NOFS, &c->bio_read), opts); readpages_iter.idx++; rbio->bio.bi_iter.bi_sector = (sector_t) index << PAGE_SECTORS_SHIFT; rbio->bio.bi_end_io = bch2_readpages_end_io; BUG_ON(!bio_add_page(&rbio->bio, page, PAGE_SIZE, 0)); bchfs_read(&trans, rbio, inode_inum(inode), &readpages_iter); } bch2_pagecache_add_put(inode); bch2_trans_exit(&trans); kfree(readpages_iter.pages); } static void __bchfs_readpage(struct bch_fs *c, struct bch_read_bio *rbio, subvol_inum inum, struct page *page) { struct btree_trans trans; bch2_page_state_create(page, __GFP_NOFAIL); rbio->bio.bi_opf = REQ_OP_READ|REQ_SYNC; rbio->bio.bi_iter.bi_sector = (sector_t) page->index << PAGE_SECTORS_SHIFT; BUG_ON(!bio_add_page(&rbio->bio, page, PAGE_SIZE, 0)); bch2_trans_init(&trans, c, 0, 0); bchfs_read(&trans, rbio, inum, NULL); bch2_trans_exit(&trans); } static void bch2_read_single_page_end_io(struct bio *bio) { complete(bio->bi_private); } static int bch2_read_single_page(struct page *page, struct address_space *mapping) { struct bch_inode_info *inode = to_bch_ei(mapping->host); struct bch_fs *c = inode->v.i_sb->s_fs_info; struct bch_read_bio *rbio; struct bch_io_opts opts; int ret; DECLARE_COMPLETION_ONSTACK(done); bch2_inode_opts_get(&opts, c, &inode->ei_inode); rbio = rbio_init(bio_alloc_bioset(NULL, 1, REQ_OP_READ, GFP_NOFS, &c->bio_read), opts); rbio->bio.bi_private = &done; rbio->bio.bi_end_io = bch2_read_single_page_end_io; __bchfs_readpage(c, rbio, inode_inum(inode), page); wait_for_completion(&done); ret = blk_status_to_errno(rbio->bio.bi_status); bio_put(&rbio->bio); if (ret < 0) return ret; SetPageUptodate(page); return 0; } int bch2_read_folio(struct file *file, struct folio *folio) { struct page *page = &folio->page; int ret; ret = bch2_read_single_page(page, page->mapping); folio_unlock(folio); return bch2_err_class(ret); } /* writepages: */ struct bch_writepage_state { struct bch_writepage_io *io; struct bch_io_opts opts; }; static inline struct bch_writepage_state bch_writepage_state_init(struct bch_fs *c, struct bch_inode_info *inode) { struct bch_writepage_state ret = { 0 }; bch2_inode_opts_get(&ret.opts, c, &inode->ei_inode); return ret; } static void bch2_writepage_io_done(struct bch_write_op *op) { struct bch_writepage_io *io = container_of(op, struct bch_writepage_io, op); struct bch_fs *c = io->op.c; struct bio *bio = &io->op.wbio.bio; struct bvec_iter_all iter; struct bio_vec *bvec; unsigned i; if (io->op.error) { set_bit(EI_INODE_ERROR, &io->inode->ei_flags); bio_for_each_segment_all(bvec, bio, iter) { struct bch_page_state *s; SetPageError(bvec->bv_page); mapping_set_error(bvec->bv_page->mapping, -EIO); s = __bch2_page_state(bvec->bv_page); spin_lock(&s->lock); for (i = 0; i < PAGE_SECTORS; i++) s->s[i].nr_replicas = 0; spin_unlock(&s->lock); } } if (io->op.flags & BCH_WRITE_WROTE_DATA_INLINE) { bio_for_each_segment_all(bvec, bio, iter) { struct bch_page_state *s; s = __bch2_page_state(bvec->bv_page); spin_lock(&s->lock); for (i = 0; i < PAGE_SECTORS; i++) s->s[i].nr_replicas = 0; spin_unlock(&s->lock); } } /* * racing with fallocate can cause us to add fewer sectors than * expected - but we shouldn't add more sectors than expected: */ WARN_ON_ONCE(io->op.i_sectors_delta > 0); /* * (error (due to going RO) halfway through a page can screw that up * slightly) * XXX wtf? BUG_ON(io->op.op.i_sectors_delta >= PAGE_SECTORS); */ /* * PageWriteback is effectively our ref on the inode - fixup i_blocks * before calling end_page_writeback: */ i_sectors_acct(c, io->inode, NULL, io->op.i_sectors_delta); bio_for_each_segment_all(bvec, bio, iter) { struct bch_page_state *s = __bch2_page_state(bvec->bv_page); if (atomic_dec_and_test(&s->write_count)) end_page_writeback(bvec->bv_page); } bio_put(&io->op.wbio.bio); } static void bch2_writepage_do_io(struct bch_writepage_state *w) { struct bch_writepage_io *io = w->io; w->io = NULL; closure_call(&io->op.cl, bch2_write, NULL, NULL); } /* * Get a bch_writepage_io and add @page to it - appending to an existing one if * possible, else allocating a new one: */ static void bch2_writepage_io_alloc(struct bch_fs *c, struct writeback_control *wbc, struct bch_writepage_state *w, struct bch_inode_info *inode, u64 sector, unsigned nr_replicas) { struct bch_write_op *op; w->io = container_of(bio_alloc_bioset(NULL, BIO_MAX_VECS, REQ_OP_WRITE, GFP_NOFS, &c->writepage_bioset), struct bch_writepage_io, op.wbio.bio); w->io->inode = inode; op = &w->io->op; bch2_write_op_init(op, c, w->opts); op->target = w->opts.foreground_target; op->nr_replicas = nr_replicas; op->res.nr_replicas = nr_replicas; op->write_point = writepoint_hashed(inode->ei_last_dirtied); op->subvol = inode->ei_subvol; op->pos = POS(inode->v.i_ino, sector); op->end_io = bch2_writepage_io_done; op->devs_need_flush = &inode->ei_devs_need_flush; op->wbio.bio.bi_iter.bi_sector = sector; op->wbio.bio.bi_opf = wbc_to_write_flags(wbc); } static int __bch2_writepage(struct folio *folio, struct writeback_control *wbc, void *data) { struct page *page = &folio->page; struct bch_inode_info *inode = to_bch_ei(page->mapping->host); struct bch_fs *c = inode->v.i_sb->s_fs_info; struct bch_writepage_state *w = data; struct bch_page_state *s, orig; unsigned i, offset, nr_replicas_this_write = U32_MAX; loff_t i_size = i_size_read(&inode->v); pgoff_t end_index = i_size >> PAGE_SHIFT; int ret; EBUG_ON(!PageUptodate(page)); /* Is the page fully inside i_size? */ if (page->index < end_index) goto do_io; /* Is the page fully outside i_size? (truncate in progress) */ offset = i_size & (PAGE_SIZE - 1); if (page->index > end_index || !offset) { unlock_page(page); return 0; } /* * The page straddles i_size. It must be zeroed out on each and every * writepage invocation because it may be mmapped. "A file is mapped * in multiples of the page size. For a file that is not a multiple of * the page size, the remaining memory is zeroed when mapped, and * writes to that region are not written out to the file." */ zero_user_segment(page, offset, PAGE_SIZE); do_io: s = bch2_page_state_create(page, __GFP_NOFAIL); /* * Things get really hairy with errors during writeback: */ ret = bch2_get_page_disk_reservation(c, inode, page, false); BUG_ON(ret); /* Before unlocking the page, get copy of reservations: */ spin_lock(&s->lock); orig = *s; spin_unlock(&s->lock); for (i = 0; i < PAGE_SECTORS; i++) { if (s->s[i].state < SECTOR_DIRTY) continue; nr_replicas_this_write = min_t(unsigned, nr_replicas_this_write, s->s[i].nr_replicas + s->s[i].replicas_reserved); } for (i = 0; i < PAGE_SECTORS; i++) { if (s->s[i].state < SECTOR_DIRTY) continue; s->s[i].nr_replicas = w->opts.compression ? 0 : nr_replicas_this_write; s->s[i].replicas_reserved = 0; s->s[i].state = SECTOR_ALLOCATED; } BUG_ON(atomic_read(&s->write_count)); atomic_set(&s->write_count, 1); BUG_ON(PageWriteback(page)); set_page_writeback(page); unlock_page(page); offset = 0; while (1) { unsigned sectors = 0, dirty_sectors = 0, reserved_sectors = 0; u64 sector; while (offset < PAGE_SECTORS && orig.s[offset].state < SECTOR_DIRTY) offset++; if (offset == PAGE_SECTORS) break; while (offset + sectors < PAGE_SECTORS && orig.s[offset + sectors].state >= SECTOR_DIRTY) { reserved_sectors += orig.s[offset + sectors].replicas_reserved; dirty_sectors += orig.s[offset + sectors].state == SECTOR_DIRTY; sectors++; } BUG_ON(!sectors); sector = ((u64) page->index << PAGE_SECTORS_SHIFT) + offset; if (w->io && (w->io->op.res.nr_replicas != nr_replicas_this_write || bio_full(&w->io->op.wbio.bio, PAGE_SIZE) || w->io->op.wbio.bio.bi_iter.bi_size + (sectors << 9) >= (BIO_MAX_VECS * PAGE_SIZE) || bio_end_sector(&w->io->op.wbio.bio) != sector)) bch2_writepage_do_io(w); if (!w->io) bch2_writepage_io_alloc(c, wbc, w, inode, sector, nr_replicas_this_write); atomic_inc(&s->write_count); BUG_ON(inode != w->io->inode); BUG_ON(!bio_add_page(&w->io->op.wbio.bio, page, sectors << 9, offset << 9)); /* Check for writing past i_size: */ WARN_ONCE((bio_end_sector(&w->io->op.wbio.bio) << 9) > round_up(i_size, block_bytes(c)) && !test_bit(BCH_FS_EMERGENCY_RO, &c->flags), "writing past i_size: %llu > %llu (unrounded %llu)\n", bio_end_sector(&w->io->op.wbio.bio) << 9, round_up(i_size, block_bytes(c)), i_size); w->io->op.res.sectors += reserved_sectors; w->io->op.i_sectors_delta -= dirty_sectors; w->io->op.new_i_size = i_size; offset += sectors; } if (atomic_dec_and_test(&s->write_count)) end_page_writeback(page); return 0; } int bch2_writepages(struct address_space *mapping, struct writeback_control *wbc) { struct bch_fs *c = mapping->host->i_sb->s_fs_info; struct bch_writepage_state w = bch_writepage_state_init(c, to_bch_ei(mapping->host)); struct blk_plug plug; int ret; blk_start_plug(&plug); ret = write_cache_pages(mapping, wbc, __bch2_writepage, &w); if (w.io) bch2_writepage_do_io(&w); blk_finish_plug(&plug); return bch2_err_class(ret); } /* buffered writes: */ int bch2_write_begin(struct file *file, struct address_space *mapping, loff_t pos, unsigned len, struct page **pagep, void **fsdata) { struct bch_inode_info *inode = to_bch_ei(mapping->host); struct bch_fs *c = inode->v.i_sb->s_fs_info; struct bch2_page_reservation *res; pgoff_t index = pos >> PAGE_SHIFT; unsigned offset = pos & (PAGE_SIZE - 1); struct page *page; int ret = -ENOMEM; res = kmalloc(sizeof(*res), GFP_KERNEL); if (!res) return -ENOMEM; bch2_page_reservation_init(c, inode, res); *fsdata = res; bch2_pagecache_add_get(inode); page = grab_cache_page_write_begin(mapping, index); if (!page) goto err_unlock; if (PageUptodate(page)) goto out; /* If we're writing entire page, don't need to read it in first: */ if (len == PAGE_SIZE) goto out; if (!offset && pos + len >= inode->v.i_size) { zero_user_segment(page, len, PAGE_SIZE); flush_dcache_page(page); goto out; } if (index > inode->v.i_size >> PAGE_SHIFT) { zero_user_segments(page, 0, offset, offset + len, PAGE_SIZE); flush_dcache_page(page); goto out; } readpage: ret = bch2_read_single_page(page, mapping); if (ret) goto err; out: if (!bch2_page_state_create(page, __GFP_NOFAIL)->uptodate) { ret = bch2_page_state_set(c, inode_inum(inode), &page, 1); if (ret) goto err; } ret = bch2_page_reservation_get(c, inode, page, res, offset, len); if (ret) { if (!PageUptodate(page)) { /* * If the page hasn't been read in, we won't know if we * actually need a reservation - we don't actually need * to read here, we just need to check if the page is * fully backed by uncompressed data: */ goto readpage; } goto err; } *pagep = page; return 0; err: unlock_page(page); put_page(page); *pagep = NULL; err_unlock: bch2_pagecache_add_put(inode); kfree(res); *fsdata = NULL; return bch2_err_class(ret); } int bch2_write_end(struct file *file, struct address_space *mapping, loff_t pos, unsigned len, unsigned copied, struct page *page, void *fsdata) { struct bch_inode_info *inode = to_bch_ei(mapping->host); struct bch_fs *c = inode->v.i_sb->s_fs_info; struct bch2_page_reservation *res = fsdata; unsigned offset = pos & (PAGE_SIZE - 1); lockdep_assert_held(&inode->v.i_rwsem); if (unlikely(copied < len && !PageUptodate(page))) { /* * The page needs to be read in, but that would destroy * our partial write - simplest thing is to just force * userspace to redo the write: */ zero_user(page, 0, PAGE_SIZE); flush_dcache_page(page); copied = 0; } spin_lock(&inode->v.i_lock); if (pos + copied > inode->v.i_size) i_size_write(&inode->v, pos + copied); spin_unlock(&inode->v.i_lock); if (copied) { if (!PageUptodate(page)) SetPageUptodate(page); bch2_set_page_dirty(c, inode, page, res, offset, copied); inode->ei_last_dirtied = (unsigned long) current; } unlock_page(page); put_page(page); bch2_pagecache_add_put(inode); bch2_page_reservation_put(c, inode, res); kfree(res); return copied; } #define WRITE_BATCH_PAGES 32 static int __bch2_buffered_write(struct bch_inode_info *inode, struct address_space *mapping, struct iov_iter *iter, loff_t pos, unsigned len) { struct bch_fs *c = inode->v.i_sb->s_fs_info; struct page *pages[WRITE_BATCH_PAGES]; struct bch2_page_reservation res; unsigned long index = pos >> PAGE_SHIFT; unsigned offset = pos & (PAGE_SIZE - 1); unsigned nr_pages = DIV_ROUND_UP(offset + len, PAGE_SIZE); unsigned i, reserved = 0, set_dirty = 0; unsigned copied = 0, nr_pages_copied = 0; int ret = 0; BUG_ON(!len); BUG_ON(nr_pages > ARRAY_SIZE(pages)); bch2_page_reservation_init(c, inode, &res); for (i = 0; i < nr_pages; i++) { pages[i] = grab_cache_page_write_begin(mapping, index + i); if (!pages[i]) { nr_pages = i; if (!i) { ret = -ENOMEM; goto out; } len = min_t(unsigned, len, nr_pages * PAGE_SIZE - offset); break; } } if (offset && !PageUptodate(pages[0])) { ret = bch2_read_single_page(pages[0], mapping); if (ret) goto out; } if ((pos + len) & (PAGE_SIZE - 1) && !PageUptodate(pages[nr_pages - 1])) { if ((index + nr_pages - 1) << PAGE_SHIFT >= inode->v.i_size) { zero_user(pages[nr_pages - 1], 0, PAGE_SIZE); } else { ret = bch2_read_single_page(pages[nr_pages - 1], mapping); if (ret) goto out; } } while (reserved < len) { unsigned i = (offset + reserved) >> PAGE_SHIFT; struct page *page = pages[i]; unsigned pg_offset = (offset + reserved) & (PAGE_SIZE - 1); unsigned pg_len = min_t(unsigned, len - reserved, PAGE_SIZE - pg_offset); if (!bch2_page_state_create(page, __GFP_NOFAIL)->uptodate) { ret = bch2_page_state_set(c, inode_inum(inode), pages + i, nr_pages - i); if (ret) goto out; } /* * XXX: per POSIX and fstests generic/275, on -ENOSPC we're * supposed to write as much as we have disk space for. * * On failure here we should still write out a partial page if * we aren't completely out of disk space - we don't do that * yet: */ ret = bch2_page_reservation_get(c, inode, page, &res, pg_offset, pg_len); if (unlikely(ret)) { if (!reserved) goto out; break; } reserved += pg_len; } if (mapping_writably_mapped(mapping)) for (i = 0; i < nr_pages; i++) flush_dcache_page(pages[i]); while (copied < reserved) { struct page *page = pages[(offset + copied) >> PAGE_SHIFT]; unsigned pg_offset = (offset + copied) & (PAGE_SIZE - 1); unsigned pg_len = min_t(unsigned, reserved - copied, PAGE_SIZE - pg_offset); unsigned pg_copied = copy_page_from_iter_atomic(page, pg_offset, pg_len, iter); if (!pg_copied) break; if (!PageUptodate(page) && pg_copied != PAGE_SIZE && pos + copied + pg_copied < inode->v.i_size) { zero_user(page, 0, PAGE_SIZE); break; } flush_dcache_page(page); copied += pg_copied; if (pg_copied != pg_len) break; } if (!copied) goto out; spin_lock(&inode->v.i_lock); if (pos + copied > inode->v.i_size) i_size_write(&inode->v, pos + copied); spin_unlock(&inode->v.i_lock); while (set_dirty < copied) { struct page *page = pages[(offset + set_dirty) >> PAGE_SHIFT]; unsigned pg_offset = (offset + set_dirty) & (PAGE_SIZE - 1); unsigned pg_len = min_t(unsigned, copied - set_dirty, PAGE_SIZE - pg_offset); if (!PageUptodate(page)) SetPageUptodate(page); bch2_set_page_dirty(c, inode, page, &res, pg_offset, pg_len); unlock_page(page); put_page(page); set_dirty += pg_len; } nr_pages_copied = DIV_ROUND_UP(offset + copied, PAGE_SIZE); inode->ei_last_dirtied = (unsigned long) current; out: for (i = nr_pages_copied; i < nr_pages; i++) { unlock_page(pages[i]); put_page(pages[i]); } bch2_page_reservation_put(c, inode, &res); return copied ?: ret; } static ssize_t bch2_buffered_write(struct kiocb *iocb, struct iov_iter *iter) { struct file *file = iocb->ki_filp; struct address_space *mapping = file->f_mapping; struct bch_inode_info *inode = file_bch_inode(file); loff_t pos = iocb->ki_pos; ssize_t written = 0; int ret = 0; bch2_pagecache_add_get(inode); do { unsigned offset = pos & (PAGE_SIZE - 1); unsigned bytes = min_t(unsigned long, iov_iter_count(iter), PAGE_SIZE * WRITE_BATCH_PAGES - offset); again: /* * Bring in the user page that we will copy from _first_. * Otherwise there's a nasty deadlock on copying from the * same page as we're writing to, without it being marked * up-to-date. * * Not only is this an optimisation, but it is also required * to check that the address is actually valid, when atomic * usercopies are used, below. */ if (unlikely(fault_in_iov_iter_readable(iter, bytes))) { bytes = min_t(unsigned long, iov_iter_count(iter), PAGE_SIZE - offset); if (unlikely(fault_in_iov_iter_readable(iter, bytes))) { ret = -EFAULT; break; } } if (unlikely(fatal_signal_pending(current))) { ret = -EINTR; break; } ret = __bch2_buffered_write(inode, mapping, iter, pos, bytes); if (unlikely(ret < 0)) break; cond_resched(); if (unlikely(ret == 0)) { /* * If we were unable to copy any data at all, we must * fall back to a single segment length write. * * If we didn't fallback here, we could livelock * because not all segments in the iov can be copied at * once without a pagefault. */ bytes = min_t(unsigned long, PAGE_SIZE - offset, iov_iter_single_seg_count(iter)); goto again; } pos += ret; written += ret; ret = 0; balance_dirty_pages_ratelimited(mapping); } while (iov_iter_count(iter)); bch2_pagecache_add_put(inode); return written ? written : ret; } /* O_DIRECT reads */ static void bio_check_or_release(struct bio *bio, bool check_dirty) { if (check_dirty) { bio_check_pages_dirty(bio); } else { bio_release_pages(bio, false); bio_put(bio); } } static void bch2_dio_read_complete(struct closure *cl) { struct dio_read *dio = container_of(cl, struct dio_read, cl); dio->req->ki_complete(dio->req, dio->ret); bio_check_or_release(&dio->rbio.bio, dio->should_dirty); } static void bch2_direct_IO_read_endio(struct bio *bio) { struct dio_read *dio = bio->bi_private; if (bio->bi_status) dio->ret = blk_status_to_errno(bio->bi_status); closure_put(&dio->cl); } static void bch2_direct_IO_read_split_endio(struct bio *bio) { struct dio_read *dio = bio->bi_private; bool should_dirty = dio->should_dirty; bch2_direct_IO_read_endio(bio); bio_check_or_release(bio, should_dirty); } static int bch2_direct_IO_read(struct kiocb *req, struct iov_iter *iter) { struct file *file = req->ki_filp; struct bch_inode_info *inode = file_bch_inode(file); struct bch_fs *c = inode->v.i_sb->s_fs_info; struct bch_io_opts opts; struct dio_read *dio; struct bio *bio; loff_t offset = req->ki_pos; bool sync = is_sync_kiocb(req); size_t shorten; ssize_t ret; bch2_inode_opts_get(&opts, c, &inode->ei_inode); if ((offset|iter->count) & (block_bytes(c) - 1)) return -EINVAL; ret = min_t(loff_t, iter->count, max_t(loff_t, 0, i_size_read(&inode->v) - offset)); if (!ret) return ret; shorten = iov_iter_count(iter) - round_up(ret, block_bytes(c)); iter->count -= shorten; bio = bio_alloc_bioset(NULL, bio_iov_vecs_to_alloc(iter, BIO_MAX_VECS), REQ_OP_READ, GFP_KERNEL, &c->dio_read_bioset); bio->bi_end_io = bch2_direct_IO_read_endio; dio = container_of(bio, struct dio_read, rbio.bio); closure_init(&dio->cl, NULL); /* * this is a _really_ horrible hack just to avoid an atomic sub at the * end: */ if (!sync) { set_closure_fn(&dio->cl, bch2_dio_read_complete, NULL); atomic_set(&dio->cl.remaining, CLOSURE_REMAINING_INITIALIZER - CLOSURE_RUNNING + CLOSURE_DESTRUCTOR); } else { atomic_set(&dio->cl.remaining, CLOSURE_REMAINING_INITIALIZER + 1); } dio->req = req; dio->ret = ret; /* * This is one of the sketchier things I've encountered: we have to skip * the dirtying of requests that are internal from the kernel (i.e. from * loopback), because we'll deadlock on page_lock. */ dio->should_dirty = iter_is_iovec(iter); goto start; while (iter->count) { bio = bio_alloc_bioset(NULL, bio_iov_vecs_to_alloc(iter, BIO_MAX_VECS), REQ_OP_READ, GFP_KERNEL, &c->bio_read); bio->bi_end_io = bch2_direct_IO_read_split_endio; start: bio->bi_opf = REQ_OP_READ|REQ_SYNC; bio->bi_iter.bi_sector = offset >> 9; bio->bi_private = dio; ret = bio_iov_iter_get_pages(bio, iter); if (ret < 0) { /* XXX: fault inject this path */ bio->bi_status = BLK_STS_RESOURCE; bio_endio(bio); break; } offset += bio->bi_iter.bi_size; if (dio->should_dirty) bio_set_pages_dirty(bio); if (iter->count) closure_get(&dio->cl); bch2_read(c, rbio_init(bio, opts), inode_inum(inode)); } iter->count += shorten; if (sync) { closure_sync(&dio->cl); closure_debug_destroy(&dio->cl); ret = dio->ret; bio_check_or_release(&dio->rbio.bio, dio->should_dirty); return ret; } else { return -EIOCBQUEUED; } } ssize_t bch2_read_iter(struct kiocb *iocb, struct iov_iter *iter) { struct file *file = iocb->ki_filp; struct bch_inode_info *inode = file_bch_inode(file); struct address_space *mapping = file->f_mapping; size_t count = iov_iter_count(iter); ssize_t ret; if (!count) return 0; /* skip atime */ if (iocb->ki_flags & IOCB_DIRECT) { struct blk_plug plug; if (unlikely(mapping->nrpages)) { ret = filemap_write_and_wait_range(mapping, iocb->ki_pos, iocb->ki_pos + count - 1); if (ret < 0) goto out; } file_accessed(file); blk_start_plug(&plug); ret = bch2_direct_IO_read(iocb, iter); blk_finish_plug(&plug); if (ret >= 0) iocb->ki_pos += ret; } else { bch2_pagecache_add_get(inode); ret = generic_file_read_iter(iocb, iter); bch2_pagecache_add_put(inode); } out: return bch2_err_class(ret); } /* O_DIRECT writes */ static bool bch2_check_range_allocated(struct bch_fs *c, subvol_inum inum, u64 offset, u64 size, unsigned nr_replicas, bool compressed) { struct btree_trans trans; struct btree_iter iter; struct bkey_s_c k; u64 end = offset + size; u32 snapshot; bool ret = true; int err; bch2_trans_init(&trans, c, 0, 0); retry: bch2_trans_begin(&trans); err = bch2_subvolume_get_snapshot(&trans, inum.subvol, &snapshot); if (err) goto err; for_each_btree_key_norestart(&trans, iter, BTREE_ID_extents, SPOS(inum.inum, offset, snapshot), BTREE_ITER_SLOTS, k, err) { if (bkey_ge(bkey_start_pos(k.k), POS(inum.inum, end))) break; if (k.k->p.snapshot != snapshot || nr_replicas > bch2_bkey_replicas(c, k) || (!compressed && bch2_bkey_sectors_compressed(k))) { ret = false; break; } } offset = iter.pos.offset; bch2_trans_iter_exit(&trans, &iter); err: if (bch2_err_matches(err, BCH_ERR_transaction_restart)) goto retry; bch2_trans_exit(&trans); return err ? false : ret; } static noinline bool bch2_dio_write_check_allocated(struct dio_write *dio) { struct bch_fs *c = dio->op.c; struct bch_inode_info *inode = dio->inode; struct bio *bio = &dio->op.wbio.bio; return bch2_check_range_allocated(c, inode_inum(inode), dio->op.pos.offset, bio_sectors(bio), dio->op.opts.data_replicas, dio->op.opts.compression != 0); } static void bch2_dio_write_loop_async(struct bch_write_op *); static __always_inline long bch2_dio_write_done(struct dio_write *dio); /* * We're going to return -EIOCBQUEUED, but we haven't finished consuming the * iov_iter yet, so we need to stash a copy of the iovec: it might be on the * caller's stack, we're not guaranteed that it will live for the duration of * the IO: */ static noinline int bch2_dio_write_copy_iov(struct dio_write *dio) { struct iovec *iov = dio->inline_vecs; /* * iov_iter has a single embedded iovec - nothing to do: */ if (iter_is_ubuf(&dio->iter)) return 0; /* * We don't currently handle non-iovec iov_iters here - return an error, * and we'll fall back to doing the IO synchronously: */ if (!iter_is_iovec(&dio->iter)) return -1; if (dio->iter.nr_segs > ARRAY_SIZE(dio->inline_vecs)) { iov = kmalloc_array(dio->iter.nr_segs, sizeof(*iov), GFP_KERNEL); if (unlikely(!iov)) return -ENOMEM; dio->free_iov = true; } memcpy(iov, dio->iter.__iov, dio->iter.nr_segs * sizeof(*iov)); dio->iter.__iov = iov; return 0; } static void bch2_dio_write_flush_done(struct closure *cl) { struct dio_write *dio = container_of(cl, struct dio_write, op.cl); struct bch_fs *c = dio->op.c; closure_debug_destroy(cl); dio->op.error = bch2_journal_error(&c->journal); bch2_dio_write_done(dio); } static noinline void bch2_dio_write_flush(struct dio_write *dio) { struct bch_fs *c = dio->op.c; struct bch_inode_unpacked inode; int ret; dio->flush = 0; closure_init(&dio->op.cl, NULL); if (!dio->op.error) { ret = bch2_inode_find_by_inum(c, inode_inum(dio->inode), &inode); if (ret) { dio->op.error = ret; } else { bch2_journal_flush_seq_async(&c->journal, inode.bi_journal_seq, &dio->op.cl); bch2_inode_flush_nocow_writes_async(c, dio->inode, &dio->op.cl); } } if (dio->sync) { closure_sync(&dio->op.cl); closure_debug_destroy(&dio->op.cl); } else { continue_at(&dio->op.cl, bch2_dio_write_flush_done, NULL); } } static __always_inline long bch2_dio_write_done(struct dio_write *dio) { struct kiocb *req = dio->req; struct bch_inode_info *inode = dio->inode; bool sync = dio->sync; long ret; if (unlikely(dio->flush)) { bch2_dio_write_flush(dio); if (!sync) return -EIOCBQUEUED; } bch2_pagecache_block_put(inode); if (dio->free_iov) kfree(dio->iter.__iov); ret = dio->op.error ?: ((long) dio->written << 9); bio_put(&dio->op.wbio.bio); /* inode->i_dio_count is our ref on inode and thus bch_fs */ inode_dio_end(&inode->v); if (ret < 0) ret = bch2_err_class(ret); if (!sync) { req->ki_complete(req, ret); ret = -EIOCBQUEUED; } return ret; } static __always_inline void bch2_dio_write_end(struct dio_write *dio) { struct bch_fs *c = dio->op.c; struct kiocb *req = dio->req; struct bch_inode_info *inode = dio->inode; struct bio *bio = &dio->op.wbio.bio; req->ki_pos += (u64) dio->op.written << 9; dio->written += dio->op.written; if (dio->extending) { spin_lock(&inode->v.i_lock); if (req->ki_pos > inode->v.i_size) i_size_write(&inode->v, req->ki_pos); spin_unlock(&inode->v.i_lock); } if (dio->op.i_sectors_delta || dio->quota_res.sectors) { mutex_lock(&inode->ei_quota_lock); __i_sectors_acct(c, inode, &dio->quota_res, dio->op.i_sectors_delta); __bch2_quota_reservation_put(c, inode, &dio->quota_res); mutex_unlock(&inode->ei_quota_lock); } bio_release_pages(bio, false); if (unlikely(dio->op.error)) set_bit(EI_INODE_ERROR, &inode->ei_flags); } static __always_inline long bch2_dio_write_loop(struct dio_write *dio) { struct bch_fs *c = dio->op.c; struct kiocb *req = dio->req; struct address_space *mapping = dio->mapping; struct bch_inode_info *inode = dio->inode; struct bch_io_opts opts; struct bio *bio = &dio->op.wbio.bio; unsigned unaligned, iter_count; bool sync = dio->sync, dropped_locks; long ret; bch2_inode_opts_get(&opts, c, &inode->ei_inode); while (1) { iter_count = dio->iter.count; EBUG_ON(current->faults_disabled_mapping); current->faults_disabled_mapping = mapping; ret = bio_iov_iter_get_pages(bio, &dio->iter); dropped_locks = fdm_dropped_locks(); current->faults_disabled_mapping = NULL; /* * If the fault handler returned an error but also signalled * that it dropped & retook ei_pagecache_lock, we just need to * re-shoot down the page cache and retry: */ if (dropped_locks && ret) ret = 0; if (unlikely(ret < 0)) goto err; if (unlikely(dropped_locks)) { ret = write_invalidate_inode_pages_range(mapping, req->ki_pos, req->ki_pos + iter_count - 1); if (unlikely(ret)) goto err; if (!bio->bi_iter.bi_size) continue; } unaligned = bio->bi_iter.bi_size & (block_bytes(c) - 1); bio->bi_iter.bi_size -= unaligned; iov_iter_revert(&dio->iter, unaligned); if (!bio->bi_iter.bi_size) { /* * bio_iov_iter_get_pages was only able to get < * blocksize worth of pages: */ ret = -EFAULT; goto err; } bch2_write_op_init(&dio->op, c, opts); dio->op.end_io = sync ? NULL : bch2_dio_write_loop_async; dio->op.target = dio->op.opts.foreground_target; dio->op.write_point = writepoint_hashed((unsigned long) current); dio->op.nr_replicas = dio->op.opts.data_replicas; dio->op.subvol = inode->ei_subvol; dio->op.pos = POS(inode->v.i_ino, (u64) req->ki_pos >> 9); dio->op.devs_need_flush = &inode->ei_devs_need_flush; if (sync) dio->op.flags |= BCH_WRITE_SYNC; dio->op.flags |= BCH_WRITE_CHECK_ENOSPC; ret = bch2_quota_reservation_add(c, inode, &dio->quota_res, bio_sectors(bio), true); if (unlikely(ret)) goto err; ret = bch2_disk_reservation_get(c, &dio->op.res, bio_sectors(bio), dio->op.opts.data_replicas, 0); if (unlikely(ret) && !bch2_dio_write_check_allocated(dio)) goto err; task_io_account_write(bio->bi_iter.bi_size); if (unlikely(dio->iter.count) && !dio->sync && !dio->loop && bch2_dio_write_copy_iov(dio)) dio->sync = sync = true; dio->loop = true; closure_call(&dio->op.cl, bch2_write, NULL, NULL); if (!sync) return -EIOCBQUEUED; bch2_dio_write_end(dio); if (likely(!dio->iter.count) || dio->op.error) break; bio_reset(bio, NULL, REQ_OP_WRITE); } out: return bch2_dio_write_done(dio); err: dio->op.error = ret; bio_release_pages(bio, false); bch2_quota_reservation_put(c, inode, &dio->quota_res); goto out; } static noinline __cold void bch2_dio_write_continue(struct dio_write *dio) { struct mm_struct *mm = dio->mm; bio_reset(&dio->op.wbio.bio, NULL, REQ_OP_WRITE); if (mm) kthread_use_mm(mm); bch2_dio_write_loop(dio); if (mm) kthread_unuse_mm(mm); } static void bch2_dio_write_loop_async(struct bch_write_op *op) { struct dio_write *dio = container_of(op, struct dio_write, op); bch2_dio_write_end(dio); if (likely(!dio->iter.count) || dio->op.error) bch2_dio_write_done(dio); else bch2_dio_write_continue(dio); } static noinline ssize_t bch2_direct_write(struct kiocb *req, struct iov_iter *iter) { struct file *file = req->ki_filp; struct address_space *mapping = file->f_mapping; struct bch_inode_info *inode = file_bch_inode(file); struct bch_fs *c = inode->v.i_sb->s_fs_info; struct dio_write *dio; struct bio *bio; bool locked = true, extending; ssize_t ret; prefetch(&c->opts); prefetch((void *) &c->opts + 64); prefetch(&inode->ei_inode); prefetch((void *) &inode->ei_inode + 64); inode_lock(&inode->v); ret = generic_write_checks(req, iter); if (unlikely(ret <= 0)) goto err; ret = file_remove_privs(file); if (unlikely(ret)) goto err; ret = file_update_time(file); if (unlikely(ret)) goto err; if (unlikely((req->ki_pos|iter->count) & (block_bytes(c) - 1))) goto err; inode_dio_begin(&inode->v); bch2_pagecache_block_get(inode); extending = req->ki_pos + iter->count > inode->v.i_size; if (!extending) { inode_unlock(&inode->v); locked = false; } bio = bio_alloc_bioset(NULL, bio_iov_vecs_to_alloc(iter, BIO_MAX_VECS), REQ_OP_WRITE, GFP_KERNEL, &c->dio_write_bioset); dio = container_of(bio, struct dio_write, op.wbio.bio); dio->req = req; dio->mapping = mapping; dio->inode = inode; dio->mm = current->mm; dio->loop = false; dio->extending = extending; dio->sync = is_sync_kiocb(req) || extending; dio->flush = iocb_is_dsync(req) && !c->opts.journal_flush_disabled; dio->free_iov = false; dio->quota_res.sectors = 0; dio->written = 0; dio->iter = *iter; dio->op.c = c; if (unlikely(mapping->nrpages)) { ret = write_invalidate_inode_pages_range(mapping, req->ki_pos, req->ki_pos + iter->count - 1); if (unlikely(ret)) goto err_put_bio; } ret = bch2_dio_write_loop(dio); err: if (locked) inode_unlock(&inode->v); return ret; err_put_bio: bch2_pagecache_block_put(inode); bio_put(bio); inode_dio_end(&inode->v); goto err; } ssize_t bch2_write_iter(struct kiocb *iocb, struct iov_iter *from) { struct file *file = iocb->ki_filp; struct bch_inode_info *inode = file_bch_inode(file); ssize_t ret; if (iocb->ki_flags & IOCB_DIRECT) { ret = bch2_direct_write(iocb, from); goto out; } inode_lock(&inode->v); ret = generic_write_checks(iocb, from); if (ret <= 0) goto unlock; ret = file_remove_privs(file); if (ret) goto unlock; ret = file_update_time(file); if (ret) goto unlock; ret = bch2_buffered_write(iocb, from); if (likely(ret > 0)) iocb->ki_pos += ret; unlock: inode_unlock(&inode->v); if (ret > 0) ret = generic_write_sync(iocb, ret); out: return bch2_err_class(ret); } /* fsync: */ /* * inode->ei_inode.bi_journal_seq won't be up to date since it's set in an * insert trigger: look up the btree inode instead */ static int bch2_flush_inode(struct bch_fs *c, struct bch_inode_info *inode) { struct bch_inode_unpacked u; int ret; if (c->opts.journal_flush_disabled) return 0; ret = bch2_inode_find_by_inum(c, inode_inum(inode), &u); if (ret) return ret; return bch2_journal_flush_seq(&c->journal, u.bi_journal_seq) ?: bch2_inode_flush_nocow_writes(c, inode); } int bch2_fsync(struct file *file, loff_t start, loff_t end, int datasync) { struct bch_inode_info *inode = file_bch_inode(file); struct bch_fs *c = inode->v.i_sb->s_fs_info; int ret, ret2, ret3; ret = file_write_and_wait_range(file, start, end); ret2 = sync_inode_metadata(&inode->v, 1); ret3 = bch2_flush_inode(c, inode); return bch2_err_class(ret ?: ret2 ?: ret3); } /* truncate: */ static inline int range_has_data(struct bch_fs *c, u32 subvol, struct bpos start, struct bpos end) { struct btree_trans trans; struct btree_iter iter; struct bkey_s_c k; int ret = 0; bch2_trans_init(&trans, c, 0, 0); retry: bch2_trans_begin(&trans); ret = bch2_subvolume_get_snapshot(&trans, subvol, &start.snapshot); if (ret) goto err; for_each_btree_key_upto_norestart(&trans, iter, BTREE_ID_extents, start, end, 0, k, ret) if (bkey_extent_is_data(k.k)) { ret = 1; break; } start = iter.pos; bch2_trans_iter_exit(&trans, &iter); err: if (bch2_err_matches(ret, BCH_ERR_transaction_restart)) goto retry; bch2_trans_exit(&trans); return ret; } static int __bch2_truncate_page(struct bch_inode_info *inode, pgoff_t index, loff_t start, loff_t end) { struct bch_fs *c = inode->v.i_sb->s_fs_info; struct address_space *mapping = inode->v.i_mapping; struct bch_page_state *s; unsigned start_offset = start & (PAGE_SIZE - 1); unsigned end_offset = ((end - 1) & (PAGE_SIZE - 1)) + 1; unsigned i; struct page *page; s64 i_sectors_delta = 0; int ret = 0; /* Page boundary? Nothing to do */ if (!((index == start >> PAGE_SHIFT && start_offset) || (index == end >> PAGE_SHIFT && end_offset != PAGE_SIZE))) return 0; /* Above i_size? */ if (index << PAGE_SHIFT >= inode->v.i_size) return 0; page = find_lock_page(mapping, index); if (!page) { /* * XXX: we're doing two index lookups when we end up reading the * page */ ret = range_has_data(c, inode->ei_subvol, POS(inode->v.i_ino, (index << PAGE_SECTORS_SHIFT)), POS(inode->v.i_ino, (index << PAGE_SECTORS_SHIFT) + PAGE_SECTORS)); if (ret <= 0) return ret; page = find_or_create_page(mapping, index, GFP_KERNEL); if (unlikely(!page)) { ret = -ENOMEM; goto out; } } s = bch2_page_state_create(page, 0); if (!s) { ret = -ENOMEM; goto unlock; } if (!PageUptodate(page)) { ret = bch2_read_single_page(page, mapping); if (ret) goto unlock; } if (index != start >> PAGE_SHIFT) start_offset = 0; if (index != end >> PAGE_SHIFT) end_offset = PAGE_SIZE; for (i = round_up(start_offset, block_bytes(c)) >> 9; i < round_down(end_offset, block_bytes(c)) >> 9; i++) { s->s[i].nr_replicas = 0; if (s->s[i].state == SECTOR_DIRTY) i_sectors_delta--; s->s[i].state = SECTOR_UNALLOCATED; } i_sectors_acct(c, inode, NULL, i_sectors_delta); /* * Caller needs to know whether this page will be written out by * writeback - doing an i_size update if necessary - or whether it will * be responsible for the i_size update: */ ret = s->s[(min_t(u64, inode->v.i_size - (index << PAGE_SHIFT), PAGE_SIZE) - 1) >> 9].state >= SECTOR_DIRTY; zero_user_segment(page, start_offset, end_offset); /* * Bit of a hack - we don't want truncate to fail due to -ENOSPC. * * XXX: because we aren't currently tracking whether the page has actual * data in it (vs. just 0s, or only partially written) this wrong. ick. */ BUG_ON(bch2_get_page_disk_reservation(c, inode, page, false)); /* * This removes any writeable userspace mappings; we need to force * .page_mkwrite to be called again before any mmapped writes, to * redirty the full page: */ page_mkclean(page); filemap_dirty_folio(mapping, page_folio(page)); unlock: unlock_page(page); put_page(page); out: return ret; } static int bch2_truncate_page(struct bch_inode_info *inode, loff_t from) { return __bch2_truncate_page(inode, from >> PAGE_SHIFT, from, round_up(from, PAGE_SIZE)); } static int bch2_truncate_pages(struct bch_inode_info *inode, loff_t start, loff_t end) { int ret = __bch2_truncate_page(inode, start >> PAGE_SHIFT, start, end); if (ret >= 0 && start >> PAGE_SHIFT != end >> PAGE_SHIFT) ret = __bch2_truncate_page(inode, end >> PAGE_SHIFT, start, end); return ret; } static int bch2_extend(struct mnt_idmap *idmap, struct bch_inode_info *inode, struct bch_inode_unpacked *inode_u, struct iattr *iattr) { struct address_space *mapping = inode->v.i_mapping; int ret; /* * sync appends: * * this has to be done _before_ extending i_size: */ ret = filemap_write_and_wait_range(mapping, inode_u->bi_size, S64_MAX); if (ret) return ret; truncate_setsize(&inode->v, iattr->ia_size); return bch2_setattr_nonsize(idmap, inode, iattr); } static int bch2_truncate_finish_fn(struct bch_inode_info *inode, struct bch_inode_unpacked *bi, void *p) { bi->bi_flags &= ~BCH_INODE_I_SIZE_DIRTY; return 0; } static int bch2_truncate_start_fn(struct bch_inode_info *inode, struct bch_inode_unpacked *bi, void *p) { u64 *new_i_size = p; bi->bi_flags |= BCH_INODE_I_SIZE_DIRTY; bi->bi_size = *new_i_size; return 0; } int bch2_truncate(struct mnt_idmap *idmap, struct bch_inode_info *inode, struct iattr *iattr) { struct bch_fs *c = inode->v.i_sb->s_fs_info; struct address_space *mapping = inode->v.i_mapping; struct bch_inode_unpacked inode_u; u64 new_i_size = iattr->ia_size; s64 i_sectors_delta = 0; int ret = 0; /* * If the truncate call with change the size of the file, the * cmtimes should be updated. If the size will not change, we * do not need to update the cmtimes. */ if (iattr->ia_size != inode->v.i_size) { if (!(iattr->ia_valid & ATTR_MTIME)) ktime_get_coarse_real_ts64(&iattr->ia_mtime); if (!(iattr->ia_valid & ATTR_CTIME)) ktime_get_coarse_real_ts64(&iattr->ia_ctime); iattr->ia_valid |= ATTR_MTIME|ATTR_CTIME; } inode_dio_wait(&inode->v); bch2_pagecache_block_get(inode); ret = bch2_inode_find_by_inum(c, inode_inum(inode), &inode_u); if (ret) goto err; /* * check this before next assertion; on filesystem error our normal * invariants are a bit broken (truncate has to truncate the page cache * before the inode). */ ret = bch2_journal_error(&c->journal); if (ret) goto err; WARN_ONCE(!test_bit(EI_INODE_ERROR, &inode->ei_flags) && inode->v.i_size < inode_u.bi_size, "truncate spotted in mem i_size < btree i_size: %llu < %llu\n", (u64) inode->v.i_size, inode_u.bi_size); if (iattr->ia_size > inode->v.i_size) { ret = bch2_extend(idmap, inode, &inode_u, iattr); goto err; } iattr->ia_valid &= ~ATTR_SIZE; ret = bch2_truncate_page(inode, iattr->ia_size); if (unlikely(ret < 0)) goto err; /* * When extending, we're going to write the new i_size to disk * immediately so we need to flush anything above the current on disk * i_size first: * * Also, when extending we need to flush the page that i_size currently * straddles - if it's mapped to userspace, we need to ensure that * userspace has to redirty it and call .mkwrite -> set_page_dirty * again to allocate the part of the page that was extended. */ if (iattr->ia_size > inode_u.bi_size) ret = filemap_write_and_wait_range(mapping, inode_u.bi_size, iattr->ia_size - 1); else if (iattr->ia_size & (PAGE_SIZE - 1)) ret = filemap_write_and_wait_range(mapping, round_down(iattr->ia_size, PAGE_SIZE), iattr->ia_size - 1); if (ret) goto err; mutex_lock(&inode->ei_update_lock); ret = bch2_write_inode(c, inode, bch2_truncate_start_fn, &new_i_size, 0); mutex_unlock(&inode->ei_update_lock); if (unlikely(ret)) goto err; truncate_setsize(&inode->v, iattr->ia_size); ret = bch2_fpunch(c, inode_inum(inode), round_up(iattr->ia_size, block_bytes(c)) >> 9, U64_MAX, &i_sectors_delta); i_sectors_acct(c, inode, NULL, i_sectors_delta); bch2_fs_inconsistent_on(!inode->v.i_size && inode->v.i_blocks && !bch2_journal_error(&c->journal), c, "inode %lu truncated to 0 but i_blocks %llu (ondisk %lli)", inode->v.i_ino, (u64) inode->v.i_blocks, inode->ei_inode.bi_sectors); if (unlikely(ret)) goto err; mutex_lock(&inode->ei_update_lock); ret = bch2_write_inode(c, inode, bch2_truncate_finish_fn, NULL, 0); mutex_unlock(&inode->ei_update_lock); ret = bch2_setattr_nonsize(idmap, inode, iattr); err: bch2_pagecache_block_put(inode); return bch2_err_class(ret); } /* fallocate: */ static int inode_update_times_fn(struct bch_inode_info *inode, struct bch_inode_unpacked *bi, void *p) { struct bch_fs *c = inode->v.i_sb->s_fs_info; bi->bi_mtime = bi->bi_ctime = bch2_current_time(c); return 0; } static long bchfs_fpunch(struct bch_inode_info *inode, loff_t offset, loff_t len) { struct bch_fs *c = inode->v.i_sb->s_fs_info; u64 end = offset + len; u64 block_start = round_up(offset, block_bytes(c)); u64 block_end = round_down(end, block_bytes(c)); bool truncated_last_page; int ret = 0; ret = bch2_truncate_pages(inode, offset, end); if (unlikely(ret < 0)) goto err; truncated_last_page = ret; truncate_pagecache_range(&inode->v, offset, end - 1); if (block_start < block_end) { s64 i_sectors_delta = 0; ret = bch2_fpunch(c, inode_inum(inode), block_start >> 9, block_end >> 9, &i_sectors_delta); i_sectors_acct(c, inode, NULL, i_sectors_delta); } mutex_lock(&inode->ei_update_lock); if (end >= inode->v.i_size && !truncated_last_page) { ret = bch2_write_inode_size(c, inode, inode->v.i_size, ATTR_MTIME|ATTR_CTIME); } else { ret = bch2_write_inode(c, inode, inode_update_times_fn, NULL, ATTR_MTIME|ATTR_CTIME); } mutex_unlock(&inode->ei_update_lock); err: return ret; } static long bchfs_fcollapse_finsert(struct bch_inode_info *inode, loff_t offset, loff_t len, bool insert) { struct bch_fs *c = inode->v.i_sb->s_fs_info; struct address_space *mapping = inode->v.i_mapping; struct bkey_buf copy; struct btree_trans trans; struct btree_iter src, dst, del; loff_t shift, new_size; u64 src_start; int ret = 0; if ((offset | len) & (block_bytes(c) - 1)) return -EINVAL; if (insert) { if (inode->v.i_sb->s_maxbytes - inode->v.i_size < len) return -EFBIG; if (offset >= inode->v.i_size) return -EINVAL; src_start = U64_MAX; shift = len; } else { if (offset + len >= inode->v.i_size) return -EINVAL; src_start = offset + len; shift = -len; } new_size = inode->v.i_size + shift; ret = write_invalidate_inode_pages_range(mapping, offset, LLONG_MAX); if (ret) return ret; if (insert) { i_size_write(&inode->v, new_size); mutex_lock(&inode->ei_update_lock); ret = bch2_write_inode_size(c, inode, new_size, ATTR_MTIME|ATTR_CTIME); mutex_unlock(&inode->ei_update_lock); } else { s64 i_sectors_delta = 0; ret = bch2_fpunch(c, inode_inum(inode), offset >> 9, (offset + len) >> 9, &i_sectors_delta); i_sectors_acct(c, inode, NULL, i_sectors_delta); if (ret) return ret; } bch2_bkey_buf_init(©); bch2_trans_init(&trans, c, BTREE_ITER_MAX, 1024); bch2_trans_iter_init(&trans, &src, BTREE_ID_extents, POS(inode->v.i_ino, src_start >> 9), BTREE_ITER_INTENT); bch2_trans_copy_iter(&dst, &src); bch2_trans_copy_iter(&del, &src); while (ret == 0 || bch2_err_matches(ret, BCH_ERR_transaction_restart)) { struct disk_reservation disk_res = bch2_disk_reservation_init(c, 0); struct bkey_i delete; struct bkey_s_c k; struct bpos next_pos; struct bpos move_pos = POS(inode->v.i_ino, offset >> 9); struct bpos atomic_end; unsigned trigger_flags = 0; u32 snapshot; bch2_trans_begin(&trans); ret = bch2_subvolume_get_snapshot(&trans, inode->ei_subvol, &snapshot); if (ret) continue; bch2_btree_iter_set_snapshot(&src, snapshot); bch2_btree_iter_set_snapshot(&dst, snapshot); bch2_btree_iter_set_snapshot(&del, snapshot); bch2_trans_begin(&trans); k = insert ? bch2_btree_iter_peek_prev(&src) : bch2_btree_iter_peek_upto(&src, POS(inode->v.i_ino, U64_MAX)); if ((ret = bkey_err(k))) continue; if (!k.k || k.k->p.inode != inode->v.i_ino) break; if (insert && bkey_le(k.k->p, POS(inode->v.i_ino, offset >> 9))) break; reassemble: bch2_bkey_buf_reassemble(©, c, k); if (insert && bkey_lt(bkey_start_pos(k.k), move_pos)) bch2_cut_front(move_pos, copy.k); copy.k->k.p.offset += shift >> 9; bch2_btree_iter_set_pos(&dst, bkey_start_pos(©.k->k)); ret = bch2_extent_atomic_end(&trans, &dst, copy.k, &atomic_end); if (ret) continue; if (!bkey_eq(atomic_end, copy.k->k.p)) { if (insert) { move_pos = atomic_end; move_pos.offset -= shift >> 9; goto reassemble; } else { bch2_cut_back(atomic_end, copy.k); } } bkey_init(&delete.k); delete.k.p = copy.k->k.p; delete.k.size = copy.k->k.size; delete.k.p.offset -= shift >> 9; bch2_btree_iter_set_pos(&del, bkey_start_pos(&delete.k)); next_pos = insert ? bkey_start_pos(&delete.k) : delete.k.p; if (copy.k->k.size != k.k->size) { /* We might end up splitting compressed extents: */ unsigned nr_ptrs = bch2_bkey_nr_ptrs_allocated(bkey_i_to_s_c(copy.k)); ret = bch2_disk_reservation_get(c, &disk_res, copy.k->k.size, nr_ptrs, BCH_DISK_RESERVATION_NOFAIL); BUG_ON(ret); } ret = bch2_btree_iter_traverse(&del) ?: bch2_trans_update(&trans, &del, &delete, trigger_flags) ?: bch2_trans_update(&trans, &dst, copy.k, trigger_flags) ?: bch2_trans_commit(&trans, &disk_res, NULL, BTREE_INSERT_NOFAIL); bch2_disk_reservation_put(c, &disk_res); if (!ret) bch2_btree_iter_set_pos(&src, next_pos); } bch2_trans_iter_exit(&trans, &del); bch2_trans_iter_exit(&trans, &dst); bch2_trans_iter_exit(&trans, &src); bch2_trans_exit(&trans); bch2_bkey_buf_exit(©, c); if (ret) return ret; mutex_lock(&inode->ei_update_lock); if (!insert) { i_size_write(&inode->v, new_size); ret = bch2_write_inode_size(c, inode, new_size, ATTR_MTIME|ATTR_CTIME); } else { /* We need an inode update to update bi_journal_seq for fsync: */ ret = bch2_write_inode(c, inode, inode_update_times_fn, NULL, ATTR_MTIME|ATTR_CTIME); } mutex_unlock(&inode->ei_update_lock); return ret; } static int __bchfs_fallocate(struct bch_inode_info *inode, int mode, u64 start_sector, u64 end_sector) { struct bch_fs *c = inode->v.i_sb->s_fs_info; struct btree_trans trans; struct btree_iter iter; struct bpos end_pos = POS(inode->v.i_ino, end_sector); struct bch_io_opts opts; int ret = 0; bch2_inode_opts_get(&opts, c, &inode->ei_inode); bch2_trans_init(&trans, c, BTREE_ITER_MAX, 512); bch2_trans_iter_init(&trans, &iter, BTREE_ID_extents, POS(inode->v.i_ino, start_sector), BTREE_ITER_SLOTS|BTREE_ITER_INTENT); while (!ret && bkey_lt(iter.pos, end_pos)) { s64 i_sectors_delta = 0; struct quota_res quota_res = { 0 }; struct bkey_s_c k; unsigned sectors; u32 snapshot; bch2_trans_begin(&trans); ret = bch2_subvolume_get_snapshot(&trans, inode->ei_subvol, &snapshot); if (ret) goto bkey_err; bch2_btree_iter_set_snapshot(&iter, snapshot); k = bch2_btree_iter_peek_slot(&iter); if ((ret = bkey_err(k))) goto bkey_err; /* already reserved */ if (bkey_extent_is_reservation(k) && bch2_bkey_nr_ptrs_fully_allocated(k) >= opts.data_replicas) { bch2_btree_iter_advance(&iter); continue; } if (bkey_extent_is_data(k.k) && !(mode & FALLOC_FL_ZERO_RANGE)) { bch2_btree_iter_advance(&iter); continue; } /* * XXX: for nocow mode, we should promote shared extents to * unshared here */ sectors = bpos_min(k.k->p, end_pos).offset - iter.pos.offset; if (!bkey_extent_is_allocation(k.k)) { ret = bch2_quota_reservation_add(c, inode, "a_res, sectors, true); if (unlikely(ret)) goto bkey_err; } ret = bch2_extent_fallocate(&trans, inode_inum(inode), &iter, sectors, opts, &i_sectors_delta, writepoint_hashed((unsigned long) current)); if (ret) goto bkey_err; i_sectors_acct(c, inode, "a_res, i_sectors_delta); bkey_err: bch2_quota_reservation_put(c, inode, "a_res); if (bch2_err_matches(ret, BCH_ERR_transaction_restart)) ret = 0; } bch2_trans_unlock(&trans); /* lock ordering, before taking pagecache locks: */ mark_pagecache_reserved(inode, start_sector, iter.pos.offset); if (bch2_err_matches(ret, ENOSPC) && (mode & FALLOC_FL_ZERO_RANGE)) { struct quota_res quota_res = { 0 }; s64 i_sectors_delta = 0; bch2_fpunch_at(&trans, &iter, inode_inum(inode), end_sector, &i_sectors_delta); i_sectors_acct(c, inode, "a_res, i_sectors_delta); bch2_quota_reservation_put(c, inode, "a_res); } bch2_trans_iter_exit(&trans, &iter); bch2_trans_exit(&trans); return ret; } static long bchfs_fallocate(struct bch_inode_info *inode, int mode, loff_t offset, loff_t len) { struct bch_fs *c = inode->v.i_sb->s_fs_info; u64 end = offset + len; u64 block_start = round_down(offset, block_bytes(c)); u64 block_end = round_up(end, block_bytes(c)); bool truncated_last_page = false; int ret, ret2 = 0; if (!(mode & FALLOC_FL_KEEP_SIZE) && end > inode->v.i_size) { ret = inode_newsize_ok(&inode->v, end); if (ret) return ret; } if (mode & FALLOC_FL_ZERO_RANGE) { ret = bch2_truncate_pages(inode, offset, end); if (unlikely(ret < 0)) return ret; truncated_last_page = ret; truncate_pagecache_range(&inode->v, offset, end - 1); block_start = round_up(offset, block_bytes(c)); block_end = round_down(end, block_bytes(c)); } ret = __bchfs_fallocate(inode, mode, block_start >> 9, block_end >> 9); /* * On -ENOSPC in ZERO_RANGE mode, we still want to do the inode update, * so that the VFS cache i_size is consistent with the btree i_size: */ if (ret && !(bch2_err_matches(ret, ENOSPC) && (mode & FALLOC_FL_ZERO_RANGE))) return ret; if (mode & FALLOC_FL_KEEP_SIZE && end > inode->v.i_size) end = inode->v.i_size; if (end >= inode->v.i_size && (((mode & FALLOC_FL_ZERO_RANGE) && !truncated_last_page) || !(mode & FALLOC_FL_KEEP_SIZE))) { spin_lock(&inode->v.i_lock); i_size_write(&inode->v, end); spin_unlock(&inode->v.i_lock); mutex_lock(&inode->ei_update_lock); ret2 = bch2_write_inode_size(c, inode, end, 0); mutex_unlock(&inode->ei_update_lock); } return ret ?: ret2; } long bch2_fallocate_dispatch(struct file *file, int mode, loff_t offset, loff_t len) { struct bch_inode_info *inode = file_bch_inode(file); struct bch_fs *c = inode->v.i_sb->s_fs_info; long ret; if (!bch2_write_ref_tryget(c, BCH_WRITE_REF_fallocate)) return -EROFS; inode_lock(&inode->v); inode_dio_wait(&inode->v); bch2_pagecache_block_get(inode); ret = file_modified(file); if (ret) goto err; if (!(mode & ~(FALLOC_FL_KEEP_SIZE|FALLOC_FL_ZERO_RANGE))) ret = bchfs_fallocate(inode, mode, offset, len); else if (mode == (FALLOC_FL_PUNCH_HOLE|FALLOC_FL_KEEP_SIZE)) ret = bchfs_fpunch(inode, offset, len); else if (mode == FALLOC_FL_INSERT_RANGE) ret = bchfs_fcollapse_finsert(inode, offset, len, true); else if (mode == FALLOC_FL_COLLAPSE_RANGE) ret = bchfs_fcollapse_finsert(inode, offset, len, false); else ret = -EOPNOTSUPP; err: bch2_pagecache_block_put(inode); inode_unlock(&inode->v); bch2_write_ref_put(c, BCH_WRITE_REF_fallocate); return bch2_err_class(ret); } /* * Take a quota reservation for unallocated blocks in a given file range * Does not check pagecache */ static int quota_reserve_range(struct bch_inode_info *inode, struct quota_res *res, u64 start, u64 end) { struct bch_fs *c = inode->v.i_sb->s_fs_info; struct btree_trans trans; struct btree_iter iter; struct bkey_s_c k; u32 snapshot; u64 sectors = end - start; u64 pos = start; int ret; bch2_trans_init(&trans, c, 0, 0); retry: bch2_trans_begin(&trans); ret = bch2_subvolume_get_snapshot(&trans, inode->ei_subvol, &snapshot); if (ret) goto err; bch2_trans_iter_init(&trans, &iter, BTREE_ID_extents, SPOS(inode->v.i_ino, pos, snapshot), 0); while (!(ret = btree_trans_too_many_iters(&trans)) && (k = bch2_btree_iter_peek_upto(&iter, POS(inode->v.i_ino, end - 1))).k && !(ret = bkey_err(k))) { if (bkey_extent_is_allocation(k.k)) { u64 s = min(end, k.k->p.offset) - max(start, bkey_start_offset(k.k)); BUG_ON(s > sectors); sectors -= s; } bch2_btree_iter_advance(&iter); } pos = iter.pos.offset; bch2_trans_iter_exit(&trans, &iter); err: if (bch2_err_matches(ret, BCH_ERR_transaction_restart)) goto retry; bch2_trans_exit(&trans); if (ret) return ret; return bch2_quota_reservation_add(c, inode, res, sectors, true); } loff_t bch2_remap_file_range(struct file *file_src, loff_t pos_src, struct file *file_dst, loff_t pos_dst, loff_t len, unsigned remap_flags) { struct bch_inode_info *src = file_bch_inode(file_src); struct bch_inode_info *dst = file_bch_inode(file_dst); struct bch_fs *c = src->v.i_sb->s_fs_info; struct quota_res quota_res = { 0 }; s64 i_sectors_delta = 0; u64 aligned_len; loff_t ret = 0; if (remap_flags & ~(REMAP_FILE_DEDUP|REMAP_FILE_ADVISORY)) return -EINVAL; if (remap_flags & REMAP_FILE_DEDUP) return -EOPNOTSUPP; if ((pos_src & (block_bytes(c) - 1)) || (pos_dst & (block_bytes(c) - 1))) return -EINVAL; if (src == dst && abs(pos_src - pos_dst) < len) return -EINVAL; bch2_lock_inodes(INODE_LOCK|INODE_PAGECACHE_BLOCK, src, dst); inode_dio_wait(&src->v); inode_dio_wait(&dst->v); ret = generic_remap_file_range_prep(file_src, pos_src, file_dst, pos_dst, &len, remap_flags); if (ret < 0 || len == 0) goto err; aligned_len = round_up((u64) len, block_bytes(c)); ret = write_invalidate_inode_pages_range(dst->v.i_mapping, pos_dst, pos_dst + len - 1); if (ret) goto err; ret = quota_reserve_range(dst, "a_res, pos_dst >> 9, (pos_dst + aligned_len) >> 9); if (ret) goto err; file_update_time(file_dst); mark_pagecache_unallocated(src, pos_src >> 9, (pos_src + aligned_len) >> 9); ret = bch2_remap_range(c, inode_inum(dst), pos_dst >> 9, inode_inum(src), pos_src >> 9, aligned_len >> 9, pos_dst + len, &i_sectors_delta); if (ret < 0) goto err; /* * due to alignment, we might have remapped slightly more than requsted */ ret = min((u64) ret << 9, (u64) len); i_sectors_acct(c, dst, "a_res, i_sectors_delta); spin_lock(&dst->v.i_lock); if (pos_dst + ret > dst->v.i_size) i_size_write(&dst->v, pos_dst + ret); spin_unlock(&dst->v.i_lock); if ((file_dst->f_flags & (__O_SYNC | O_DSYNC)) || IS_SYNC(file_inode(file_dst))) ret = bch2_flush_inode(c, dst); err: bch2_quota_reservation_put(c, dst, "a_res); bch2_unlock_inodes(INODE_LOCK|INODE_PAGECACHE_BLOCK, src, dst); return bch2_err_class(ret); } /* fseek: */ static int folio_data_offset(struct folio *folio, unsigned offset) { struct bch_page_state *s = bch2_page_state(&folio->page); unsigned i; if (s) for (i = offset >> 9; i < PAGE_SECTORS; i++) if (s->s[i].state >= SECTOR_DIRTY) return i << 9; return -1; } static loff_t bch2_seek_pagecache_data(struct inode *vinode, loff_t start_offset, loff_t end_offset) { struct folio_batch fbatch; pgoff_t start_index = start_offset >> PAGE_SHIFT; pgoff_t end_index = end_offset >> PAGE_SHIFT; pgoff_t index = start_index; unsigned i; loff_t ret; int offset; folio_batch_init(&fbatch); while (filemap_get_folios(vinode->i_mapping, &index, end_index, &fbatch)) { for (i = 0; i < folio_batch_count(&fbatch); i++) { struct folio *folio = fbatch.folios[i]; folio_lock(folio); offset = folio_data_offset(folio, folio->index == start_index ? start_offset & (PAGE_SIZE - 1) : 0); if (offset >= 0) { ret = clamp(((loff_t) folio->index << PAGE_SHIFT) + offset, start_offset, end_offset); folio_unlock(folio); folio_batch_release(&fbatch); return ret; } folio_unlock(folio); } folio_batch_release(&fbatch); cond_resched(); } return end_offset; } static loff_t bch2_seek_data(struct file *file, u64 offset) { struct bch_inode_info *inode = file_bch_inode(file); struct bch_fs *c = inode->v.i_sb->s_fs_info; struct btree_trans trans; struct btree_iter iter; struct bkey_s_c k; subvol_inum inum = inode_inum(inode); u64 isize, next_data = MAX_LFS_FILESIZE; u32 snapshot; int ret; isize = i_size_read(&inode->v); if (offset >= isize) return -ENXIO; bch2_trans_init(&trans, c, 0, 0); retry: bch2_trans_begin(&trans); ret = bch2_subvolume_get_snapshot(&trans, inum.subvol, &snapshot); if (ret) goto err; for_each_btree_key_upto_norestart(&trans, iter, BTREE_ID_extents, SPOS(inode->v.i_ino, offset >> 9, snapshot), POS(inode->v.i_ino, U64_MAX), 0, k, ret) { if (bkey_extent_is_data(k.k)) { next_data = max(offset, bkey_start_offset(k.k) << 9); break; } else if (k.k->p.offset >> 9 > isize) break; } bch2_trans_iter_exit(&trans, &iter); err: if (bch2_err_matches(ret, BCH_ERR_transaction_restart)) goto retry; bch2_trans_exit(&trans); if (ret) return ret; if (next_data > offset) next_data = bch2_seek_pagecache_data(&inode->v, offset, next_data); if (next_data >= isize) return -ENXIO; return vfs_setpos(file, next_data, MAX_LFS_FILESIZE); } static int __page_hole_offset(struct page *page, unsigned offset) { struct bch_page_state *s = bch2_page_state(page); unsigned i; if (!s) return 0; for (i = offset >> 9; i < PAGE_SECTORS; i++) if (s->s[i].state < SECTOR_DIRTY) return i << 9; return -1; } static loff_t page_hole_offset(struct address_space *mapping, loff_t offset) { pgoff_t index = offset >> PAGE_SHIFT; struct page *page; int pg_offset; loff_t ret = -1; page = find_lock_page(mapping, index); if (!page) return offset; pg_offset = __page_hole_offset(page, offset & (PAGE_SIZE - 1)); if (pg_offset >= 0) ret = ((loff_t) index << PAGE_SHIFT) + pg_offset; unlock_page(page); return ret; } static loff_t bch2_seek_pagecache_hole(struct inode *vinode, loff_t start_offset, loff_t end_offset) { struct address_space *mapping = vinode->i_mapping; loff_t offset = start_offset, hole; while (offset < end_offset) { hole = page_hole_offset(mapping, offset); if (hole >= 0 && hole <= end_offset) return max(start_offset, hole); offset += PAGE_SIZE; offset &= PAGE_MASK; } return end_offset; } static loff_t bch2_seek_hole(struct file *file, u64 offset) { struct bch_inode_info *inode = file_bch_inode(file); struct bch_fs *c = inode->v.i_sb->s_fs_info; struct btree_trans trans; struct btree_iter iter; struct bkey_s_c k; subvol_inum inum = inode_inum(inode); u64 isize, next_hole = MAX_LFS_FILESIZE; u32 snapshot; int ret; isize = i_size_read(&inode->v); if (offset >= isize) return -ENXIO; bch2_trans_init(&trans, c, 0, 0); retry: bch2_trans_begin(&trans); ret = bch2_subvolume_get_snapshot(&trans, inum.subvol, &snapshot); if (ret) goto err; for_each_btree_key_norestart(&trans, iter, BTREE_ID_extents, SPOS(inode->v.i_ino, offset >> 9, snapshot), BTREE_ITER_SLOTS, k, ret) { if (k.k->p.inode != inode->v.i_ino) { next_hole = bch2_seek_pagecache_hole(&inode->v, offset, MAX_LFS_FILESIZE); break; } else if (!bkey_extent_is_data(k.k)) { next_hole = bch2_seek_pagecache_hole(&inode->v, max(offset, bkey_start_offset(k.k) << 9), k.k->p.offset << 9); if (next_hole < k.k->p.offset << 9) break; } else { offset = max(offset, bkey_start_offset(k.k) << 9); } } bch2_trans_iter_exit(&trans, &iter); err: if (bch2_err_matches(ret, BCH_ERR_transaction_restart)) goto retry; bch2_trans_exit(&trans); if (ret) return ret; if (next_hole > isize) next_hole = isize; return vfs_setpos(file, next_hole, MAX_LFS_FILESIZE); } loff_t bch2_llseek(struct file *file, loff_t offset, int whence) { loff_t ret; switch (whence) { case SEEK_SET: case SEEK_CUR: case SEEK_END: ret = generic_file_llseek(file, offset, whence); break; case SEEK_DATA: ret = bch2_seek_data(file, offset); break; case SEEK_HOLE: ret = bch2_seek_hole(file, offset); break; default: ret = -EINVAL; break; } return bch2_err_class(ret); } void bch2_fs_fsio_exit(struct bch_fs *c) { bioset_exit(&c->nocow_flush_bioset); bioset_exit(&c->dio_write_bioset); bioset_exit(&c->dio_read_bioset); bioset_exit(&c->writepage_bioset); } int bch2_fs_fsio_init(struct bch_fs *c) { int ret = 0; pr_verbose_init(c->opts, ""); if (bioset_init(&c->writepage_bioset, 4, offsetof(struct bch_writepage_io, op.wbio.bio), BIOSET_NEED_BVECS) || bioset_init(&c->dio_read_bioset, 4, offsetof(struct dio_read, rbio.bio), BIOSET_NEED_BVECS) || bioset_init(&c->dio_write_bioset, 4, offsetof(struct dio_write, op.wbio.bio), BIOSET_NEED_BVECS) || bioset_init(&c->nocow_flush_bioset, 1, offsetof(struct nocow_flush, bio), 0)) ret = -ENOMEM; pr_verbose_init(c->opts, "ret %i", ret); return ret; } #endif /* NO_BCACHEFS_FS */