// SPDX-License-Identifier: GPL-2.0 #include "bcachefs.h" #include "btree_locking.h" #include "btree_types.h" struct lock_class_key bch2_btree_node_lock_key; /* Btree node locking: */ static inline void six_lock_readers_add(struct six_lock *lock, int nr) { if (lock->readers) this_cpu_add(*lock->readers, nr); else if (nr > 0) atomic64_add(__SIX_VAL(read_lock, nr), &lock->state.counter); else atomic64_sub(__SIX_VAL(read_lock, -nr), &lock->state.counter); } struct six_lock_count bch2_btree_node_lock_counts(struct btree_trans *trans, struct btree_path *skip, struct btree_bkey_cached_common *b, unsigned level) { struct btree_path *path; struct six_lock_count ret; memset(&ret, 0, sizeof(ret)); if (IS_ERR_OR_NULL(b)) return ret; trans_for_each_path(trans, path) if (path != skip && &path->l[level].b->c == b) { int t = btree_node_locked_type(path, level); if (t != BTREE_NODE_UNLOCKED) ret.n[t]++; } return ret; } /* unlock */ void bch2_btree_node_unlock_write(struct btree_trans *trans, struct btree_path *path, struct btree *b) { bch2_btree_node_unlock_write_inlined(trans, path, b); } /* lock */ /* * @trans wants to lock @b with type @type */ struct trans_waiting_for_lock { struct btree_trans *trans; struct btree_bkey_cached_common *node_want; enum six_lock_type lock_want; /* for iterating over held locks :*/ u8 path_idx; u8 level; u64 lock_start_time; }; struct lock_graph { struct trans_waiting_for_lock g[8]; unsigned nr; }; static noinline void print_cycle(struct printbuf *out, struct lock_graph *g) { struct trans_waiting_for_lock *i; prt_printf(out, "Found lock cycle (%u entries):", g->nr); prt_newline(out); for (i = g->g; i < g->g + g->nr; i++) bch2_btree_trans_to_text(out, i->trans); } static noinline void print_chain(struct printbuf *out, struct lock_graph *g) { struct trans_waiting_for_lock *i; for (i = g->g; i != g->g + g->nr; i++) { if (i != g->g) prt_str(out, "<- "); prt_printf(out, "%u ", i->trans->locking_wait.task->pid); } prt_newline(out); } static void lock_graph_up(struct lock_graph *g) { closure_put(&g->g[--g->nr].trans->ref); } static noinline void lock_graph_pop_all(struct lock_graph *g) { while (g->nr) lock_graph_up(g); } static void lock_graph_down(struct lock_graph *g, struct btree_trans *trans) { closure_get(&trans->ref); g->g[g->nr++] = (struct trans_waiting_for_lock) { .trans = trans, .node_want = trans->locking, .lock_want = trans->locking_wait.lock_want, }; } static bool lock_graph_remove_non_waiters(struct lock_graph *g) { struct trans_waiting_for_lock *i; for (i = g->g + 1; i < g->g + g->nr; i++) if (i->trans->locking != i->node_want || i->trans->locking_wait.start_time != i[-1].lock_start_time) { while (g->g + g->nr > i) lock_graph_up(g); return true; } return false; } static int abort_lock(struct lock_graph *g, struct trans_waiting_for_lock *i) { if (i == g->g) { trace_and_count(i->trans->c, trans_restart_would_deadlock, i->trans, _RET_IP_); return btree_trans_restart(i->trans, BCH_ERR_transaction_restart_would_deadlock); } else { i->trans->lock_must_abort = true; wake_up_process(i->trans->locking_wait.task); return 0; } } static int btree_trans_abort_preference(struct btree_trans *trans) { if (trans->lock_may_not_fail) return 0; if (trans->locking_wait.lock_want == SIX_LOCK_write) return 1; if (!trans->in_traverse_all) return 2; return 3; } static noinline int break_cycle(struct lock_graph *g, struct printbuf *cycle) { struct trans_waiting_for_lock *i, *abort = NULL; unsigned best = 0, pref; int ret; if (lock_graph_remove_non_waiters(g)) return 0; /* Only checking, for debugfs: */ if (cycle) { print_cycle(cycle, g); ret = -1; goto out; } for (i = g->g; i < g->g + g->nr; i++) { pref = btree_trans_abort_preference(i->trans); if (pref > best) { abort = i; best = pref; } } if (unlikely(!best)) { struct printbuf buf = PRINTBUF; prt_printf(&buf, bch2_fmt(g->g->trans->c, "cycle of nofail locks")); for (i = g->g; i < g->g + g->nr; i++) { struct btree_trans *trans = i->trans; bch2_btree_trans_to_text(&buf, trans); prt_printf(&buf, "backtrace:"); prt_newline(&buf); printbuf_indent_add(&buf, 2); bch2_prt_task_backtrace(&buf, trans->locking_wait.task); printbuf_indent_sub(&buf, 2); prt_newline(&buf); } bch2_print_string_as_lines(KERN_ERR, buf.buf); printbuf_exit(&buf); BUG(); } ret = abort_lock(g, abort); out: if (ret) while (g->nr) lock_graph_up(g); return ret; } static int lock_graph_descend(struct lock_graph *g, struct btree_trans *trans, struct printbuf *cycle) { struct btree_trans *orig_trans = g->g->trans; struct trans_waiting_for_lock *i; for (i = g->g; i < g->g + g->nr; i++) if (i->trans == trans) return break_cycle(g, cycle); if (g->nr == ARRAY_SIZE(g->g)) { if (orig_trans->lock_may_not_fail) return 0; while (g->nr) lock_graph_up(g); if (cycle) return 0; trace_and_count(trans->c, trans_restart_would_deadlock_recursion_limit, trans, _RET_IP_); return btree_trans_restart(orig_trans, BCH_ERR_transaction_restart_deadlock_recursion_limit); } lock_graph_down(g, trans); return 0; } static bool lock_type_conflicts(enum six_lock_type t1, enum six_lock_type t2) { return t1 + t2 > 1; } int bch2_check_for_deadlock(struct btree_trans *trans, struct printbuf *cycle) { struct lock_graph g; struct trans_waiting_for_lock *top; struct btree_bkey_cached_common *b; struct btree_path *path; int ret; if (trans->lock_must_abort) { if (cycle) return -1; trace_and_count(trans->c, trans_restart_would_deadlock, trans, _RET_IP_); return btree_trans_restart(trans, BCH_ERR_transaction_restart_would_deadlock); } g.nr = 0; lock_graph_down(&g, trans); next: if (!g.nr) return 0; top = &g.g[g.nr - 1]; trans_for_each_path_from(top->trans, path, top->path_idx) { if (!path->nodes_locked) continue; if (top->path_idx != path->idx) { top->path_idx = path->idx; top->level = 0; top->lock_start_time = 0; } for (; top->level < BTREE_MAX_DEPTH; top->level++, top->lock_start_time = 0) { int lock_held = btree_node_locked_type(path, top->level); if (lock_held == BTREE_NODE_UNLOCKED) continue; b = &READ_ONCE(path->l[top->level].b)->c; if (IS_ERR_OR_NULL(b)) { /* * If we get here, it means we raced with the * other thread updating its btree_path * structures - which means it can't be blocked * waiting on a lock: */ if (!lock_graph_remove_non_waiters(&g)) { /* * If lock_graph_remove_non_waiters() * didn't do anything, it must be * because we're being called by debugfs * checking for lock cycles, which * invokes us on btree_transactions that * aren't actually waiting on anything. * Just bail out: */ lock_graph_pop_all(&g); } goto next; } if (list_empty_careful(&b->lock.wait_list)) continue; raw_spin_lock(&b->lock.wait_lock); list_for_each_entry(trans, &b->lock.wait_list, locking_wait.list) { BUG_ON(b != trans->locking); if (top->lock_start_time && time_after_eq64(top->lock_start_time, trans->locking_wait.start_time)) continue; top->lock_start_time = trans->locking_wait.start_time; /* Don't check for self deadlock: */ if (trans == top->trans || !lock_type_conflicts(lock_held, trans->locking_wait.lock_want)) continue; ret = lock_graph_descend(&g, trans, cycle); raw_spin_unlock(&b->lock.wait_lock); if (ret) return ret; goto next; } raw_spin_unlock(&b->lock.wait_lock); } } if (g.nr > 1 && cycle) print_chain(cycle, &g); lock_graph_up(&g); goto next; } int bch2_six_check_for_deadlock(struct six_lock *lock, void *p) { struct btree_trans *trans = p; return bch2_check_for_deadlock(trans, NULL); } int __bch2_btree_node_lock_write(struct btree_trans *trans, struct btree_path *path, struct btree_bkey_cached_common *b, bool lock_may_not_fail) { int readers = bch2_btree_node_lock_counts(trans, NULL, b, b->level).n[SIX_LOCK_read]; int ret; /* * Must drop our read locks before calling six_lock_write() - * six_unlock() won't do wakeups until the reader count * goes to 0, and it's safe because we have the node intent * locked: */ six_lock_readers_add(&b->lock, -readers); ret = __btree_node_lock_nopath(trans, b, SIX_LOCK_write, lock_may_not_fail, _RET_IP_); six_lock_readers_add(&b->lock, readers); if (ret) mark_btree_node_locked_noreset(path, b->level, SIX_LOCK_intent); return ret; } void bch2_btree_node_lock_write_nofail(struct btree_trans *trans, struct btree_path *path, struct btree_bkey_cached_common *b) { struct btree_path *linked; unsigned i; int ret; /* * XXX BIG FAT NOTICE * * Drop all read locks before taking a write lock: * * This is a hack, because bch2_btree_node_lock_write_nofail() is a * hack - but by dropping read locks first, this should never fail, and * we only use this in code paths where whatever read locks we've * already taken are no longer needed: */ trans_for_each_path(trans, linked) { if (!linked->nodes_locked) continue; for (i = 0; i < BTREE_MAX_DEPTH; i++) if (btree_node_read_locked(linked, i)) { btree_node_unlock(trans, linked, i); btree_path_set_dirty(linked, BTREE_ITER_NEED_RELOCK); } } ret = __btree_node_lock_write(trans, path, b, true); BUG_ON(ret); } /* relock */ static inline bool btree_path_get_locks(struct btree_trans *trans, struct btree_path *path, bool upgrade) { unsigned l = path->level; int fail_idx = -1; do { if (!btree_path_node(path, l)) break; if (!(upgrade ? bch2_btree_node_upgrade(trans, path, l) : bch2_btree_node_relock(trans, path, l))) fail_idx = l; l++; } while (l < path->locks_want); /* * When we fail to get a lock, we have to ensure that any child nodes * can't be relocked so bch2_btree_path_traverse has to walk back up to * the node that we failed to relock: */ if (fail_idx >= 0) { __bch2_btree_path_unlock(trans, path); btree_path_set_dirty(path, BTREE_ITER_NEED_TRAVERSE); do { path->l[fail_idx].b = upgrade ? ERR_PTR(-BCH_ERR_no_btree_node_upgrade) : ERR_PTR(-BCH_ERR_no_btree_node_relock); --fail_idx; } while (fail_idx >= 0); } if (path->uptodate == BTREE_ITER_NEED_RELOCK) path->uptodate = BTREE_ITER_UPTODATE; bch2_trans_verify_locks(trans); return path->uptodate < BTREE_ITER_NEED_RELOCK; } bool __bch2_btree_node_relock(struct btree_trans *trans, struct btree_path *path, unsigned level, bool trace) { struct btree *b = btree_path_node(path, level); int want = __btree_lock_want(path, level); if (race_fault()) goto fail; if (six_relock_type(&b->c.lock, want, path->l[level].lock_seq) || (btree_node_lock_seq_matches(path, b, level) && btree_node_lock_increment(trans, &b->c, level, want))) { mark_btree_node_locked(trans, path, level, want); return true; } fail: if (trace && !trans->notrace_relock_fail) trace_and_count(trans->c, btree_path_relock_fail, trans, _RET_IP_, path, level); return false; } /* upgrade */ bool bch2_btree_node_upgrade(struct btree_trans *trans, struct btree_path *path, unsigned level) { struct btree *b = path->l[level].b; struct six_lock_count count = bch2_btree_node_lock_counts(trans, path, &b->c, level); if (!is_btree_node(path, level)) return false; switch (btree_lock_want(path, level)) { case BTREE_NODE_UNLOCKED: BUG_ON(btree_node_locked(path, level)); return true; case BTREE_NODE_READ_LOCKED: BUG_ON(btree_node_intent_locked(path, level)); return bch2_btree_node_relock(trans, path, level); case BTREE_NODE_INTENT_LOCKED: break; case BTREE_NODE_WRITE_LOCKED: BUG(); } if (btree_node_intent_locked(path, level)) return true; if (race_fault()) return false; if (btree_node_locked(path, level)) { bool ret; six_lock_readers_add(&b->c.lock, -count.n[SIX_LOCK_read]); ret = six_lock_tryupgrade(&b->c.lock); six_lock_readers_add(&b->c.lock, count.n[SIX_LOCK_read]); if (ret) goto success; } else { if (six_relock_type(&b->c.lock, SIX_LOCK_intent, path->l[level].lock_seq)) goto success; } /* * Do we already have an intent lock via another path? If so, just bump * lock count: */ if (btree_node_lock_seq_matches(path, b, level) && btree_node_lock_increment(trans, &b->c, level, BTREE_NODE_INTENT_LOCKED)) { btree_node_unlock(trans, path, level); goto success; } trace_and_count(trans->c, btree_path_upgrade_fail, trans, _RET_IP_, path, level); return false; success: mark_btree_node_locked_noreset(path, level, SIX_LOCK_intent); return true; } /* Btree path locking: */ /* * Only for btree_cache.c - only relocks intent locks */ int bch2_btree_path_relock_intent(struct btree_trans *trans, struct btree_path *path) { unsigned l; for (l = path->level; l < path->locks_want && btree_path_node(path, l); l++) { if (!bch2_btree_node_relock(trans, path, l)) { __bch2_btree_path_unlock(trans, path); btree_path_set_dirty(path, BTREE_ITER_NEED_TRAVERSE); trace_and_count(trans->c, trans_restart_relock_path_intent, trans, _RET_IP_, path); return btree_trans_restart(trans, BCH_ERR_transaction_restart_relock_path_intent); } } return 0; } __flatten bool bch2_btree_path_relock_norestart(struct btree_trans *trans, struct btree_path *path, unsigned long trace_ip) { return btree_path_get_locks(trans, path, false); } int __bch2_btree_path_relock(struct btree_trans *trans, struct btree_path *path, unsigned long trace_ip) { if (!bch2_btree_path_relock_norestart(trans, path, trace_ip)) { trace_and_count(trans->c, trans_restart_relock_path, trans, trace_ip, path); return btree_trans_restart(trans, BCH_ERR_transaction_restart_relock_path); } return 0; } __flatten bool bch2_btree_path_upgrade_norestart(struct btree_trans *trans, struct btree_path *path, unsigned long trace_ip) { return btree_path_get_locks(trans, path, true); } bool bch2_btree_path_upgrade_noupgrade_sibs(struct btree_trans *trans, struct btree_path *path, unsigned new_locks_want) { EBUG_ON(path->locks_want >= new_locks_want); path->locks_want = new_locks_want; return btree_path_get_locks(trans, path, true); } bool __bch2_btree_path_upgrade(struct btree_trans *trans, struct btree_path *path, unsigned new_locks_want) { struct btree_path *linked; if (bch2_btree_path_upgrade_noupgrade_sibs(trans, path, new_locks_want)) return true; /* * XXX: this is ugly - we'd prefer to not be mucking with other * iterators in the btree_trans here. * * On failure to upgrade the iterator, setting iter->locks_want and * calling get_locks() is sufficient to make bch2_btree_path_traverse() * get the locks we want on transaction restart. * * But if this iterator was a clone, on transaction restart what we did * to this iterator isn't going to be preserved. * * Possibly we could add an iterator field for the parent iterator when * an iterator is a copy - for now, we'll just upgrade any other * iterators with the same btree id. * * The code below used to be needed to ensure ancestor nodes get locked * before interior nodes - now that's handled by * bch2_btree_path_traverse_all(). */ if (!path->cached && !trans->in_traverse_all) trans_for_each_path(trans, linked) if (linked != path && linked->cached == path->cached && linked->btree_id == path->btree_id && linked->locks_want < new_locks_want) { linked->locks_want = new_locks_want; btree_path_get_locks(trans, linked, true); } return false; } void __bch2_btree_path_downgrade(struct btree_trans *trans, struct btree_path *path, unsigned new_locks_want) { unsigned l; EBUG_ON(path->locks_want < new_locks_want); path->locks_want = new_locks_want; while (path->nodes_locked && (l = btree_path_highest_level_locked(path)) >= path->locks_want) { if (l > path->level) { btree_node_unlock(trans, path, l); } else { if (btree_node_intent_locked(path, l)) { six_lock_downgrade(&path->l[l].b->c.lock); mark_btree_node_locked_noreset(path, l, SIX_LOCK_read); } break; } } bch2_btree_path_verify_locks(path); } /* Btree transaction locking: */ void bch2_trans_downgrade(struct btree_trans *trans) { struct btree_path *path; trans_for_each_path(trans, path) bch2_btree_path_downgrade(trans, path); } int bch2_trans_relock(struct btree_trans *trans) { struct btree_path *path; if (unlikely(trans->restarted)) return -((int) trans->restarted); trans_for_each_path(trans, path) if (path->should_be_locked && !bch2_btree_path_relock_norestart(trans, path, _RET_IP_)) { trace_and_count(trans->c, trans_restart_relock, trans, _RET_IP_, path); return btree_trans_restart(trans, BCH_ERR_transaction_restart_relock); } return 0; } int bch2_trans_relock_notrace(struct btree_trans *trans) { struct btree_path *path; if (unlikely(trans->restarted)) return -((int) trans->restarted); trans_for_each_path(trans, path) if (path->should_be_locked && !bch2_btree_path_relock_norestart(trans, path, _RET_IP_)) { return btree_trans_restart(trans, BCH_ERR_transaction_restart_relock); } return 0; } void bch2_trans_unlock(struct btree_trans *trans) { struct btree_path *path; trans_for_each_path(trans, path) __bch2_btree_path_unlock(trans, path); } bool bch2_trans_locked(struct btree_trans *trans) { struct btree_path *path; trans_for_each_path(trans, path) if (path->nodes_locked) return true; return false; } int __bch2_trans_mutex_lock(struct btree_trans *trans, struct mutex *lock) { int ret; bch2_trans_unlock(trans); mutex_lock(lock); ret = bch2_trans_relock(trans); if (ret) mutex_unlock(lock); return ret; } /* Debug */ #ifdef CONFIG_BCACHEFS_DEBUG void bch2_btree_path_verify_locks(struct btree_path *path) { unsigned l; if (!path->nodes_locked) { BUG_ON(path->uptodate == BTREE_ITER_UPTODATE && btree_path_node(path, path->level)); return; } for (l = 0; l < BTREE_MAX_DEPTH; l++) { int want = btree_lock_want(path, l); int have = btree_node_locked_type(path, l); BUG_ON(!is_btree_node(path, l) && have != BTREE_NODE_UNLOCKED); BUG_ON(is_btree_node(path, l) && (want == BTREE_NODE_UNLOCKED || have != BTREE_NODE_WRITE_LOCKED) && want != have); } } void bch2_trans_verify_locks(struct btree_trans *trans) { struct btree_path *path; trans_for_each_path(trans, path) bch2_btree_path_verify_locks(path); } #endif