// SPDX-License-Identifier: GPL-2.0 /* * xhci-dbgcap.c - xHCI debug capability support * * Copyright (C) 2017 Intel Corporation * * Author: Lu Baolu */ #include #include #include #include "xhci.h" #include "xhci-trace.h" #include "xhci-dbgcap.h" static u32 xhci_dbc_populate_strings(struct dbc_str_descs *strings) { struct usb_string_descriptor *s_desc; u32 string_length; /* Serial string: */ s_desc = (struct usb_string_descriptor *)strings->serial; utf8s_to_utf16s(DBC_STRING_SERIAL, strlen(DBC_STRING_SERIAL), UTF16_LITTLE_ENDIAN, (wchar_t *)s_desc->wData, DBC_MAX_STRING_LENGTH); s_desc->bLength = (strlen(DBC_STRING_SERIAL) + 1) * 2; s_desc->bDescriptorType = USB_DT_STRING; string_length = s_desc->bLength; string_length <<= 8; /* Product string: */ s_desc = (struct usb_string_descriptor *)strings->product; utf8s_to_utf16s(DBC_STRING_PRODUCT, strlen(DBC_STRING_PRODUCT), UTF16_LITTLE_ENDIAN, (wchar_t *)s_desc->wData, DBC_MAX_STRING_LENGTH); s_desc->bLength = (strlen(DBC_STRING_PRODUCT) + 1) * 2; s_desc->bDescriptorType = USB_DT_STRING; string_length += s_desc->bLength; string_length <<= 8; /* Manufacture string: */ s_desc = (struct usb_string_descriptor *)strings->manufacturer; utf8s_to_utf16s(DBC_STRING_MANUFACTURER, strlen(DBC_STRING_MANUFACTURER), UTF16_LITTLE_ENDIAN, (wchar_t *)s_desc->wData, DBC_MAX_STRING_LENGTH); s_desc->bLength = (strlen(DBC_STRING_MANUFACTURER) + 1) * 2; s_desc->bDescriptorType = USB_DT_STRING; string_length += s_desc->bLength; string_length <<= 8; /* String0: */ strings->string0[0] = 4; strings->string0[1] = USB_DT_STRING; strings->string0[2] = 0x09; strings->string0[3] = 0x04; string_length += 4; return string_length; } static void xhci_dbc_init_contexts(struct xhci_dbc *dbc, u32 string_length) { struct dbc_info_context *info; struct xhci_ep_ctx *ep_ctx; u32 dev_info; dma_addr_t deq, dma; unsigned int max_burst; if (!dbc) return; /* Populate info Context: */ info = (struct dbc_info_context *)dbc->ctx->bytes; dma = dbc->string_dma; info->string0 = cpu_to_le64(dma); info->manufacturer = cpu_to_le64(dma + DBC_MAX_STRING_LENGTH); info->product = cpu_to_le64(dma + DBC_MAX_STRING_LENGTH * 2); info->serial = cpu_to_le64(dma + DBC_MAX_STRING_LENGTH * 3); info->length = cpu_to_le32(string_length); /* Populate bulk out endpoint context: */ ep_ctx = dbc_bulkout_ctx(dbc); max_burst = DBC_CTRL_MAXBURST(readl(&dbc->regs->control)); deq = dbc_bulkout_enq(dbc); ep_ctx->ep_info = 0; ep_ctx->ep_info2 = dbc_epctx_info2(BULK_OUT_EP, 1024, max_burst); ep_ctx->deq = cpu_to_le64(deq | dbc->ring_out->cycle_state); /* Populate bulk in endpoint context: */ ep_ctx = dbc_bulkin_ctx(dbc); deq = dbc_bulkin_enq(dbc); ep_ctx->ep_info = 0; ep_ctx->ep_info2 = dbc_epctx_info2(BULK_IN_EP, 1024, max_burst); ep_ctx->deq = cpu_to_le64(deq | dbc->ring_in->cycle_state); /* Set DbC context and info registers: */ lo_hi_writeq(dbc->ctx->dma, &dbc->regs->dccp); dev_info = cpu_to_le32((DBC_VENDOR_ID << 16) | DBC_PROTOCOL); writel(dev_info, &dbc->regs->devinfo1); dev_info = cpu_to_le32((DBC_DEVICE_REV << 16) | DBC_PRODUCT_ID); writel(dev_info, &dbc->regs->devinfo2); } static void xhci_dbc_giveback(struct dbc_request *req, int status) __releases(&dbc->lock) __acquires(&dbc->lock) { struct dbc_ep *dep = req->dep; struct xhci_dbc *dbc = dep->dbc; struct xhci_hcd *xhci = dbc->xhci; struct device *dev = xhci_to_hcd(dbc->xhci)->self.sysdev; list_del_init(&req->list_pending); req->trb_dma = 0; req->trb = NULL; if (req->status == -EINPROGRESS) req->status = status; trace_xhci_dbc_giveback_request(req); dma_unmap_single(dev, req->dma, req->length, dbc_ep_dma_direction(dep)); /* Give back the transfer request: */ spin_unlock(&dbc->lock); req->complete(xhci, req); spin_lock(&dbc->lock); } static void xhci_dbc_flush_single_request(struct dbc_request *req) { union xhci_trb *trb = req->trb; trb->generic.field[0] = 0; trb->generic.field[1] = 0; trb->generic.field[2] = 0; trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE); trb->generic.field[3] |= cpu_to_le32(TRB_TYPE(TRB_TR_NOOP)); xhci_dbc_giveback(req, -ESHUTDOWN); } static void xhci_dbc_flush_endpoint_requests(struct dbc_ep *dep) { struct dbc_request *req, *tmp; list_for_each_entry_safe(req, tmp, &dep->list_pending, list_pending) xhci_dbc_flush_single_request(req); } static void xhci_dbc_flush_requests(struct xhci_dbc *dbc) { xhci_dbc_flush_endpoint_requests(&dbc->eps[BULK_OUT]); xhci_dbc_flush_endpoint_requests(&dbc->eps[BULK_IN]); } struct dbc_request * dbc_alloc_request(struct dbc_ep *dep, gfp_t gfp_flags) { struct dbc_request *req; req = kzalloc(sizeof(*req), gfp_flags); if (!req) return NULL; req->dep = dep; INIT_LIST_HEAD(&req->list_pending); INIT_LIST_HEAD(&req->list_pool); req->direction = dep->direction; trace_xhci_dbc_alloc_request(req); return req; } void dbc_free_request(struct dbc_ep *dep, struct dbc_request *req) { trace_xhci_dbc_free_request(req); kfree(req); } static void xhci_dbc_queue_trb(struct xhci_ring *ring, u32 field1, u32 field2, u32 field3, u32 field4) { union xhci_trb *trb, *next; trb = ring->enqueue; trb->generic.field[0] = cpu_to_le32(field1); trb->generic.field[1] = cpu_to_le32(field2); trb->generic.field[2] = cpu_to_le32(field3); trb->generic.field[3] = cpu_to_le32(field4); trace_xhci_dbc_gadget_ep_queue(ring, &trb->generic); ring->num_trbs_free--; next = ++(ring->enqueue); if (TRB_TYPE_LINK_LE32(next->link.control)) { next->link.control ^= cpu_to_le32(TRB_CYCLE); ring->enqueue = ring->enq_seg->trbs; ring->cycle_state ^= 1; } } static int xhci_dbc_queue_bulk_tx(struct dbc_ep *dep, struct dbc_request *req) { u64 addr; union xhci_trb *trb; unsigned int num_trbs; struct xhci_dbc *dbc = dep->dbc; struct xhci_ring *ring = dep->ring; u32 length, control, cycle; num_trbs = count_trbs(req->dma, req->length); WARN_ON(num_trbs != 1); if (ring->num_trbs_free < num_trbs) return -EBUSY; addr = req->dma; trb = ring->enqueue; cycle = ring->cycle_state; length = TRB_LEN(req->length); control = TRB_TYPE(TRB_NORMAL) | TRB_IOC; if (cycle) control &= cpu_to_le32(~TRB_CYCLE); else control |= cpu_to_le32(TRB_CYCLE); req->trb = ring->enqueue; req->trb_dma = xhci_trb_virt_to_dma(ring->enq_seg, ring->enqueue); xhci_dbc_queue_trb(ring, lower_32_bits(addr), upper_32_bits(addr), length, control); /* * Add a barrier between writes of trb fields and flipping * the cycle bit: */ wmb(); if (cycle) trb->generic.field[3] |= cpu_to_le32(TRB_CYCLE); else trb->generic.field[3] &= cpu_to_le32(~TRB_CYCLE); writel(DBC_DOOR_BELL_TARGET(dep->direction), &dbc->regs->doorbell); return 0; } static int dbc_ep_do_queue(struct dbc_ep *dep, struct dbc_request *req) { int ret; struct xhci_dbc *dbc = dep->dbc; struct device *dev = dbc->dev; if (!req->length || !req->buf) return -EINVAL; req->actual = 0; req->status = -EINPROGRESS; req->dma = dma_map_single(dev, req->buf, req->length, dbc_ep_dma_direction(dep)); if (dma_mapping_error(dev, req->dma)) { dev_err(dbc->dev, "failed to map buffer\n"); return -EFAULT; } ret = xhci_dbc_queue_bulk_tx(dep, req); if (ret) { dev_err(dbc->dev, "failed to queue trbs\n"); dma_unmap_single(dev, req->dma, req->length, dbc_ep_dma_direction(dep)); return -EFAULT; } list_add_tail(&req->list_pending, &dep->list_pending); return 0; } int dbc_ep_queue(struct dbc_ep *dep, struct dbc_request *req, gfp_t gfp_flags) { unsigned long flags; struct xhci_dbc *dbc = dep->dbc; int ret = -ESHUTDOWN; spin_lock_irqsave(&dbc->lock, flags); if (dbc->state == DS_CONFIGURED) ret = dbc_ep_do_queue(dep, req); spin_unlock_irqrestore(&dbc->lock, flags); mod_delayed_work(system_wq, &dbc->event_work, 0); trace_xhci_dbc_queue_request(req); return ret; } static inline void xhci_dbc_do_eps_init(struct xhci_dbc *dbc, bool direction) { struct dbc_ep *dep; dep = &dbc->eps[direction]; dep->dbc = dbc; dep->direction = direction; dep->ring = direction ? dbc->ring_in : dbc->ring_out; INIT_LIST_HEAD(&dep->list_pending); } static void xhci_dbc_eps_init(struct xhci_dbc *dbc) { xhci_dbc_do_eps_init(dbc, BULK_OUT); xhci_dbc_do_eps_init(dbc, BULK_IN); } static void xhci_dbc_eps_exit(struct xhci_dbc *dbc) { memset(dbc->eps, 0, sizeof(struct dbc_ep) * ARRAY_SIZE(dbc->eps)); } static int dbc_erst_alloc(struct device *dev, struct xhci_ring *evt_ring, struct xhci_erst *erst, gfp_t flags) { erst->entries = dma_alloc_coherent(dev, sizeof(struct xhci_erst_entry), &erst->erst_dma_addr, flags); if (!erst->entries) return -ENOMEM; erst->num_entries = 1; erst->entries[0].seg_addr = cpu_to_le64(evt_ring->first_seg->dma); erst->entries[0].seg_size = cpu_to_le32(TRBS_PER_SEGMENT); erst->entries[0].rsvd = 0; return 0; } static void dbc_erst_free(struct device *dev, struct xhci_erst *erst) { if (erst->entries) dma_free_coherent(dev, sizeof(struct xhci_erst_entry), erst->entries, erst->erst_dma_addr); erst->entries = NULL; } static int xhci_dbc_mem_init(struct xhci_hcd *xhci, gfp_t flags) { int ret; dma_addr_t deq; u32 string_length; struct xhci_dbc *dbc = xhci->dbc; struct device *dev = xhci_to_hcd(xhci)->self.controller; /* Allocate various rings for events and transfers: */ dbc->ring_evt = xhci_ring_alloc(xhci, 1, 1, TYPE_EVENT, 0, flags); if (!dbc->ring_evt) goto evt_fail; dbc->ring_in = xhci_ring_alloc(xhci, 1, 1, TYPE_BULK, 0, flags); if (!dbc->ring_in) goto in_fail; dbc->ring_out = xhci_ring_alloc(xhci, 1, 1, TYPE_BULK, 0, flags); if (!dbc->ring_out) goto out_fail; /* Allocate and populate ERST: */ ret = dbc_erst_alloc(dev, dbc->ring_evt, &dbc->erst, flags); if (ret) goto erst_fail; /* Allocate context data structure: */ dbc->ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags); if (!dbc->ctx) goto ctx_fail; /* Allocate the string table: */ dbc->string_size = sizeof(struct dbc_str_descs); dbc->string = dma_alloc_coherent(dev, dbc->string_size, &dbc->string_dma, flags); if (!dbc->string) goto string_fail; /* Setup ERST register: */ writel(dbc->erst.erst_size, &dbc->regs->ersts); lo_hi_writeq(dbc->erst.erst_dma_addr, &dbc->regs->erstba); deq = xhci_trb_virt_to_dma(dbc->ring_evt->deq_seg, dbc->ring_evt->dequeue); lo_hi_writeq(deq, &dbc->regs->erdp); /* Setup strings and contexts: */ string_length = xhci_dbc_populate_strings(dbc->string); xhci_dbc_init_contexts(dbc, string_length); xhci_dbc_eps_init(dbc); dbc->state = DS_INITIALIZED; return 0; string_fail: xhci_free_container_ctx(xhci, dbc->ctx); dbc->ctx = NULL; ctx_fail: dbc_erst_free(dev, &dbc->erst); erst_fail: xhci_ring_free(xhci, dbc->ring_out); dbc->ring_out = NULL; out_fail: xhci_ring_free(xhci, dbc->ring_in); dbc->ring_in = NULL; in_fail: xhci_ring_free(xhci, dbc->ring_evt); dbc->ring_evt = NULL; evt_fail: return -ENOMEM; } static void xhci_dbc_mem_cleanup(struct xhci_hcd *xhci) { struct xhci_dbc *dbc = xhci->dbc; struct device *dev = xhci_to_hcd(xhci)->self.controller; if (!dbc) return; xhci_dbc_eps_exit(dbc); if (dbc->string) { dma_free_coherent(dbc->dev, dbc->string_size, dbc->string, dbc->string_dma); dbc->string = NULL; } xhci_free_container_ctx(xhci, dbc->ctx); dbc->ctx = NULL; dbc_erst_free(dev, &dbc->erst); xhci_ring_free(xhci, dbc->ring_out); xhci_ring_free(xhci, dbc->ring_in); xhci_ring_free(xhci, dbc->ring_evt); dbc->ring_in = NULL; dbc->ring_out = NULL; dbc->ring_evt = NULL; } static int xhci_do_dbc_start(struct xhci_hcd *xhci) { int ret; u32 ctrl; struct xhci_dbc *dbc = xhci->dbc; if (dbc->state != DS_DISABLED) return -EINVAL; writel(0, &dbc->regs->control); ret = xhci_handshake(&dbc->regs->control, DBC_CTRL_DBC_ENABLE, 0, 1000); if (ret) return ret; ret = xhci_dbc_mem_init(xhci, GFP_ATOMIC); if (ret) return ret; ctrl = readl(&dbc->regs->control); writel(ctrl | DBC_CTRL_DBC_ENABLE | DBC_CTRL_PORT_ENABLE, &dbc->regs->control); ret = xhci_handshake(&dbc->regs->control, DBC_CTRL_DBC_ENABLE, DBC_CTRL_DBC_ENABLE, 1000); if (ret) return ret; dbc->state = DS_ENABLED; return 0; } static int xhci_do_dbc_stop(struct xhci_dbc *dbc) { if (dbc->state == DS_DISABLED) return -1; writel(0, &dbc->regs->control); dbc->state = DS_DISABLED; return 0; } static int xhci_dbc_start(struct xhci_hcd *xhci) { int ret; unsigned long flags; struct xhci_dbc *dbc = xhci->dbc; WARN_ON(!dbc); pm_runtime_get_sync(xhci_to_hcd(xhci)->self.controller); spin_lock_irqsave(&dbc->lock, flags); ret = xhci_do_dbc_start(xhci); spin_unlock_irqrestore(&dbc->lock, flags); if (ret) { pm_runtime_put(xhci_to_hcd(xhci)->self.controller); return ret; } return mod_delayed_work(system_wq, &dbc->event_work, 1); } static void xhci_dbc_stop(struct xhci_hcd *xhci) { int ret; unsigned long flags; struct xhci_dbc *dbc = xhci->dbc; struct dbc_port *port = &dbc->port; WARN_ON(!dbc); cancel_delayed_work_sync(&dbc->event_work); if (port->registered) xhci_dbc_tty_unregister_device(dbc); spin_lock_irqsave(&dbc->lock, flags); ret = xhci_do_dbc_stop(dbc); spin_unlock_irqrestore(&dbc->lock, flags); if (!ret) { xhci_dbc_mem_cleanup(xhci); pm_runtime_put_sync(xhci_to_hcd(xhci)->self.controller); } } static void dbc_handle_port_status(struct xhci_dbc *dbc, union xhci_trb *event) { u32 portsc; portsc = readl(&dbc->regs->portsc); if (portsc & DBC_PORTSC_CONN_CHANGE) dev_info(dbc->dev, "DbC port connect change\n"); if (portsc & DBC_PORTSC_RESET_CHANGE) dev_info(dbc->dev, "DbC port reset change\n"); if (portsc & DBC_PORTSC_LINK_CHANGE) dev_info(dbc->dev, "DbC port link status change\n"); if (portsc & DBC_PORTSC_CONFIG_CHANGE) dev_info(dbc->dev, "DbC config error change\n"); /* Port reset change bit will be cleared in other place: */ writel(portsc & ~DBC_PORTSC_RESET_CHANGE, &dbc->regs->portsc); } static void dbc_handle_xfer_event(struct xhci_dbc *dbc, union xhci_trb *event) { struct dbc_ep *dep; struct xhci_ring *ring; int ep_id; int status; u32 comp_code; size_t remain_length; struct dbc_request *req = NULL, *r; comp_code = GET_COMP_CODE(le32_to_cpu(event->generic.field[2])); remain_length = EVENT_TRB_LEN(le32_to_cpu(event->generic.field[2])); ep_id = TRB_TO_EP_ID(le32_to_cpu(event->generic.field[3])); dep = (ep_id == EPID_OUT) ? get_out_ep(dbc) : get_in_ep(dbc); ring = dep->ring; switch (comp_code) { case COMP_SUCCESS: remain_length = 0; /* FALLTHROUGH */ case COMP_SHORT_PACKET: status = 0; break; case COMP_TRB_ERROR: case COMP_BABBLE_DETECTED_ERROR: case COMP_USB_TRANSACTION_ERROR: case COMP_STALL_ERROR: dev_warn(dbc->dev, "tx error %d detected\n", comp_code); status = -comp_code; break; default: dev_err(dbc->dev, "unknown tx error %d\n", comp_code); status = -comp_code; break; } /* Match the pending request: */ list_for_each_entry(r, &dep->list_pending, list_pending) { if (r->trb_dma == event->trans_event.buffer) { req = r; break; } } if (!req) { dev_warn(dbc->dev, "no matched request\n"); return; } trace_xhci_dbc_handle_transfer(ring, &req->trb->generic); ring->num_trbs_free++; req->actual = req->length - remain_length; xhci_dbc_giveback(req, status); } static void inc_evt_deq(struct xhci_ring *ring) { /* If on the last TRB of the segment go back to the beginning */ if (ring->dequeue == &ring->deq_seg->trbs[TRBS_PER_SEGMENT - 1]) { ring->cycle_state ^= 1; ring->dequeue = ring->deq_seg->trbs; return; } ring->dequeue++; } static enum evtreturn xhci_dbc_do_handle_events(struct xhci_dbc *dbc) { dma_addr_t deq; struct dbc_ep *dep; union xhci_trb *evt; u32 ctrl, portsc; bool update_erdp = false; /* DbC state machine: */ switch (dbc->state) { case DS_DISABLED: case DS_INITIALIZED: return EVT_ERR; case DS_ENABLED: portsc = readl(&dbc->regs->portsc); if (portsc & DBC_PORTSC_CONN_STATUS) { dbc->state = DS_CONNECTED; dev_info(dbc->dev, "DbC connected\n"); } return EVT_DONE; case DS_CONNECTED: ctrl = readl(&dbc->regs->control); if (ctrl & DBC_CTRL_DBC_RUN) { dbc->state = DS_CONFIGURED; dev_info(dbc->dev, "DbC configured\n"); portsc = readl(&dbc->regs->portsc); writel(portsc, &dbc->regs->portsc); return EVT_GSER; } return EVT_DONE; case DS_CONFIGURED: /* Handle cable unplug event: */ portsc = readl(&dbc->regs->portsc); if (!(portsc & DBC_PORTSC_PORT_ENABLED) && !(portsc & DBC_PORTSC_CONN_STATUS)) { dev_info(dbc->dev, "DbC cable unplugged\n"); dbc->state = DS_ENABLED; xhci_dbc_flush_requests(dbc); return EVT_DISC; } /* Handle debug port reset event: */ if (portsc & DBC_PORTSC_RESET_CHANGE) { dev_info(dbc->dev, "DbC port reset\n"); writel(portsc, &dbc->regs->portsc); dbc->state = DS_ENABLED; xhci_dbc_flush_requests(dbc); return EVT_DISC; } /* Handle endpoint stall event: */ ctrl = readl(&dbc->regs->control); if ((ctrl & DBC_CTRL_HALT_IN_TR) || (ctrl & DBC_CTRL_HALT_OUT_TR)) { dev_info(dbc->dev, "DbC Endpoint stall\n"); dbc->state = DS_STALLED; if (ctrl & DBC_CTRL_HALT_IN_TR) { dep = get_in_ep(dbc); xhci_dbc_flush_endpoint_requests(dep); } if (ctrl & DBC_CTRL_HALT_OUT_TR) { dep = get_out_ep(dbc); xhci_dbc_flush_endpoint_requests(dep); } return EVT_DONE; } /* Clear DbC run change bit: */ if (ctrl & DBC_CTRL_DBC_RUN_CHANGE) { writel(ctrl, &dbc->regs->control); ctrl = readl(&dbc->regs->control); } break; case DS_STALLED: ctrl = readl(&dbc->regs->control); if (!(ctrl & DBC_CTRL_HALT_IN_TR) && !(ctrl & DBC_CTRL_HALT_OUT_TR) && (ctrl & DBC_CTRL_DBC_RUN)) { dbc->state = DS_CONFIGURED; break; } return EVT_DONE; default: dev_err(dbc->dev, "Unknown DbC state %d\n", dbc->state); break; } /* Handle the events in the event ring: */ evt = dbc->ring_evt->dequeue; while ((le32_to_cpu(evt->event_cmd.flags) & TRB_CYCLE) == dbc->ring_evt->cycle_state) { /* * Add a barrier between reading the cycle flag and any * reads of the event's flags/data below: */ rmb(); trace_xhci_dbc_handle_event(dbc->ring_evt, &evt->generic); switch (le32_to_cpu(evt->event_cmd.flags) & TRB_TYPE_BITMASK) { case TRB_TYPE(TRB_PORT_STATUS): dbc_handle_port_status(dbc, evt); break; case TRB_TYPE(TRB_TRANSFER): dbc_handle_xfer_event(dbc, evt); break; default: break; } inc_evt_deq(dbc->ring_evt); evt = dbc->ring_evt->dequeue; update_erdp = true; } /* Update event ring dequeue pointer: */ if (update_erdp) { deq = xhci_trb_virt_to_dma(dbc->ring_evt->deq_seg, dbc->ring_evt->dequeue); lo_hi_writeq(deq, &dbc->regs->erdp); } return EVT_DONE; } static void xhci_dbc_handle_events(struct work_struct *work) { int ret; enum evtreturn evtr; struct xhci_dbc *dbc; unsigned long flags; dbc = container_of(to_delayed_work(work), struct xhci_dbc, event_work); spin_lock_irqsave(&dbc->lock, flags); evtr = xhci_dbc_do_handle_events(dbc); spin_unlock_irqrestore(&dbc->lock, flags); switch (evtr) { case EVT_GSER: ret = xhci_dbc_tty_register_device(dbc); if (ret) { dev_err(dbc->dev, "failed to alloc tty device\n"); break; } dev_info(dbc->dev, "DbC now attached to /dev/ttyDBC0\n"); break; case EVT_DISC: xhci_dbc_tty_unregister_device(dbc); break; case EVT_DONE: break; default: dev_info(dbc->dev, "stop handling dbc events\n"); return; } mod_delayed_work(system_wq, &dbc->event_work, 1); } static void xhci_do_dbc_exit(struct xhci_hcd *xhci) { unsigned long flags; spin_lock_irqsave(&xhci->lock, flags); kfree(xhci->dbc); xhci->dbc = NULL; spin_unlock_irqrestore(&xhci->lock, flags); } static int xhci_do_dbc_init(struct xhci_hcd *xhci) { u32 reg; struct xhci_dbc *dbc; unsigned long flags; void __iomem *base; int dbc_cap_offs; base = &xhci->cap_regs->hc_capbase; dbc_cap_offs = xhci_find_next_ext_cap(base, 0, XHCI_EXT_CAPS_DEBUG); if (!dbc_cap_offs) return -ENODEV; dbc = kzalloc(sizeof(*dbc), GFP_KERNEL); if (!dbc) return -ENOMEM; dbc->regs = base + dbc_cap_offs; /* We will avoid using DbC in xhci driver if it's in use. */ reg = readl(&dbc->regs->control); if (reg & DBC_CTRL_DBC_ENABLE) { kfree(dbc); return -EBUSY; } spin_lock_irqsave(&xhci->lock, flags); if (xhci->dbc) { spin_unlock_irqrestore(&xhci->lock, flags); kfree(dbc); return -EBUSY; } xhci->dbc = dbc; spin_unlock_irqrestore(&xhci->lock, flags); dbc->xhci = xhci; dbc->dev = xhci_to_hcd(xhci)->self.sysdev; INIT_DELAYED_WORK(&dbc->event_work, xhci_dbc_handle_events); spin_lock_init(&dbc->lock); return 0; } static ssize_t dbc_show(struct device *dev, struct device_attribute *attr, char *buf) { const char *p; struct xhci_dbc *dbc; struct xhci_hcd *xhci; xhci = hcd_to_xhci(dev_get_drvdata(dev)); dbc = xhci->dbc; switch (dbc->state) { case DS_DISABLED: p = "disabled"; break; case DS_INITIALIZED: p = "initialized"; break; case DS_ENABLED: p = "enabled"; break; case DS_CONNECTED: p = "connected"; break; case DS_CONFIGURED: p = "configured"; break; case DS_STALLED: p = "stalled"; break; default: p = "unknown"; } return sprintf(buf, "%s\n", p); } static ssize_t dbc_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct xhci_hcd *xhci; xhci = hcd_to_xhci(dev_get_drvdata(dev)); if (!strncmp(buf, "enable", 6)) xhci_dbc_start(xhci); else if (!strncmp(buf, "disable", 7)) xhci_dbc_stop(xhci); else return -EINVAL; return count; } static DEVICE_ATTR_RW(dbc); int xhci_dbc_init(struct xhci_hcd *xhci) { int ret; struct device *dev = xhci_to_hcd(xhci)->self.controller; ret = xhci_do_dbc_init(xhci); if (ret) goto init_err3; ret = xhci_dbc_tty_register_driver(xhci); if (ret) goto init_err2; ret = device_create_file(dev, &dev_attr_dbc); if (ret) goto init_err1; return 0; init_err1: xhci_dbc_tty_unregister_driver(); init_err2: xhci_do_dbc_exit(xhci); init_err3: return ret; } void xhci_dbc_exit(struct xhci_hcd *xhci) { struct device *dev = xhci_to_hcd(xhci)->self.controller; if (!xhci->dbc) return; device_remove_file(dev, &dev_attr_dbc); xhci_dbc_tty_unregister_driver(); xhci_dbc_stop(xhci); xhci_do_dbc_exit(xhci); } #ifdef CONFIG_PM int xhci_dbc_suspend(struct xhci_hcd *xhci) { struct xhci_dbc *dbc = xhci->dbc; if (!dbc) return 0; if (dbc->state == DS_CONFIGURED) dbc->resume_required = 1; xhci_dbc_stop(xhci); return 0; } int xhci_dbc_resume(struct xhci_hcd *xhci) { int ret = 0; struct xhci_dbc *dbc = xhci->dbc; if (!dbc) return 0; if (dbc->resume_required) { dbc->resume_required = 0; xhci_dbc_start(xhci); } return ret; } #endif /* CONFIG_PM */