/* * This file is part of the Chelsio FCoE driver for Linux. * * Copyright (c) 2008-2013 Chelsio Communications, Inc. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "csio_hw.h" #include "csio_init.h" static int csio_t5_set_mem_win(struct csio_hw *hw, uint32_t win) { u32 mem_win_base; /* * Truncation intentional: we only read the bottom 32-bits of the * 64-bit BAR0/BAR1 ... We use the hardware backdoor mechanism to * read BAR0 instead of using pci_resource_start() because we could be * operating from within a Virtual Machine which is trapping our * accesses to our Configuration Space and we need to set up the PCI-E * Memory Window decoders with the actual addresses which will be * coming across the PCI-E link. */ /* For T5, only relative offset inside the PCIe BAR is passed */ mem_win_base = MEMWIN_BASE; /* * Set up memory window for accessing adapter memory ranges. (Read * back MA register to ensure that changes propagate before we attempt * to use the new values.) */ csio_wr_reg32(hw, mem_win_base | BIR_V(0) | WINDOW_V(ilog2(MEMWIN_APERTURE) - 10), PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, win)); csio_rd_reg32(hw, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, win)); return 0; } /* * Interrupt handler for the PCIE module. */ static void csio_t5_pcie_intr_handler(struct csio_hw *hw) { static struct intr_info sysbus_intr_info[] = { { RNPP_F, "RXNP array parity error", -1, 1 }, { RPCP_F, "RXPC array parity error", -1, 1 }, { RCIP_F, "RXCIF array parity error", -1, 1 }, { RCCP_F, "Rx completions control array parity error", -1, 1 }, { RFTP_F, "RXFT array parity error", -1, 1 }, { 0, NULL, 0, 0 } }; static struct intr_info pcie_port_intr_info[] = { { TPCP_F, "TXPC array parity error", -1, 1 }, { TNPP_F, "TXNP array parity error", -1, 1 }, { TFTP_F, "TXFT array parity error", -1, 1 }, { TCAP_F, "TXCA array parity error", -1, 1 }, { TCIP_F, "TXCIF array parity error", -1, 1 }, { RCAP_F, "RXCA array parity error", -1, 1 }, { OTDD_F, "outbound request TLP discarded", -1, 1 }, { RDPE_F, "Rx data parity error", -1, 1 }, { TDUE_F, "Tx uncorrectable data error", -1, 1 }, { 0, NULL, 0, 0 } }; static struct intr_info pcie_intr_info[] = { { MSTGRPPERR_F, "Master Response Read Queue parity error", -1, 1 }, { MSTTIMEOUTPERR_F, "Master Timeout FIFO parity error", -1, 1 }, { MSIXSTIPERR_F, "MSI-X STI SRAM parity error", -1, 1 }, { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 }, { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 }, { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 }, { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 }, { PIOCPLGRPPERR_F, "PCI PIO completion Group FIFO parity error", -1, 1 }, { PIOREQGRPPERR_F, "PCI PIO request Group FIFO parity error", -1, 1 }, { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 }, { MSTTAGQPERR_F, "PCI master tag queue parity error", -1, 1 }, { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 }, { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 }, { DREQWRPERR_F, "PCI DMA channel write request parity error", -1, 1 }, { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 }, { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 }, { HREQWRPERR_F, "PCI HMA channel count parity error", -1, 1 }, { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 }, { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 }, { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 }, { FIDPERR_F, "PCI FID parity error", -1, 1 }, { VFIDPERR_F, "PCI INTx clear parity error", -1, 1 }, { MAGRPPERR_F, "PCI MA group FIFO parity error", -1, 1 }, { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 }, { IPRXHDRGRPPERR_F, "PCI IP Rx header group parity error", -1, 1 }, { IPRXDATAGRPPERR_F, "PCI IP Rx data group parity error", -1, 1 }, { RPLPERR_F, "PCI IP replay buffer parity error", -1, 1 }, { IPSOTPERR_F, "PCI IP SOT buffer parity error", -1, 1 }, { TRGT1GRPPERR_F, "PCI TRGT1 group FIFOs parity error", -1, 1 }, { READRSPERR_F, "Outbound read error", -1, 0 }, { 0, NULL, 0, 0 } }; int fat; fat = csio_handle_intr_status(hw, PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS_A, sysbus_intr_info) + csio_handle_intr_status(hw, PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS_A, pcie_port_intr_info) + csio_handle_intr_status(hw, PCIE_INT_CAUSE_A, pcie_intr_info); if (fat) csio_hw_fatal_err(hw); } /* * csio_t5_flash_cfg_addr - return the address of the flash configuration file * @hw: the HW module * * Return the address within the flash where the Firmware Configuration * File is stored. */ static unsigned int csio_t5_flash_cfg_addr(struct csio_hw *hw) { return FLASH_CFG_START; } /* * csio_t5_mc_read - read from MC through backdoor accesses * @hw: the hw module * @idx: index to the register * @addr: address of first byte requested * @data: 64 bytes of data containing the requested address * @ecc: where to store the corresponding 64-bit ECC word * * Read 64 bytes of data from MC starting at a 64-byte-aligned address * that covers the requested address @addr. If @parity is not %NULL it * is assigned the 64-bit ECC word for the read data. */ static int csio_t5_mc_read(struct csio_hw *hw, int idx, uint32_t addr, __be32 *data, uint64_t *ecc) { int i; uint32_t mc_bist_cmd_reg, mc_bist_cmd_addr_reg, mc_bist_cmd_len_reg; uint32_t mc_bist_status_rdata_reg, mc_bist_data_pattern_reg; mc_bist_cmd_reg = MC_REG(MC_P_BIST_CMD, idx); mc_bist_cmd_addr_reg = MC_REG(MC_P_BIST_CMD_ADDR, idx); mc_bist_cmd_len_reg = MC_REG(MC_P_BIST_CMD_LEN, idx); mc_bist_status_rdata_reg = MC_REG(MC_P_BIST_STATUS_RDATA, idx); mc_bist_data_pattern_reg = MC_REG(MC_P_BIST_DATA_PATTERN, idx); if (csio_rd_reg32(hw, mc_bist_cmd_reg) & START_BIST) return -EBUSY; csio_wr_reg32(hw, addr & ~0x3fU, mc_bist_cmd_addr_reg); csio_wr_reg32(hw, 64, mc_bist_cmd_len_reg); csio_wr_reg32(hw, 0xc, mc_bist_data_pattern_reg); csio_wr_reg32(hw, BIST_OPCODE(1) | START_BIST | BIST_CMD_GAP(1), mc_bist_cmd_reg); i = csio_hw_wait_op_done_val(hw, mc_bist_cmd_reg, START_BIST, 0, 10, 1, NULL); if (i) return i; #define MC_DATA(i) MC_BIST_STATUS_REG(MC_BIST_STATUS_RDATA, i) for (i = 15; i >= 0; i--) *data++ = htonl(csio_rd_reg32(hw, MC_DATA(i))); if (ecc) *ecc = csio_rd_reg64(hw, MC_DATA(16)); #undef MC_DATA return 0; } /* * csio_t5_edc_read - read from EDC through backdoor accesses * @hw: the hw module * @idx: which EDC to access * @addr: address of first byte requested * @data: 64 bytes of data containing the requested address * @ecc: where to store the corresponding 64-bit ECC word * * Read 64 bytes of data from EDC starting at a 64-byte-aligned address * that covers the requested address @addr. If @parity is not %NULL it * is assigned the 64-bit ECC word for the read data. */ static int csio_t5_edc_read(struct csio_hw *hw, int idx, uint32_t addr, __be32 *data, uint64_t *ecc) { int i; uint32_t edc_bist_cmd_reg, edc_bist_cmd_addr_reg, edc_bist_cmd_len_reg; uint32_t edc_bist_cmd_data_pattern, edc_bist_status_rdata_reg; /* * These macro are missing in t4_regs.h file. */ #define EDC_STRIDE_T5 (EDC_T51_BASE_ADDR - EDC_T50_BASE_ADDR) #define EDC_REG_T5(reg, idx) (reg + EDC_STRIDE_T5 * idx) edc_bist_cmd_reg = EDC_REG_T5(EDC_H_BIST_CMD, idx); edc_bist_cmd_addr_reg = EDC_REG_T5(EDC_H_BIST_CMD_ADDR, idx); edc_bist_cmd_len_reg = EDC_REG_T5(EDC_H_BIST_CMD_LEN, idx); edc_bist_cmd_data_pattern = EDC_REG_T5(EDC_H_BIST_DATA_PATTERN, idx); edc_bist_status_rdata_reg = EDC_REG_T5(EDC_H_BIST_STATUS_RDATA, idx); #undef EDC_REG_T5 #undef EDC_STRIDE_T5 if (csio_rd_reg32(hw, edc_bist_cmd_reg) & START_BIST) return -EBUSY; csio_wr_reg32(hw, addr & ~0x3fU, edc_bist_cmd_addr_reg); csio_wr_reg32(hw, 64, edc_bist_cmd_len_reg); csio_wr_reg32(hw, 0xc, edc_bist_cmd_data_pattern); csio_wr_reg32(hw, BIST_OPCODE(1) | START_BIST | BIST_CMD_GAP(1), edc_bist_cmd_reg); i = csio_hw_wait_op_done_val(hw, edc_bist_cmd_reg, START_BIST, 0, 10, 1, NULL); if (i) return i; #define EDC_DATA(i) (EDC_BIST_STATUS_REG(EDC_BIST_STATUS_RDATA, i) + idx) for (i = 15; i >= 0; i--) *data++ = htonl(csio_rd_reg32(hw, EDC_DATA(i))); if (ecc) *ecc = csio_rd_reg64(hw, EDC_DATA(16)); #undef EDC_DATA return 0; } /* * csio_t5_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window * @hw: the csio_hw * @win: PCI-E memory Window to use * @mtype: memory type: MEM_EDC0, MEM_EDC1, MEM_MC0 (or MEM_MC) or MEM_MC1 * @addr: address within indicated memory type * @len: amount of memory to transfer * @buf: host memory buffer * @dir: direction of transfer 1 => read, 0 => write * * Reads/writes an [almost] arbitrary memory region in the firmware: the * firmware memory address, length and host buffer must be aligned on * 32-bit boudaries. The memory is transferred as a raw byte sequence * from/to the firmware's memory. If this memory contains data * structures which contain multi-byte integers, it's the callers * responsibility to perform appropriate byte order conversions. */ static int csio_t5_memory_rw(struct csio_hw *hw, u32 win, int mtype, u32 addr, u32 len, uint32_t *buf, int dir) { u32 pos, start, offset, memoffset; u32 edc_size, mc_size, win_pf, mem_reg, mem_aperture, mem_base; /* * Argument sanity checks ... */ if ((addr & 0x3) || (len & 0x3)) return -EINVAL; /* Offset into the region of memory which is being accessed * MEM_EDC0 = 0 * MEM_EDC1 = 1 * MEM_MC = 2 -- T4 * MEM_MC0 = 2 -- For T5 * MEM_MC1 = 3 -- For T5 */ edc_size = EDRAM0_SIZE_G(csio_rd_reg32(hw, MA_EDRAM0_BAR_A)); if (mtype != MEM_MC1) memoffset = (mtype * (edc_size * 1024 * 1024)); else { mc_size = EXT_MEM_SIZE_G(csio_rd_reg32(hw, MA_EXT_MEMORY_BAR_A)); memoffset = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024; } /* Determine the PCIE_MEM_ACCESS_OFFSET */ addr = addr + memoffset; /* * Each PCI-E Memory Window is programmed with a window size -- or * "aperture" -- which controls the granularity of its mapping onto * adapter memory. We need to grab that aperture in order to know * how to use the specified window. The window is also programmed * with the base address of the Memory Window in BAR0's address * space. For T4 this is an absolute PCI-E Bus Address. For T5 * the address is relative to BAR0. */ mem_reg = csio_rd_reg32(hw, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, win)); mem_aperture = 1 << (WINDOW_V(mem_reg) + 10); mem_base = PCIEOFST_G(mem_reg) << 10; start = addr & ~(mem_aperture-1); offset = addr - start; win_pf = PFNUM_V(hw->pfn); csio_dbg(hw, "csio_t5_memory_rw: mem_reg: 0x%x, mem_aperture: 0x%x\n", mem_reg, mem_aperture); csio_dbg(hw, "csio_t5_memory_rw: mem_base: 0x%x, mem_offset: 0x%x\n", mem_base, memoffset); csio_dbg(hw, "csio_t5_memory_rw: start:0x%x, offset:0x%x, win_pf:%d\n", start, offset, win_pf); csio_dbg(hw, "csio_t5_memory_rw: mtype: %d, addr: 0x%x, len: %d\n", mtype, addr, len); for (pos = start; len > 0; pos += mem_aperture, offset = 0) { /* * Move PCI-E Memory Window to our current transfer * position. Read it back to ensure that changes propagate * before we attempt to use the new value. */ csio_wr_reg32(hw, pos | win_pf, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win)); csio_rd_reg32(hw, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win)); while (offset < mem_aperture && len > 0) { if (dir) *buf++ = csio_rd_reg32(hw, mem_base + offset); else csio_wr_reg32(hw, *buf++, mem_base + offset); offset += sizeof(__be32); len -= sizeof(__be32); } } return 0; } /* * csio_t5_dfs_create_ext_mem - setup debugfs for MC0 or MC1 to read the values * @hw: the csio_hw * * This function creates files in the debugfs with external memory region * MC0 & MC1. */ static void csio_t5_dfs_create_ext_mem(struct csio_hw *hw) { u32 size; int i = csio_rd_reg32(hw, MA_TARGET_MEM_ENABLE_A); if (i & EXT_MEM_ENABLE_F) { size = csio_rd_reg32(hw, MA_EXT_MEMORY_BAR_A); csio_add_debugfs_mem(hw, "mc0", MEM_MC0, EXT_MEM_SIZE_G(size)); } if (i & EXT_MEM1_ENABLE_F) { size = csio_rd_reg32(hw, MA_EXT_MEMORY1_BAR_A); csio_add_debugfs_mem(hw, "mc1", MEM_MC1, EXT_MEM_SIZE_G(size)); } } /* T5 adapter specific function */ struct csio_hw_chip_ops t5_ops = { .chip_set_mem_win = csio_t5_set_mem_win, .chip_pcie_intr_handler = csio_t5_pcie_intr_handler, .chip_flash_cfg_addr = csio_t5_flash_cfg_addr, .chip_mc_read = csio_t5_mc_read, .chip_edc_read = csio_t5_edc_read, .chip_memory_rw = csio_t5_memory_rw, .chip_dfs_create_ext_mem = csio_t5_dfs_create_ext_mem, };