// SPDX-License-Identifier: GPL-2.0 /* * simple driver for PWM (Pulse Width Modulator) controller * * Derived from pxa PWM driver by eric miao * * Limitations: * - When disabled the output is driven to 0 independent of the configured * polarity. */ #include #include #include #include #include #include #include #include #include #include #include #include #define MX3_PWMCR 0x00 /* PWM Control Register */ #define MX3_PWMSR 0x04 /* PWM Status Register */ #define MX3_PWMSAR 0x0C /* PWM Sample Register */ #define MX3_PWMPR 0x10 /* PWM Period Register */ #define MX3_PWMCNR 0x14 /* PWM Counter Register */ #define MX3_PWMCR_FWM GENMASK(27, 26) #define MX3_PWMCR_STOPEN BIT(25) #define MX3_PWMCR_DOZEN BIT(24) #define MX3_PWMCR_WAITEN BIT(23) #define MX3_PWMCR_DBGEN BIT(22) #define MX3_PWMCR_BCTR BIT(21) #define MX3_PWMCR_HCTR BIT(20) #define MX3_PWMCR_POUTC GENMASK(19, 18) #define MX3_PWMCR_POUTC_NORMAL 0 #define MX3_PWMCR_POUTC_INVERTED 1 #define MX3_PWMCR_POUTC_OFF 2 #define MX3_PWMCR_CLKSRC GENMASK(17, 16) #define MX3_PWMCR_CLKSRC_OFF 0 #define MX3_PWMCR_CLKSRC_IPG 1 #define MX3_PWMCR_CLKSRC_IPG_HIGH 2 #define MX3_PWMCR_CLKSRC_IPG_32K 3 #define MX3_PWMCR_PRESCALER GENMASK(15, 4) #define MX3_PWMCR_SWR BIT(3) #define MX3_PWMCR_REPEAT GENMASK(2, 1) #define MX3_PWMCR_REPEAT_1X 0 #define MX3_PWMCR_REPEAT_2X 1 #define MX3_PWMCR_REPEAT_4X 2 #define MX3_PWMCR_REPEAT_8X 3 #define MX3_PWMCR_EN BIT(0) #define MX3_PWMSR_FWE BIT(6) #define MX3_PWMSR_CMP BIT(5) #define MX3_PWMSR_ROV BIT(4) #define MX3_PWMSR_FE BIT(3) #define MX3_PWMSR_FIFOAV GENMASK(2, 0) #define MX3_PWMSR_FIFOAV_EMPTY 0 #define MX3_PWMSR_FIFOAV_1WORD 1 #define MX3_PWMSR_FIFOAV_2WORDS 2 #define MX3_PWMSR_FIFOAV_3WORDS 3 #define MX3_PWMSR_FIFOAV_4WORDS 4 #define MX3_PWMCR_PRESCALER_SET(x) FIELD_PREP(MX3_PWMCR_PRESCALER, (x) - 1) #define MX3_PWMCR_PRESCALER_GET(x) (FIELD_GET(MX3_PWMCR_PRESCALER, \ (x)) + 1) #define MX3_PWM_SWR_LOOP 5 /* PWMPR register value of 0xffff has the same effect as 0xfffe */ #define MX3_PWMPR_MAX 0xfffe struct pwm_imx27_chip { struct clk *clk_ipg; struct clk *clk_per; void __iomem *mmio_base; /* * The driver cannot read the current duty cycle from the hardware if * the hardware is disabled. Cache the last programmed duty cycle * value to return in that case. */ unsigned int duty_cycle; }; static inline struct pwm_imx27_chip *to_pwm_imx27_chip(struct pwm_chip *chip) { return pwmchip_get_drvdata(chip); } static int pwm_imx27_clk_prepare_enable(struct pwm_imx27_chip *imx) { int ret; ret = clk_prepare_enable(imx->clk_ipg); if (ret) return ret; ret = clk_prepare_enable(imx->clk_per); if (ret) { clk_disable_unprepare(imx->clk_ipg); return ret; } return 0; } static void pwm_imx27_clk_disable_unprepare(struct pwm_imx27_chip *imx) { clk_disable_unprepare(imx->clk_per); clk_disable_unprepare(imx->clk_ipg); } static int pwm_imx27_get_state(struct pwm_chip *chip, struct pwm_device *pwm, struct pwm_state *state) { struct pwm_imx27_chip *imx = to_pwm_imx27_chip(chip); u32 period, prescaler, pwm_clk, val; u64 tmp; int ret; ret = pwm_imx27_clk_prepare_enable(imx); if (ret < 0) return ret; val = readl(imx->mmio_base + MX3_PWMCR); if (val & MX3_PWMCR_EN) state->enabled = true; else state->enabled = false; switch (FIELD_GET(MX3_PWMCR_POUTC, val)) { case MX3_PWMCR_POUTC_NORMAL: state->polarity = PWM_POLARITY_NORMAL; break; case MX3_PWMCR_POUTC_INVERTED: state->polarity = PWM_POLARITY_INVERSED; break; default: dev_warn(pwmchip_parent(chip), "can't set polarity, output disconnected"); } prescaler = MX3_PWMCR_PRESCALER_GET(val); pwm_clk = clk_get_rate(imx->clk_per); val = readl(imx->mmio_base + MX3_PWMPR); period = val >= MX3_PWMPR_MAX ? MX3_PWMPR_MAX : val; /* PWMOUT (Hz) = PWMCLK / (PWMPR + 2) */ tmp = NSEC_PER_SEC * (u64)(period + 2) * prescaler; state->period = DIV_ROUND_UP_ULL(tmp, pwm_clk); /* * PWMSAR can be read only if PWM is enabled. If the PWM is disabled, * use the cached value. */ if (state->enabled) val = readl(imx->mmio_base + MX3_PWMSAR); else val = imx->duty_cycle; tmp = NSEC_PER_SEC * (u64)(val) * prescaler; state->duty_cycle = DIV_ROUND_UP_ULL(tmp, pwm_clk); pwm_imx27_clk_disable_unprepare(imx); return 0; } static void pwm_imx27_sw_reset(struct pwm_chip *chip) { struct pwm_imx27_chip *imx = to_pwm_imx27_chip(chip); struct device *dev = pwmchip_parent(chip); int wait_count = 0; u32 cr; writel(MX3_PWMCR_SWR, imx->mmio_base + MX3_PWMCR); do { usleep_range(200, 1000); cr = readl(imx->mmio_base + MX3_PWMCR); } while ((cr & MX3_PWMCR_SWR) && (wait_count++ < MX3_PWM_SWR_LOOP)); if (cr & MX3_PWMCR_SWR) dev_warn(dev, "software reset timeout\n"); } static void pwm_imx27_wait_fifo_slot(struct pwm_chip *chip, struct pwm_device *pwm) { struct pwm_imx27_chip *imx = to_pwm_imx27_chip(chip); struct device *dev = pwmchip_parent(chip); unsigned int period_ms; int fifoav; u32 sr; sr = readl(imx->mmio_base + MX3_PWMSR); fifoav = FIELD_GET(MX3_PWMSR_FIFOAV, sr); if (fifoav == MX3_PWMSR_FIFOAV_4WORDS) { period_ms = DIV_ROUND_UP_ULL(pwm->state.period, NSEC_PER_MSEC); msleep(period_ms); sr = readl(imx->mmio_base + MX3_PWMSR); if (fifoav == FIELD_GET(MX3_PWMSR_FIFOAV, sr)) dev_warn(dev, "there is no free FIFO slot\n"); } } static int pwm_imx27_apply(struct pwm_chip *chip, struct pwm_device *pwm, const struct pwm_state *state) { unsigned long period_cycles, duty_cycles, prescale, period_us, tmp; struct pwm_imx27_chip *imx = to_pwm_imx27_chip(chip); unsigned long long c; unsigned long long clkrate; unsigned long flags; int val; int ret; u32 cr; clkrate = clk_get_rate(imx->clk_per); c = clkrate * state->period; do_div(c, NSEC_PER_SEC); period_cycles = c; prescale = period_cycles / 0x10000 + 1; period_cycles /= prescale; c = clkrate * state->duty_cycle; do_div(c, NSEC_PER_SEC); duty_cycles = c; duty_cycles /= prescale; /* * according to imx pwm RM, the real period value should be PERIOD * value in PWMPR plus 2. */ if (period_cycles > 2) period_cycles -= 2; else period_cycles = 0; /* * Wait for a free FIFO slot if the PWM is already enabled, and flush * the FIFO if the PWM was disabled and is about to be enabled. */ if (pwm->state.enabled) { pwm_imx27_wait_fifo_slot(chip, pwm); } else { ret = pwm_imx27_clk_prepare_enable(imx); if (ret) return ret; pwm_imx27_sw_reset(chip); } val = readl(imx->mmio_base + MX3_PWMPR); val = val >= MX3_PWMPR_MAX ? MX3_PWMPR_MAX : val; cr = readl(imx->mmio_base + MX3_PWMCR); tmp = NSEC_PER_SEC * (u64)(val + 2) * MX3_PWMCR_PRESCALER_GET(cr); tmp = DIV_ROUND_UP_ULL(tmp, clkrate); period_us = DIV_ROUND_UP_ULL(tmp, 1000); /* * ERR051198: * PWM: PWM output may not function correctly if the FIFO is empty when * a new SAR value is programmed * * Description: * When the PWM FIFO is empty, a new value programmed to the PWM Sample * register (PWM_PWMSAR) will be directly applied even if the current * timer period has not expired. * * If the new SAMPLE value programmed in the PWM_PWMSAR register is * less than the previous value, and the PWM counter register * (PWM_PWMCNR) that contains the current COUNT value is greater than * the new programmed SAMPLE value, the current period will not flip * the level. This may result in an output pulse with a duty cycle of * 100%. * * Consider a change from * ________ * / \______/ * ^ * ^ * to * ____ * / \__________/ * ^ ^ * At the time marked by *, the new write value will be directly applied * to SAR even the current period is not over if FIFO is empty. * * ________ ____________________ * / \______/ \__________/ * ^ ^ * ^ ^ * |<-- old SAR -->| |<-- new SAR -->| * * That is the output is active for a whole period. * * Workaround: * Check new SAR less than old SAR and current counter is in errata * windows, write extra old SAR into FIFO and new SAR will effect at * next period. * * Sometime period is quite long, such as over 1 second. If add old SAR * into FIFO unconditional, new SAR have to wait for next period. It * may be too long. * * Turn off the interrupt to ensure that not IRQ and schedule happen * during above operations. If any irq and schedule happen, counter * in PWM will be out of data and take wrong action. * * Add a safety margin 1.5us because it needs some time to complete * IO write. * * Use writel_relaxed() to minimize the interval between two writes to * the SAR register to increase the fastest PWM frequency supported. * * When the PWM period is longer than 2us(or <500kHz), this workaround * can solve this problem. No software workaround is available if PWM * period is shorter than IO write. Just try best to fill old data * into FIFO. */ c = clkrate * 1500; do_div(c, NSEC_PER_SEC); local_irq_save(flags); val = FIELD_GET(MX3_PWMSR_FIFOAV, readl_relaxed(imx->mmio_base + MX3_PWMSR)); if (duty_cycles < imx->duty_cycle && (cr & MX3_PWMCR_EN)) { if (period_us < 2) { /* 2us = 500 kHz */ /* Best effort attempt to fix up >500 kHz case */ udelay(3 * period_us); writel_relaxed(imx->duty_cycle, imx->mmio_base + MX3_PWMSAR); writel_relaxed(imx->duty_cycle, imx->mmio_base + MX3_PWMSAR); } else if (val < MX3_PWMSR_FIFOAV_2WORDS) { val = readl_relaxed(imx->mmio_base + MX3_PWMCNR); /* * If counter is close to period, controller may roll over when * next IO write. */ if ((val + c >= duty_cycles && val < imx->duty_cycle) || val + c >= period_cycles) writel_relaxed(imx->duty_cycle, imx->mmio_base + MX3_PWMSAR); } } writel_relaxed(duty_cycles, imx->mmio_base + MX3_PWMSAR); local_irq_restore(flags); writel(period_cycles, imx->mmio_base + MX3_PWMPR); /* * Store the duty cycle for future reference in cases where the * MX3_PWMSAR register can't be read (i.e. when the PWM is disabled). */ imx->duty_cycle = duty_cycles; cr = MX3_PWMCR_PRESCALER_SET(prescale) | MX3_PWMCR_STOPEN | MX3_PWMCR_DOZEN | MX3_PWMCR_WAITEN | FIELD_PREP(MX3_PWMCR_CLKSRC, MX3_PWMCR_CLKSRC_IPG_HIGH) | MX3_PWMCR_DBGEN; if (state->polarity == PWM_POLARITY_INVERSED) cr |= FIELD_PREP(MX3_PWMCR_POUTC, MX3_PWMCR_POUTC_INVERTED); if (state->enabled) cr |= MX3_PWMCR_EN; writel(cr, imx->mmio_base + MX3_PWMCR); if (!state->enabled) pwm_imx27_clk_disable_unprepare(imx); return 0; } static const struct pwm_ops pwm_imx27_ops = { .apply = pwm_imx27_apply, .get_state = pwm_imx27_get_state, }; static const struct of_device_id pwm_imx27_dt_ids[] = { { .compatible = "fsl,imx27-pwm", }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, pwm_imx27_dt_ids); static int pwm_imx27_probe(struct platform_device *pdev) { struct pwm_chip *chip; struct pwm_imx27_chip *imx; int ret; u32 pwmcr; chip = devm_pwmchip_alloc(&pdev->dev, 1, sizeof(*imx)); if (IS_ERR(chip)) return PTR_ERR(chip); imx = to_pwm_imx27_chip(chip); imx->clk_ipg = devm_clk_get(&pdev->dev, "ipg"); if (IS_ERR(imx->clk_ipg)) return dev_err_probe(&pdev->dev, PTR_ERR(imx->clk_ipg), "getting ipg clock failed\n"); imx->clk_per = devm_clk_get(&pdev->dev, "per"); if (IS_ERR(imx->clk_per)) return dev_err_probe(&pdev->dev, PTR_ERR(imx->clk_per), "failed to get peripheral clock\n"); chip->ops = &pwm_imx27_ops; imx->mmio_base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(imx->mmio_base)) return PTR_ERR(imx->mmio_base); ret = pwm_imx27_clk_prepare_enable(imx); if (ret) return ret; /* keep clks on if pwm is running */ pwmcr = readl(imx->mmio_base + MX3_PWMCR); if (!(pwmcr & MX3_PWMCR_EN)) pwm_imx27_clk_disable_unprepare(imx); return devm_pwmchip_add(&pdev->dev, chip); } static struct platform_driver imx_pwm_driver = { .driver = { .name = "pwm-imx27", .of_match_table = pwm_imx27_dt_ids, }, .probe = pwm_imx27_probe, }; module_platform_driver(imx_pwm_driver); MODULE_DESCRIPTION("i.MX27 and later i.MX SoCs Pulse Width Modulator driver"); MODULE_LICENSE("GPL v2"); MODULE_AUTHOR("Sascha Hauer ");