/* * Sony NFC Port-100 Series driver * Copyright (c) 2013, Intel Corporation. * * Partly based/Inspired by Stephen Tiedemann's nfcpy * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * */ #include #include #include #define VERSION "0.1" #define SONY_VENDOR_ID 0x054c #define RCS380S_PRODUCT_ID 0x06c1 #define RCS380P_PRODUCT_ID 0x06c3 #define PORT100_PROTOCOLS (NFC_PROTO_JEWEL_MASK | \ NFC_PROTO_MIFARE_MASK | \ NFC_PROTO_FELICA_MASK | \ NFC_PROTO_NFC_DEP_MASK | \ NFC_PROTO_ISO14443_MASK | \ NFC_PROTO_ISO14443_B_MASK) #define PORT100_CAPABILITIES (NFC_DIGITAL_DRV_CAPS_IN_CRC | \ NFC_DIGITAL_DRV_CAPS_TG_CRC) /* Standard port100 frame definitions */ #define PORT100_FRAME_HEADER_LEN (sizeof(struct port100_frame) \ + 2) /* data[0] CC, data[1] SCC */ #define PORT100_FRAME_TAIL_LEN 2 /* data[len] DCS, data[len + 1] postamble*/ #define PORT100_COMM_RF_HEAD_MAX_LEN (sizeof(struct port100_tg_comm_rf_cmd)) /* * Max extended frame payload len, excluding CC and SCC * which are already in PORT100_FRAME_HEADER_LEN. */ #define PORT100_FRAME_MAX_PAYLOAD_LEN 1001 #define PORT100_FRAME_ACK_SIZE 6 /* Preamble (1), SoPC (2), ACK Code (2), Postamble (1) */ static u8 ack_frame[PORT100_FRAME_ACK_SIZE] = { 0x00, 0x00, 0xff, 0x00, 0xff, 0x00 }; #define PORT100_FRAME_CHECKSUM(f) (f->data[le16_to_cpu(f->datalen)]) #define PORT100_FRAME_POSTAMBLE(f) (f->data[le16_to_cpu(f->datalen) + 1]) /* start of frame */ #define PORT100_FRAME_SOF 0x00FF #define PORT100_FRAME_EXT 0xFFFF #define PORT100_FRAME_ACK 0x00FF /* Port-100 command: in or out */ #define PORT100_FRAME_DIRECTION(f) (f->data[0]) /* CC */ #define PORT100_FRAME_DIR_OUT 0xD6 #define PORT100_FRAME_DIR_IN 0xD7 /* Port-100 sub-command */ #define PORT100_FRAME_CMD(f) (f->data[1]) /* SCC */ #define PORT100_CMD_GET_FIRMWARE_VERSION 0x20 #define PORT100_CMD_GET_COMMAND_TYPE 0x28 #define PORT100_CMD_SET_COMMAND_TYPE 0x2A #define PORT100_CMD_IN_SET_RF 0x00 #define PORT100_CMD_IN_SET_PROTOCOL 0x02 #define PORT100_CMD_IN_COMM_RF 0x04 #define PORT100_CMD_TG_SET_RF 0x40 #define PORT100_CMD_TG_SET_PROTOCOL 0x42 #define PORT100_CMD_TG_SET_RF_OFF 0x46 #define PORT100_CMD_TG_COMM_RF 0x48 #define PORT100_CMD_SWITCH_RF 0x06 #define PORT100_CMD_RESPONSE(cmd) (cmd + 1) #define PORT100_CMD_TYPE_IS_SUPPORTED(mask, cmd_type) \ ((mask) & (0x01 << (cmd_type))) #define PORT100_CMD_TYPE_0 0 #define PORT100_CMD_TYPE_1 1 #define PORT100_CMD_STATUS_OK 0x00 #define PORT100_CMD_STATUS_TIMEOUT 0x80 #define PORT100_MDAA_TGT_HAS_BEEN_ACTIVATED_MASK 0x01 #define PORT100_MDAA_TGT_WAS_ACTIVATED_MASK 0x02 struct port100; typedef void (*port100_send_async_complete_t)(struct port100 *dev, void *arg, struct sk_buff *resp); /** * Setting sets structure for in_set_rf command * * @in_*_set_number: Represent the entry indexes in the port-100 RF Base Table. * This table contains multiple RF setting sets required for RF * communication. * * @in_*_comm_type: Theses fields set the communication type to be used. */ struct port100_in_rf_setting { u8 in_send_set_number; u8 in_send_comm_type; u8 in_recv_set_number; u8 in_recv_comm_type; } __packed; #define PORT100_COMM_TYPE_IN_212F 0x01 #define PORT100_COMM_TYPE_IN_424F 0x02 #define PORT100_COMM_TYPE_IN_106A 0x03 #define PORT100_COMM_TYPE_IN_106B 0x07 static const struct port100_in_rf_setting in_rf_settings[] = { [NFC_DIGITAL_RF_TECH_212F] = { .in_send_set_number = 1, .in_send_comm_type = PORT100_COMM_TYPE_IN_212F, .in_recv_set_number = 15, .in_recv_comm_type = PORT100_COMM_TYPE_IN_212F, }, [NFC_DIGITAL_RF_TECH_424F] = { .in_send_set_number = 1, .in_send_comm_type = PORT100_COMM_TYPE_IN_424F, .in_recv_set_number = 15, .in_recv_comm_type = PORT100_COMM_TYPE_IN_424F, }, [NFC_DIGITAL_RF_TECH_106A] = { .in_send_set_number = 2, .in_send_comm_type = PORT100_COMM_TYPE_IN_106A, .in_recv_set_number = 15, .in_recv_comm_type = PORT100_COMM_TYPE_IN_106A, }, [NFC_DIGITAL_RF_TECH_106B] = { .in_send_set_number = 3, .in_send_comm_type = PORT100_COMM_TYPE_IN_106B, .in_recv_set_number = 15, .in_recv_comm_type = PORT100_COMM_TYPE_IN_106B, }, /* Ensures the array has NFC_DIGITAL_RF_TECH_LAST elements */ [NFC_DIGITAL_RF_TECH_LAST] = { 0 }, }; /** * Setting sets structure for tg_set_rf command * * @tg_set_number: Represents the entry index in the port-100 RF Base Table. * This table contains multiple RF setting sets required for RF * communication. this field is used for both send and receive * settings. * * @tg_comm_type: Sets the communication type to be used to send and receive * data. */ struct port100_tg_rf_setting { u8 tg_set_number; u8 tg_comm_type; } __packed; #define PORT100_COMM_TYPE_TG_106A 0x0B #define PORT100_COMM_TYPE_TG_212F 0x0C #define PORT100_COMM_TYPE_TG_424F 0x0D static const struct port100_tg_rf_setting tg_rf_settings[] = { [NFC_DIGITAL_RF_TECH_106A] = { .tg_set_number = 8, .tg_comm_type = PORT100_COMM_TYPE_TG_106A, }, [NFC_DIGITAL_RF_TECH_212F] = { .tg_set_number = 8, .tg_comm_type = PORT100_COMM_TYPE_TG_212F, }, [NFC_DIGITAL_RF_TECH_424F] = { .tg_set_number = 8, .tg_comm_type = PORT100_COMM_TYPE_TG_424F, }, /* Ensures the array has NFC_DIGITAL_RF_TECH_LAST elements */ [NFC_DIGITAL_RF_TECH_LAST] = { 0 }, }; #define PORT100_IN_PROT_INITIAL_GUARD_TIME 0x00 #define PORT100_IN_PROT_ADD_CRC 0x01 #define PORT100_IN_PROT_CHECK_CRC 0x02 #define PORT100_IN_PROT_MULTI_CARD 0x03 #define PORT100_IN_PROT_ADD_PARITY 0x04 #define PORT100_IN_PROT_CHECK_PARITY 0x05 #define PORT100_IN_PROT_BITWISE_AC_RECV_MODE 0x06 #define PORT100_IN_PROT_VALID_BIT_NUMBER 0x07 #define PORT100_IN_PROT_CRYPTO1 0x08 #define PORT100_IN_PROT_ADD_SOF 0x09 #define PORT100_IN_PROT_CHECK_SOF 0x0A #define PORT100_IN_PROT_ADD_EOF 0x0B #define PORT100_IN_PROT_CHECK_EOF 0x0C #define PORT100_IN_PROT_DEAF_TIME 0x0E #define PORT100_IN_PROT_CRM 0x0F #define PORT100_IN_PROT_CRM_MIN_LEN 0x10 #define PORT100_IN_PROT_T1_TAG_FRAME 0x11 #define PORT100_IN_PROT_RFCA 0x12 #define PORT100_IN_PROT_GUARD_TIME_AT_INITIATOR 0x13 #define PORT100_IN_PROT_END 0x14 #define PORT100_IN_MAX_NUM_PROTOCOLS 19 #define PORT100_TG_PROT_TU 0x00 #define PORT100_TG_PROT_RF_OFF 0x01 #define PORT100_TG_PROT_CRM 0x02 #define PORT100_TG_PROT_END 0x03 #define PORT100_TG_MAX_NUM_PROTOCOLS 3 struct port100_protocol { u8 number; u8 value; } __packed; static struct port100_protocol in_protocols[][PORT100_IN_MAX_NUM_PROTOCOLS + 1] = { [NFC_DIGITAL_FRAMING_NFCA_SHORT] = { { PORT100_IN_PROT_INITIAL_GUARD_TIME, 6 }, { PORT100_IN_PROT_ADD_CRC, 0 }, { PORT100_IN_PROT_CHECK_CRC, 0 }, { PORT100_IN_PROT_MULTI_CARD, 0 }, { PORT100_IN_PROT_ADD_PARITY, 0 }, { PORT100_IN_PROT_CHECK_PARITY, 1 }, { PORT100_IN_PROT_BITWISE_AC_RECV_MODE, 0 }, { PORT100_IN_PROT_VALID_BIT_NUMBER, 7 }, { PORT100_IN_PROT_CRYPTO1, 0 }, { PORT100_IN_PROT_ADD_SOF, 0 }, { PORT100_IN_PROT_CHECK_SOF, 0 }, { PORT100_IN_PROT_ADD_EOF, 0 }, { PORT100_IN_PROT_CHECK_EOF, 0 }, { PORT100_IN_PROT_DEAF_TIME, 4 }, { PORT100_IN_PROT_CRM, 0 }, { PORT100_IN_PROT_CRM_MIN_LEN, 0 }, { PORT100_IN_PROT_T1_TAG_FRAME, 0 }, { PORT100_IN_PROT_RFCA, 0 }, { PORT100_IN_PROT_GUARD_TIME_AT_INITIATOR, 6 }, { PORT100_IN_PROT_END, 0 }, }, [NFC_DIGITAL_FRAMING_NFCA_STANDARD] = { { PORT100_IN_PROT_INITIAL_GUARD_TIME, 6 }, { PORT100_IN_PROT_ADD_CRC, 0 }, { PORT100_IN_PROT_CHECK_CRC, 0 }, { PORT100_IN_PROT_MULTI_CARD, 0 }, { PORT100_IN_PROT_ADD_PARITY, 1 }, { PORT100_IN_PROT_CHECK_PARITY, 1 }, { PORT100_IN_PROT_BITWISE_AC_RECV_MODE, 0 }, { PORT100_IN_PROT_VALID_BIT_NUMBER, 8 }, { PORT100_IN_PROT_CRYPTO1, 0 }, { PORT100_IN_PROT_ADD_SOF, 0 }, { PORT100_IN_PROT_CHECK_SOF, 0 }, { PORT100_IN_PROT_ADD_EOF, 0 }, { PORT100_IN_PROT_CHECK_EOF, 0 }, { PORT100_IN_PROT_DEAF_TIME, 4 }, { PORT100_IN_PROT_CRM, 0 }, { PORT100_IN_PROT_CRM_MIN_LEN, 0 }, { PORT100_IN_PROT_T1_TAG_FRAME, 0 }, { PORT100_IN_PROT_RFCA, 0 }, { PORT100_IN_PROT_GUARD_TIME_AT_INITIATOR, 6 }, { PORT100_IN_PROT_END, 0 }, }, [NFC_DIGITAL_FRAMING_NFCA_STANDARD_WITH_CRC_A] = { { PORT100_IN_PROT_INITIAL_GUARD_TIME, 6 }, { PORT100_IN_PROT_ADD_CRC, 1 }, { PORT100_IN_PROT_CHECK_CRC, 1 }, { PORT100_IN_PROT_MULTI_CARD, 0 }, { PORT100_IN_PROT_ADD_PARITY, 1 }, { PORT100_IN_PROT_CHECK_PARITY, 1 }, { PORT100_IN_PROT_BITWISE_AC_RECV_MODE, 0 }, { PORT100_IN_PROT_VALID_BIT_NUMBER, 8 }, { PORT100_IN_PROT_CRYPTO1, 0 }, { PORT100_IN_PROT_ADD_SOF, 0 }, { PORT100_IN_PROT_CHECK_SOF, 0 }, { PORT100_IN_PROT_ADD_EOF, 0 }, { PORT100_IN_PROT_CHECK_EOF, 0 }, { PORT100_IN_PROT_DEAF_TIME, 4 }, { PORT100_IN_PROT_CRM, 0 }, { PORT100_IN_PROT_CRM_MIN_LEN, 0 }, { PORT100_IN_PROT_T1_TAG_FRAME, 0 }, { PORT100_IN_PROT_RFCA, 0 }, { PORT100_IN_PROT_GUARD_TIME_AT_INITIATOR, 6 }, { PORT100_IN_PROT_END, 0 }, }, [NFC_DIGITAL_FRAMING_NFCA_T1T] = { /* nfc_digital_framing_nfca_short */ { PORT100_IN_PROT_ADD_CRC, 2 }, { PORT100_IN_PROT_CHECK_CRC, 2 }, { PORT100_IN_PROT_VALID_BIT_NUMBER, 8 }, { PORT100_IN_PROT_T1_TAG_FRAME, 2 }, { PORT100_IN_PROT_END, 0 }, }, [NFC_DIGITAL_FRAMING_NFCA_T2T] = { /* nfc_digital_framing_nfca_standard */ { PORT100_IN_PROT_ADD_CRC, 1 }, { PORT100_IN_PROT_CHECK_CRC, 0 }, { PORT100_IN_PROT_END, 0 }, }, [NFC_DIGITAL_FRAMING_NFCA_T4T] = { /* nfc_digital_framing_nfca_standard_with_crc_a */ { PORT100_IN_PROT_END, 0 }, }, [NFC_DIGITAL_FRAMING_NFCA_NFC_DEP] = { /* nfc_digital_framing_nfca_standard */ { PORT100_IN_PROT_END, 0 }, }, [NFC_DIGITAL_FRAMING_NFCF] = { { PORT100_IN_PROT_INITIAL_GUARD_TIME, 18 }, { PORT100_IN_PROT_ADD_CRC, 1 }, { PORT100_IN_PROT_CHECK_CRC, 1 }, { PORT100_IN_PROT_MULTI_CARD, 0 }, { PORT100_IN_PROT_ADD_PARITY, 0 }, { PORT100_IN_PROT_CHECK_PARITY, 0 }, { PORT100_IN_PROT_BITWISE_AC_RECV_MODE, 0 }, { PORT100_IN_PROT_VALID_BIT_NUMBER, 8 }, { PORT100_IN_PROT_CRYPTO1, 0 }, { PORT100_IN_PROT_ADD_SOF, 0 }, { PORT100_IN_PROT_CHECK_SOF, 0 }, { PORT100_IN_PROT_ADD_EOF, 0 }, { PORT100_IN_PROT_CHECK_EOF, 0 }, { PORT100_IN_PROT_DEAF_TIME, 4 }, { PORT100_IN_PROT_CRM, 0 }, { PORT100_IN_PROT_CRM_MIN_LEN, 0 }, { PORT100_IN_PROT_T1_TAG_FRAME, 0 }, { PORT100_IN_PROT_RFCA, 0 }, { PORT100_IN_PROT_GUARD_TIME_AT_INITIATOR, 6 }, { PORT100_IN_PROT_END, 0 }, }, [NFC_DIGITAL_FRAMING_NFCF_T3T] = { /* nfc_digital_framing_nfcf */ { PORT100_IN_PROT_END, 0 }, }, [NFC_DIGITAL_FRAMING_NFCF_NFC_DEP] = { /* nfc_digital_framing_nfcf */ { PORT100_IN_PROT_INITIAL_GUARD_TIME, 18 }, { PORT100_IN_PROT_ADD_CRC, 1 }, { PORT100_IN_PROT_CHECK_CRC, 1 }, { PORT100_IN_PROT_MULTI_CARD, 0 }, { PORT100_IN_PROT_ADD_PARITY, 0 }, { PORT100_IN_PROT_CHECK_PARITY, 0 }, { PORT100_IN_PROT_BITWISE_AC_RECV_MODE, 0 }, { PORT100_IN_PROT_VALID_BIT_NUMBER, 8 }, { PORT100_IN_PROT_CRYPTO1, 0 }, { PORT100_IN_PROT_ADD_SOF, 0 }, { PORT100_IN_PROT_CHECK_SOF, 0 }, { PORT100_IN_PROT_ADD_EOF, 0 }, { PORT100_IN_PROT_CHECK_EOF, 0 }, { PORT100_IN_PROT_DEAF_TIME, 4 }, { PORT100_IN_PROT_CRM, 0 }, { PORT100_IN_PROT_CRM_MIN_LEN, 0 }, { PORT100_IN_PROT_T1_TAG_FRAME, 0 }, { PORT100_IN_PROT_RFCA, 0 }, { PORT100_IN_PROT_GUARD_TIME_AT_INITIATOR, 6 }, { PORT100_IN_PROT_END, 0 }, }, [NFC_DIGITAL_FRAMING_NFC_DEP_ACTIVATED] = { { PORT100_IN_PROT_END, 0 }, }, [NFC_DIGITAL_FRAMING_NFCB] = { { PORT100_IN_PROT_INITIAL_GUARD_TIME, 20 }, { PORT100_IN_PROT_ADD_CRC, 1 }, { PORT100_IN_PROT_CHECK_CRC, 1 }, { PORT100_IN_PROT_MULTI_CARD, 0 }, { PORT100_IN_PROT_ADD_PARITY, 0 }, { PORT100_IN_PROT_CHECK_PARITY, 0 }, { PORT100_IN_PROT_BITWISE_AC_RECV_MODE, 0 }, { PORT100_IN_PROT_VALID_BIT_NUMBER, 8 }, { PORT100_IN_PROT_CRYPTO1, 0 }, { PORT100_IN_PROT_ADD_SOF, 1 }, { PORT100_IN_PROT_CHECK_SOF, 1 }, { PORT100_IN_PROT_ADD_EOF, 1 }, { PORT100_IN_PROT_CHECK_EOF, 1 }, { PORT100_IN_PROT_DEAF_TIME, 4 }, { PORT100_IN_PROT_CRM, 0 }, { PORT100_IN_PROT_CRM_MIN_LEN, 0 }, { PORT100_IN_PROT_T1_TAG_FRAME, 0 }, { PORT100_IN_PROT_RFCA, 0 }, { PORT100_IN_PROT_GUARD_TIME_AT_INITIATOR, 6 }, { PORT100_IN_PROT_END, 0 }, }, [NFC_DIGITAL_FRAMING_NFCB_T4T] = { /* nfc_digital_framing_nfcb */ { PORT100_IN_PROT_END, 0 }, }, /* Ensures the array has NFC_DIGITAL_FRAMING_LAST elements */ [NFC_DIGITAL_FRAMING_LAST] = { { PORT100_IN_PROT_END, 0 }, }, }; static struct port100_protocol tg_protocols[][PORT100_TG_MAX_NUM_PROTOCOLS + 1] = { [NFC_DIGITAL_FRAMING_NFCA_SHORT] = { { PORT100_TG_PROT_END, 0 }, }, [NFC_DIGITAL_FRAMING_NFCA_STANDARD] = { { PORT100_TG_PROT_END, 0 }, }, [NFC_DIGITAL_FRAMING_NFCA_STANDARD_WITH_CRC_A] = { { PORT100_TG_PROT_END, 0 }, }, [NFC_DIGITAL_FRAMING_NFCA_T1T] = { { PORT100_TG_PROT_END, 0 }, }, [NFC_DIGITAL_FRAMING_NFCA_T2T] = { { PORT100_TG_PROT_END, 0 }, }, [NFC_DIGITAL_FRAMING_NFCA_NFC_DEP] = { { PORT100_TG_PROT_TU, 1 }, { PORT100_TG_PROT_RF_OFF, 0 }, { PORT100_TG_PROT_CRM, 7 }, { PORT100_TG_PROT_END, 0 }, }, [NFC_DIGITAL_FRAMING_NFCF] = { { PORT100_TG_PROT_END, 0 }, }, [NFC_DIGITAL_FRAMING_NFCF_T3T] = { { PORT100_TG_PROT_END, 0 }, }, [NFC_DIGITAL_FRAMING_NFCF_NFC_DEP] = { { PORT100_TG_PROT_TU, 1 }, { PORT100_TG_PROT_RF_OFF, 0 }, { PORT100_TG_PROT_CRM, 7 }, { PORT100_TG_PROT_END, 0 }, }, [NFC_DIGITAL_FRAMING_NFC_DEP_ACTIVATED] = { { PORT100_TG_PROT_RF_OFF, 1 }, { PORT100_TG_PROT_END, 0 }, }, /* Ensures the array has NFC_DIGITAL_FRAMING_LAST elements */ [NFC_DIGITAL_FRAMING_LAST] = { { PORT100_TG_PROT_END, 0 }, }, }; struct port100 { struct nfc_digital_dev *nfc_digital_dev; int skb_headroom; int skb_tailroom; struct usb_device *udev; struct usb_interface *interface; struct urb *out_urb; struct urb *in_urb; /* This mutex protects the out_urb and avoids to submit a new command * through port100_send_frame_async() while the previous one is being * canceled through port100_abort_cmd(). */ struct mutex out_urb_lock; struct work_struct cmd_complete_work; u8 cmd_type; /* The digital stack serializes commands to be sent. There is no need * for any queuing/locking mechanism at driver level. */ struct port100_cmd *cmd; bool cmd_cancel; struct completion cmd_cancel_done; }; struct port100_cmd { u8 code; int status; struct sk_buff *req; struct sk_buff *resp; int resp_len; port100_send_async_complete_t complete_cb; void *complete_cb_context; }; struct port100_frame { u8 preamble; __be16 start_frame; __be16 extended_frame; __le16 datalen; u8 datalen_checksum; u8 data[]; } __packed; struct port100_ack_frame { u8 preamble; __be16 start_frame; __be16 ack_frame; u8 postambule; } __packed; struct port100_cb_arg { nfc_digital_cmd_complete_t complete_cb; void *complete_arg; u8 mdaa; }; struct port100_tg_comm_rf_cmd { __le16 guard_time; __le16 send_timeout; u8 mdaa; u8 nfca_param[6]; u8 nfcf_param[18]; u8 mf_halted; u8 arae_flag; __le16 recv_timeout; u8 data[]; } __packed; struct port100_tg_comm_rf_res { u8 comm_type; u8 ar_status; u8 target_activated; __le32 status; u8 data[]; } __packed; /* The rule: value + checksum = 0 */ static inline u8 port100_checksum(u16 value) { return ~(((u8 *)&value)[0] + ((u8 *)&value)[1]) + 1; } /* The rule: sum(data elements) + checksum = 0 */ static u8 port100_data_checksum(u8 *data, int datalen) { u8 sum = 0; int i; for (i = 0; i < datalen; i++) sum += data[i]; return port100_checksum(sum); } static void port100_tx_frame_init(void *_frame, u8 cmd_code) { struct port100_frame *frame = _frame; frame->preamble = 0; frame->start_frame = cpu_to_be16(PORT100_FRAME_SOF); frame->extended_frame = cpu_to_be16(PORT100_FRAME_EXT); PORT100_FRAME_DIRECTION(frame) = PORT100_FRAME_DIR_OUT; PORT100_FRAME_CMD(frame) = cmd_code; frame->datalen = cpu_to_le16(2); } static void port100_tx_frame_finish(void *_frame) { struct port100_frame *frame = _frame; frame->datalen_checksum = port100_checksum(le16_to_cpu(frame->datalen)); PORT100_FRAME_CHECKSUM(frame) = port100_data_checksum(frame->data, le16_to_cpu(frame->datalen)); PORT100_FRAME_POSTAMBLE(frame) = 0; } static void port100_tx_update_payload_len(void *_frame, int len) { struct port100_frame *frame = _frame; frame->datalen = cpu_to_le16(le16_to_cpu(frame->datalen) + len); } static bool port100_rx_frame_is_valid(void *_frame) { u8 checksum; struct port100_frame *frame = _frame; if (frame->start_frame != cpu_to_be16(PORT100_FRAME_SOF) || frame->extended_frame != cpu_to_be16(PORT100_FRAME_EXT)) return false; checksum = port100_checksum(le16_to_cpu(frame->datalen)); if (checksum != frame->datalen_checksum) return false; checksum = port100_data_checksum(frame->data, le16_to_cpu(frame->datalen)); if (checksum != PORT100_FRAME_CHECKSUM(frame)) return false; return true; } static bool port100_rx_frame_is_ack(struct port100_ack_frame *frame) { return (frame->start_frame == cpu_to_be16(PORT100_FRAME_SOF) && frame->ack_frame == cpu_to_be16(PORT100_FRAME_ACK)); } static inline int port100_rx_frame_size(void *frame) { struct port100_frame *f = frame; return sizeof(struct port100_frame) + le16_to_cpu(f->datalen) + PORT100_FRAME_TAIL_LEN; } static bool port100_rx_frame_is_cmd_response(struct port100 *dev, void *frame) { struct port100_frame *f = frame; return (PORT100_FRAME_CMD(f) == PORT100_CMD_RESPONSE(dev->cmd->code)); } static void port100_recv_response(struct urb *urb) { struct port100 *dev = urb->context; struct port100_cmd *cmd = dev->cmd; u8 *in_frame; cmd->status = urb->status; switch (urb->status) { case 0: break; /* success */ case -ECONNRESET: case -ENOENT: nfc_err(&dev->interface->dev, "The urb has been canceled (status %d)\n", urb->status); goto sched_wq; case -ESHUTDOWN: default: nfc_err(&dev->interface->dev, "Urb failure (status %d)\n", urb->status); goto sched_wq; } in_frame = dev->in_urb->transfer_buffer; if (!port100_rx_frame_is_valid(in_frame)) { nfc_err(&dev->interface->dev, "Received an invalid frame\n"); cmd->status = -EIO; goto sched_wq; } print_hex_dump_debug("PORT100 RX: ", DUMP_PREFIX_NONE, 16, 1, in_frame, port100_rx_frame_size(in_frame), false); if (!port100_rx_frame_is_cmd_response(dev, in_frame)) { nfc_err(&dev->interface->dev, "It's not the response to the last command\n"); cmd->status = -EIO; goto sched_wq; } sched_wq: schedule_work(&dev->cmd_complete_work); } static int port100_submit_urb_for_response(struct port100 *dev, gfp_t flags) { dev->in_urb->complete = port100_recv_response; return usb_submit_urb(dev->in_urb, flags); } static void port100_recv_ack(struct urb *urb) { struct port100 *dev = urb->context; struct port100_cmd *cmd = dev->cmd; struct port100_ack_frame *in_frame; int rc; cmd->status = urb->status; switch (urb->status) { case 0: break; /* success */ case -ECONNRESET: case -ENOENT: nfc_err(&dev->interface->dev, "The urb has been stopped (status %d)\n", urb->status); goto sched_wq; case -ESHUTDOWN: default: nfc_err(&dev->interface->dev, "Urb failure (status %d)\n", urb->status); goto sched_wq; } in_frame = dev->in_urb->transfer_buffer; if (!port100_rx_frame_is_ack(in_frame)) { nfc_err(&dev->interface->dev, "Received an invalid ack\n"); cmd->status = -EIO; goto sched_wq; } rc = port100_submit_urb_for_response(dev, GFP_ATOMIC); if (rc) { nfc_err(&dev->interface->dev, "usb_submit_urb failed with result %d\n", rc); cmd->status = rc; goto sched_wq; } return; sched_wq: schedule_work(&dev->cmd_complete_work); } static int port100_submit_urb_for_ack(struct port100 *dev, gfp_t flags) { dev->in_urb->complete = port100_recv_ack; return usb_submit_urb(dev->in_urb, flags); } static int port100_send_ack(struct port100 *dev) { int rc; mutex_lock(&dev->out_urb_lock); init_completion(&dev->cmd_cancel_done); usb_kill_urb(dev->out_urb); dev->out_urb->transfer_buffer = ack_frame; dev->out_urb->transfer_buffer_length = sizeof(ack_frame); rc = usb_submit_urb(dev->out_urb, GFP_KERNEL); /* Set the cmd_cancel flag only if the URB has been successfully * submitted. It will be reset by the out URB completion callback * port100_send_complete(). */ dev->cmd_cancel = !rc; mutex_unlock(&dev->out_urb_lock); if (!rc) wait_for_completion(&dev->cmd_cancel_done); return rc; } static int port100_send_frame_async(struct port100 *dev, struct sk_buff *out, struct sk_buff *in, int in_len) { int rc; mutex_lock(&dev->out_urb_lock); /* A command cancel frame as been sent through dev->out_urb. Don't try * to submit a new one. */ if (dev->cmd_cancel) { rc = -EAGAIN; goto exit; } dev->out_urb->transfer_buffer = out->data; dev->out_urb->transfer_buffer_length = out->len; dev->in_urb->transfer_buffer = in->data; dev->in_urb->transfer_buffer_length = in_len; print_hex_dump_debug("PORT100 TX: ", DUMP_PREFIX_NONE, 16, 1, out->data, out->len, false); rc = usb_submit_urb(dev->out_urb, GFP_KERNEL); if (rc) goto exit; rc = port100_submit_urb_for_ack(dev, GFP_KERNEL); if (rc) usb_unlink_urb(dev->out_urb); exit: mutex_unlock(&dev->out_urb_lock); return rc; } static void port100_build_cmd_frame(struct port100 *dev, u8 cmd_code, struct sk_buff *skb) { /* payload is already there, just update datalen */ int payload_len = skb->len; skb_push(skb, PORT100_FRAME_HEADER_LEN); skb_put(skb, PORT100_FRAME_TAIL_LEN); port100_tx_frame_init(skb->data, cmd_code); port100_tx_update_payload_len(skb->data, payload_len); port100_tx_frame_finish(skb->data); } static void port100_send_async_complete(struct port100 *dev) { struct port100_cmd *cmd = dev->cmd; int status = cmd->status; struct sk_buff *req = cmd->req; struct sk_buff *resp = cmd->resp; dev_kfree_skb(req); dev->cmd = NULL; if (status < 0) { cmd->complete_cb(dev, cmd->complete_cb_context, ERR_PTR(status)); dev_kfree_skb(resp); goto done; } skb_put(resp, port100_rx_frame_size(resp->data)); skb_pull(resp, PORT100_FRAME_HEADER_LEN); skb_trim(resp, resp->len - PORT100_FRAME_TAIL_LEN); cmd->complete_cb(dev, cmd->complete_cb_context, resp); done: kfree(cmd); } static int port100_send_cmd_async(struct port100 *dev, u8 cmd_code, struct sk_buff *req, port100_send_async_complete_t complete_cb, void *complete_cb_context) { struct port100_cmd *cmd; struct sk_buff *resp; int rc; int resp_len = PORT100_FRAME_HEADER_LEN + PORT100_FRAME_MAX_PAYLOAD_LEN + PORT100_FRAME_TAIL_LEN; if (dev->cmd) { nfc_err(&dev->interface->dev, "A command is still in process\n"); return -EBUSY; } resp = alloc_skb(resp_len, GFP_KERNEL); if (!resp) return -ENOMEM; cmd = kzalloc(sizeof(*cmd), GFP_KERNEL); if (!cmd) { dev_kfree_skb(resp); return -ENOMEM; } cmd->code = cmd_code; cmd->req = req; cmd->resp = resp; cmd->resp_len = resp_len; cmd->complete_cb = complete_cb; cmd->complete_cb_context = complete_cb_context; port100_build_cmd_frame(dev, cmd_code, req); dev->cmd = cmd; rc = port100_send_frame_async(dev, req, resp, resp_len); if (rc) { kfree(cmd); dev_kfree_skb(resp); dev->cmd = NULL; } return rc; } struct port100_sync_cmd_response { struct sk_buff *resp; struct completion done; }; static void port100_wq_cmd_complete(struct work_struct *work) { struct port100 *dev = container_of(work, struct port100, cmd_complete_work); port100_send_async_complete(dev); } static void port100_send_sync_complete(struct port100 *dev, void *_arg, struct sk_buff *resp) { struct port100_sync_cmd_response *arg = _arg; arg->resp = resp; complete(&arg->done); } static struct sk_buff *port100_send_cmd_sync(struct port100 *dev, u8 cmd_code, struct sk_buff *req) { int rc; struct port100_sync_cmd_response arg; init_completion(&arg.done); rc = port100_send_cmd_async(dev, cmd_code, req, port100_send_sync_complete, &arg); if (rc) { dev_kfree_skb(req); return ERR_PTR(rc); } wait_for_completion(&arg.done); return arg.resp; } static void port100_send_complete(struct urb *urb) { struct port100 *dev = urb->context; if (dev->cmd_cancel) { dev->cmd_cancel = false; complete(&dev->cmd_cancel_done); } switch (urb->status) { case 0: break; /* success */ case -ECONNRESET: case -ENOENT: nfc_err(&dev->interface->dev, "The urb has been stopped (status %d)\n", urb->status); break; case -ESHUTDOWN: default: nfc_err(&dev->interface->dev, "Urb failure (status %d)\n", urb->status); } } static void port100_abort_cmd(struct nfc_digital_dev *ddev) { struct port100 *dev = nfc_digital_get_drvdata(ddev); /* An ack will cancel the last issued command */ port100_send_ack(dev); /* cancel the urb request */ usb_kill_urb(dev->in_urb); } static struct sk_buff *port100_alloc_skb(struct port100 *dev, unsigned int size) { struct sk_buff *skb; skb = alloc_skb(dev->skb_headroom + dev->skb_tailroom + size, GFP_KERNEL); if (skb) skb_reserve(skb, dev->skb_headroom); return skb; } static int port100_set_command_type(struct port100 *dev, u8 command_type) { struct sk_buff *skb; struct sk_buff *resp; int rc; skb = port100_alloc_skb(dev, 1); if (!skb) return -ENOMEM; *skb_put(skb, sizeof(u8)) = command_type; resp = port100_send_cmd_sync(dev, PORT100_CMD_SET_COMMAND_TYPE, skb); if (IS_ERR(resp)) return PTR_ERR(resp); rc = resp->data[0]; dev_kfree_skb(resp); return rc; } static u64 port100_get_command_type_mask(struct port100 *dev) { struct sk_buff *skb; struct sk_buff *resp; u64 mask; skb = port100_alloc_skb(dev, 0); if (!skb) return -ENOMEM; resp = port100_send_cmd_sync(dev, PORT100_CMD_GET_COMMAND_TYPE, skb); if (IS_ERR(resp)) return PTR_ERR(resp); if (resp->len < 8) mask = 0; else mask = be64_to_cpu(*(__be64 *)resp->data); dev_kfree_skb(resp); return mask; } static u16 port100_get_firmware_version(struct port100 *dev) { struct sk_buff *skb; struct sk_buff *resp; u16 fw_ver; skb = port100_alloc_skb(dev, 0); if (!skb) return 0; resp = port100_send_cmd_sync(dev, PORT100_CMD_GET_FIRMWARE_VERSION, skb); if (IS_ERR(resp)) return 0; fw_ver = le16_to_cpu(*(__le16 *)resp->data); dev_kfree_skb(resp); return fw_ver; } static int port100_switch_rf(struct nfc_digital_dev *ddev, bool on) { struct port100 *dev = nfc_digital_get_drvdata(ddev); struct sk_buff *skb, *resp; skb = port100_alloc_skb(dev, 1); if (!skb) return -ENOMEM; *skb_put(skb, 1) = on ? 1 : 0; /* Cancel the last command if the device is being switched off */ if (!on) port100_abort_cmd(ddev); resp = port100_send_cmd_sync(dev, PORT100_CMD_SWITCH_RF, skb); if (IS_ERR(resp)) return PTR_ERR(resp); dev_kfree_skb(resp); return 0; } static int port100_in_set_rf(struct nfc_digital_dev *ddev, u8 rf) { struct port100 *dev = nfc_digital_get_drvdata(ddev); struct sk_buff *skb; struct sk_buff *resp; int rc; if (rf >= NFC_DIGITAL_RF_TECH_LAST) return -EINVAL; skb = port100_alloc_skb(dev, sizeof(struct port100_in_rf_setting)); if (!skb) return -ENOMEM; memcpy(skb_put(skb, sizeof(struct port100_in_rf_setting)), &in_rf_settings[rf], sizeof(struct port100_in_rf_setting)); resp = port100_send_cmd_sync(dev, PORT100_CMD_IN_SET_RF, skb); if (IS_ERR(resp)) return PTR_ERR(resp); rc = resp->data[0]; dev_kfree_skb(resp); return rc; } static int port100_in_set_framing(struct nfc_digital_dev *ddev, int param) { struct port100 *dev = nfc_digital_get_drvdata(ddev); struct port100_protocol *protocols; struct sk_buff *skb; struct sk_buff *resp; int num_protocols; size_t size; int rc; if (param >= NFC_DIGITAL_FRAMING_LAST) return -EINVAL; protocols = in_protocols[param]; num_protocols = 0; while (protocols[num_protocols].number != PORT100_IN_PROT_END) num_protocols++; if (!num_protocols) return 0; size = sizeof(struct port100_protocol) * num_protocols; skb = port100_alloc_skb(dev, size); if (!skb) return -ENOMEM; memcpy(skb_put(skb, size), protocols, size); resp = port100_send_cmd_sync(dev, PORT100_CMD_IN_SET_PROTOCOL, skb); if (IS_ERR(resp)) return PTR_ERR(resp); rc = resp->data[0]; dev_kfree_skb(resp); return rc; } static int port100_in_configure_hw(struct nfc_digital_dev *ddev, int type, int param) { if (type == NFC_DIGITAL_CONFIG_RF_TECH) return port100_in_set_rf(ddev, param); if (type == NFC_DIGITAL_CONFIG_FRAMING) return port100_in_set_framing(ddev, param); return -EINVAL; } static void port100_in_comm_rf_complete(struct port100 *dev, void *arg, struct sk_buff *resp) { struct port100_cb_arg *cb_arg = arg; nfc_digital_cmd_complete_t cb = cb_arg->complete_cb; u32 status; int rc; if (IS_ERR(resp)) { rc = PTR_ERR(resp); goto exit; } if (resp->len < 4) { nfc_err(&dev->interface->dev, "Invalid packet length received\n"); rc = -EIO; goto error; } status = le32_to_cpu(*(__le32 *)resp->data); skb_pull(resp, sizeof(u32)); if (status == PORT100_CMD_STATUS_TIMEOUT) { rc = -ETIMEDOUT; goto error; } if (status != PORT100_CMD_STATUS_OK) { nfc_err(&dev->interface->dev, "in_comm_rf failed with status 0x%08x\n", status); rc = -EIO; goto error; } /* Remove collision bits byte */ skb_pull(resp, 1); goto exit; error: kfree_skb(resp); resp = ERR_PTR(rc); exit: cb(dev->nfc_digital_dev, cb_arg->complete_arg, resp); kfree(cb_arg); } static int port100_in_send_cmd(struct nfc_digital_dev *ddev, struct sk_buff *skb, u16 _timeout, nfc_digital_cmd_complete_t cb, void *arg) { struct port100 *dev = nfc_digital_get_drvdata(ddev); struct port100_cb_arg *cb_arg; __le16 timeout; cb_arg = kzalloc(sizeof(struct port100_cb_arg), GFP_KERNEL); if (!cb_arg) return -ENOMEM; cb_arg->complete_cb = cb; cb_arg->complete_arg = arg; timeout = cpu_to_le16(_timeout * 10); memcpy(skb_push(skb, sizeof(__le16)), &timeout, sizeof(__le16)); return port100_send_cmd_async(dev, PORT100_CMD_IN_COMM_RF, skb, port100_in_comm_rf_complete, cb_arg); } static int port100_tg_set_rf(struct nfc_digital_dev *ddev, u8 rf) { struct port100 *dev = nfc_digital_get_drvdata(ddev); struct sk_buff *skb; struct sk_buff *resp; int rc; if (rf >= NFC_DIGITAL_RF_TECH_LAST) return -EINVAL; skb = port100_alloc_skb(dev, sizeof(struct port100_tg_rf_setting)); if (!skb) return -ENOMEM; memcpy(skb_put(skb, sizeof(struct port100_tg_rf_setting)), &tg_rf_settings[rf], sizeof(struct port100_tg_rf_setting)); resp = port100_send_cmd_sync(dev, PORT100_CMD_TG_SET_RF, skb); if (IS_ERR(resp)) return PTR_ERR(resp); rc = resp->data[0]; dev_kfree_skb(resp); return rc; } static int port100_tg_set_framing(struct nfc_digital_dev *ddev, int param) { struct port100 *dev = nfc_digital_get_drvdata(ddev); struct port100_protocol *protocols; struct sk_buff *skb; struct sk_buff *resp; int rc; int num_protocols; size_t size; if (param >= NFC_DIGITAL_FRAMING_LAST) return -EINVAL; protocols = tg_protocols[param]; num_protocols = 0; while (protocols[num_protocols].number != PORT100_TG_PROT_END) num_protocols++; if (!num_protocols) return 0; size = sizeof(struct port100_protocol) * num_protocols; skb = port100_alloc_skb(dev, size); if (!skb) return -ENOMEM; memcpy(skb_put(skb, size), protocols, size); resp = port100_send_cmd_sync(dev, PORT100_CMD_TG_SET_PROTOCOL, skb); if (IS_ERR(resp)) return PTR_ERR(resp); rc = resp->data[0]; dev_kfree_skb(resp); return rc; } static int port100_tg_configure_hw(struct nfc_digital_dev *ddev, int type, int param) { if (type == NFC_DIGITAL_CONFIG_RF_TECH) return port100_tg_set_rf(ddev, param); if (type == NFC_DIGITAL_CONFIG_FRAMING) return port100_tg_set_framing(ddev, param); return -EINVAL; } static bool port100_tg_target_activated(struct port100 *dev, u8 tgt_activated) { u8 mask; switch (dev->cmd_type) { case PORT100_CMD_TYPE_0: mask = PORT100_MDAA_TGT_HAS_BEEN_ACTIVATED_MASK; break; case PORT100_CMD_TYPE_1: mask = PORT100_MDAA_TGT_HAS_BEEN_ACTIVATED_MASK | PORT100_MDAA_TGT_WAS_ACTIVATED_MASK; break; default: nfc_err(&dev->interface->dev, "Unknown command type\n"); return false; } return ((tgt_activated & mask) == mask); } static void port100_tg_comm_rf_complete(struct port100 *dev, void *arg, struct sk_buff *resp) { u32 status; struct port100_cb_arg *cb_arg = arg; nfc_digital_cmd_complete_t cb = cb_arg->complete_cb; struct port100_tg_comm_rf_res *hdr; if (IS_ERR(resp)) goto exit; hdr = (struct port100_tg_comm_rf_res *)resp->data; status = le32_to_cpu(hdr->status); if (cb_arg->mdaa && !port100_tg_target_activated(dev, hdr->target_activated)) { kfree_skb(resp); resp = ERR_PTR(-ETIMEDOUT); goto exit; } skb_pull(resp, sizeof(struct port100_tg_comm_rf_res)); if (status != PORT100_CMD_STATUS_OK) { kfree_skb(resp); if (status == PORT100_CMD_STATUS_TIMEOUT) resp = ERR_PTR(-ETIMEDOUT); else resp = ERR_PTR(-EIO); } exit: cb(dev->nfc_digital_dev, cb_arg->complete_arg, resp); kfree(cb_arg); } static int port100_tg_send_cmd(struct nfc_digital_dev *ddev, struct sk_buff *skb, u16 timeout, nfc_digital_cmd_complete_t cb, void *arg) { struct port100 *dev = nfc_digital_get_drvdata(ddev); struct port100_tg_comm_rf_cmd *hdr; struct port100_cb_arg *cb_arg; cb_arg = kzalloc(sizeof(struct port100_cb_arg), GFP_KERNEL); if (!cb_arg) return -ENOMEM; cb_arg->complete_cb = cb; cb_arg->complete_arg = arg; skb_push(skb, sizeof(struct port100_tg_comm_rf_cmd)); hdr = (struct port100_tg_comm_rf_cmd *)skb->data; memset(hdr, 0, sizeof(struct port100_tg_comm_rf_cmd)); hdr->guard_time = cpu_to_le16(500); hdr->send_timeout = cpu_to_le16(0xFFFF); hdr->recv_timeout = cpu_to_le16(timeout); return port100_send_cmd_async(dev, PORT100_CMD_TG_COMM_RF, skb, port100_tg_comm_rf_complete, cb_arg); } static int port100_listen_mdaa(struct nfc_digital_dev *ddev, struct digital_tg_mdaa_params *params, u16 timeout, nfc_digital_cmd_complete_t cb, void *arg) { struct port100 *dev = nfc_digital_get_drvdata(ddev); struct port100_tg_comm_rf_cmd *hdr; struct port100_cb_arg *cb_arg; struct sk_buff *skb; int rc; rc = port100_tg_configure_hw(ddev, NFC_DIGITAL_CONFIG_RF_TECH, NFC_DIGITAL_RF_TECH_106A); if (rc) return rc; rc = port100_tg_configure_hw(ddev, NFC_DIGITAL_CONFIG_FRAMING, NFC_DIGITAL_FRAMING_NFCA_NFC_DEP); if (rc) return rc; cb_arg = kzalloc(sizeof(struct port100_cb_arg), GFP_KERNEL); if (!cb_arg) return -ENOMEM; cb_arg->complete_cb = cb; cb_arg->complete_arg = arg; cb_arg->mdaa = 1; skb = port100_alloc_skb(dev, 0); if (!skb) { kfree(cb_arg); return -ENOMEM; } skb_push(skb, sizeof(struct port100_tg_comm_rf_cmd)); hdr = (struct port100_tg_comm_rf_cmd *)skb->data; memset(hdr, 0, sizeof(struct port100_tg_comm_rf_cmd)); hdr->guard_time = 0; hdr->send_timeout = cpu_to_le16(0xFFFF); hdr->mdaa = 1; hdr->nfca_param[0] = (params->sens_res >> 8) & 0xFF; hdr->nfca_param[1] = params->sens_res & 0xFF; memcpy(hdr->nfca_param + 2, params->nfcid1, 3); hdr->nfca_param[5] = params->sel_res; memcpy(hdr->nfcf_param, params->nfcid2, 8); hdr->nfcf_param[16] = (params->sc >> 8) & 0xFF; hdr->nfcf_param[17] = params->sc & 0xFF; hdr->recv_timeout = cpu_to_le16(timeout); return port100_send_cmd_async(dev, PORT100_CMD_TG_COMM_RF, skb, port100_tg_comm_rf_complete, cb_arg); } static int port100_listen(struct nfc_digital_dev *ddev, u16 timeout, nfc_digital_cmd_complete_t cb, void *arg) { struct port100 *dev = nfc_digital_get_drvdata(ddev); struct sk_buff *skb; skb = port100_alloc_skb(dev, 0); if (!skb) return -ENOMEM; return port100_tg_send_cmd(ddev, skb, timeout, cb, arg); } static struct nfc_digital_ops port100_digital_ops = { .in_configure_hw = port100_in_configure_hw, .in_send_cmd = port100_in_send_cmd, .tg_listen_mdaa = port100_listen_mdaa, .tg_listen = port100_listen, .tg_configure_hw = port100_tg_configure_hw, .tg_send_cmd = port100_tg_send_cmd, .switch_rf = port100_switch_rf, .abort_cmd = port100_abort_cmd, }; static const struct usb_device_id port100_table[] = { { USB_DEVICE(SONY_VENDOR_ID, RCS380S_PRODUCT_ID), }, { USB_DEVICE(SONY_VENDOR_ID, RCS380P_PRODUCT_ID), }, { } }; MODULE_DEVICE_TABLE(usb, port100_table); static int port100_probe(struct usb_interface *interface, const struct usb_device_id *id) { struct port100 *dev; int rc; struct usb_host_interface *iface_desc; struct usb_endpoint_descriptor *endpoint; int in_endpoint; int out_endpoint; u16 fw_version; u64 cmd_type_mask; int i; dev = devm_kzalloc(&interface->dev, sizeof(struct port100), GFP_KERNEL); if (!dev) return -ENOMEM; mutex_init(&dev->out_urb_lock); dev->udev = usb_get_dev(interface_to_usbdev(interface)); dev->interface = interface; usb_set_intfdata(interface, dev); in_endpoint = out_endpoint = 0; iface_desc = interface->cur_altsetting; for (i = 0; i < iface_desc->desc.bNumEndpoints; ++i) { endpoint = &iface_desc->endpoint[i].desc; if (!in_endpoint && usb_endpoint_is_bulk_in(endpoint)) in_endpoint = endpoint->bEndpointAddress; if (!out_endpoint && usb_endpoint_is_bulk_out(endpoint)) out_endpoint = endpoint->bEndpointAddress; } if (!in_endpoint || !out_endpoint) { nfc_err(&interface->dev, "Could not find bulk-in or bulk-out endpoint\n"); rc = -ENODEV; goto error; } dev->in_urb = usb_alloc_urb(0, GFP_KERNEL); dev->out_urb = usb_alloc_urb(0, GFP_KERNEL); if (!dev->in_urb || !dev->out_urb) { nfc_err(&interface->dev, "Could not allocate USB URBs\n"); rc = -ENOMEM; goto error; } usb_fill_bulk_urb(dev->in_urb, dev->udev, usb_rcvbulkpipe(dev->udev, in_endpoint), NULL, 0, NULL, dev); usb_fill_bulk_urb(dev->out_urb, dev->udev, usb_sndbulkpipe(dev->udev, out_endpoint), NULL, 0, port100_send_complete, dev); dev->out_urb->transfer_flags = URB_ZERO_PACKET; dev->skb_headroom = PORT100_FRAME_HEADER_LEN + PORT100_COMM_RF_HEAD_MAX_LEN; dev->skb_tailroom = PORT100_FRAME_TAIL_LEN; INIT_WORK(&dev->cmd_complete_work, port100_wq_cmd_complete); /* The first thing to do with the Port-100 is to set the command type * to be used. If supported we use command type 1. 0 otherwise. */ cmd_type_mask = port100_get_command_type_mask(dev); if (!cmd_type_mask) { nfc_err(&interface->dev, "Could not get supported command types\n"); rc = -ENODEV; goto error; } if (PORT100_CMD_TYPE_IS_SUPPORTED(cmd_type_mask, PORT100_CMD_TYPE_1)) dev->cmd_type = PORT100_CMD_TYPE_1; else dev->cmd_type = PORT100_CMD_TYPE_0; rc = port100_set_command_type(dev, dev->cmd_type); if (rc) { nfc_err(&interface->dev, "The device does not support command type %u\n", dev->cmd_type); goto error; } fw_version = port100_get_firmware_version(dev); if (!fw_version) nfc_err(&interface->dev, "Could not get device firmware version\n"); nfc_info(&interface->dev, "Sony NFC Port-100 Series attached (firmware v%x.%02x)\n", (fw_version & 0xFF00) >> 8, fw_version & 0xFF); dev->nfc_digital_dev = nfc_digital_allocate_device(&port100_digital_ops, PORT100_PROTOCOLS, PORT100_CAPABILITIES, dev->skb_headroom, dev->skb_tailroom); if (!dev->nfc_digital_dev) { nfc_err(&interface->dev, "Could not allocate nfc_digital_dev\n"); rc = -ENOMEM; goto error; } nfc_digital_set_parent_dev(dev->nfc_digital_dev, &interface->dev); nfc_digital_set_drvdata(dev->nfc_digital_dev, dev); rc = nfc_digital_register_device(dev->nfc_digital_dev); if (rc) { nfc_err(&interface->dev, "Could not register digital device\n"); goto free_nfc_dev; } return 0; free_nfc_dev: nfc_digital_free_device(dev->nfc_digital_dev); error: usb_free_urb(dev->in_urb); usb_free_urb(dev->out_urb); usb_put_dev(dev->udev); return rc; } static void port100_disconnect(struct usb_interface *interface) { struct port100 *dev; dev = usb_get_intfdata(interface); usb_set_intfdata(interface, NULL); nfc_digital_unregister_device(dev->nfc_digital_dev); nfc_digital_free_device(dev->nfc_digital_dev); usb_kill_urb(dev->in_urb); usb_kill_urb(dev->out_urb); usb_free_urb(dev->in_urb); usb_free_urb(dev->out_urb); usb_put_dev(dev->udev); kfree(dev->cmd); nfc_info(&interface->dev, "Sony Port-100 NFC device disconnected\n"); } static struct usb_driver port100_driver = { .name = "port100", .probe = port100_probe, .disconnect = port100_disconnect, .id_table = port100_table, }; module_usb_driver(port100_driver); MODULE_DESCRIPTION("NFC Port-100 series usb driver ver " VERSION); MODULE_VERSION(VERSION); MODULE_LICENSE("GPL");