// SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2014-2020, NVIDIA CORPORATION. All rights reserved. */ #include #include #include #include #include #include #include "tegra210-emc.h" #include "tegra210-mc.h" /* * Enable flags for specifying verbosity. */ #define INFO (1 << 0) #define STEPS (1 << 1) #define SUB_STEPS (1 << 2) #define PRELOCK (1 << 3) #define PRELOCK_STEPS (1 << 4) #define ACTIVE_EN (1 << 5) #define PRAMP_UP (1 << 6) #define PRAMP_DN (1 << 7) #define EMA_WRITES (1 << 10) #define EMA_UPDATES (1 << 11) #define PER_TRAIN (1 << 16) #define CC_PRINT (1 << 17) #define CCFIFO (1 << 29) #define REGS (1 << 30) #define REG_LISTS (1 << 31) #define emc_dbg(emc, flags, ...) dev_dbg(emc->dev, __VA_ARGS__) #define DVFS_CLOCK_CHANGE_VERSION 21021 #define EMC_PRELOCK_VERSION 2101 enum { DVFS_SEQUENCE = 1, WRITE_TRAINING_SEQUENCE = 2, PERIODIC_TRAINING_SEQUENCE = 3, DVFS_PT1 = 10, DVFS_UPDATE = 11, TRAINING_PT1 = 12, TRAINING_UPDATE = 13, PERIODIC_TRAINING_UPDATE = 14 }; /* * PTFV defines - basically just indexes into the per table PTFV array. */ #define PTFV_DQSOSC_MOVAVG_C0D0U0_INDEX 0 #define PTFV_DQSOSC_MOVAVG_C0D0U1_INDEX 1 #define PTFV_DQSOSC_MOVAVG_C0D1U0_INDEX 2 #define PTFV_DQSOSC_MOVAVG_C0D1U1_INDEX 3 #define PTFV_DQSOSC_MOVAVG_C1D0U0_INDEX 4 #define PTFV_DQSOSC_MOVAVG_C1D0U1_INDEX 5 #define PTFV_DQSOSC_MOVAVG_C1D1U0_INDEX 6 #define PTFV_DQSOSC_MOVAVG_C1D1U1_INDEX 7 #define PTFV_DVFS_SAMPLES_INDEX 9 #define PTFV_MOVAVG_WEIGHT_INDEX 10 #define PTFV_CONFIG_CTRL_INDEX 11 #define PTFV_CONFIG_CTRL_USE_PREVIOUS_EMA (1 << 0) /* * Do arithmetic in fixed point. */ #define MOVAVG_PRECISION_FACTOR 100 /* * The division portion of the average operation. */ #define __AVERAGE_PTFV(dev) \ ({ next->ptfv_list[PTFV_DQSOSC_MOVAVG_ ## dev ## _INDEX] = \ next->ptfv_list[PTFV_DQSOSC_MOVAVG_ ## dev ## _INDEX] / \ next->ptfv_list[PTFV_DVFS_SAMPLES_INDEX]; }) /* * Convert val to fixed point and add it to the temporary average. */ #define __INCREMENT_PTFV(dev, val) \ ({ next->ptfv_list[PTFV_DQSOSC_MOVAVG_ ## dev ## _INDEX] += \ ((val) * MOVAVG_PRECISION_FACTOR); }) /* * Convert a moving average back to integral form and return the value. */ #define __MOVAVG_AC(timing, dev) \ ((timing)->ptfv_list[PTFV_DQSOSC_MOVAVG_ ## dev ## _INDEX] / \ MOVAVG_PRECISION_FACTOR) /* Weighted update. */ #define __WEIGHTED_UPDATE_PTFV(dev, nval) \ do { \ int w = PTFV_MOVAVG_WEIGHT_INDEX; \ int dqs = PTFV_DQSOSC_MOVAVG_ ## dev ## _INDEX; \ \ next->ptfv_list[dqs] = \ ((nval * MOVAVG_PRECISION_FACTOR) + \ (next->ptfv_list[dqs] * \ next->ptfv_list[w])) / \ (next->ptfv_list[w] + 1); \ \ emc_dbg(emc, EMA_UPDATES, "%s: (s=%lu) EMA: %u\n", \ __stringify(dev), nval, next->ptfv_list[dqs]); \ } while (0) /* Access a particular average. */ #define __MOVAVG(timing, dev) \ ((timing)->ptfv_list[PTFV_DQSOSC_MOVAVG_ ## dev ## _INDEX]) static u32 update_clock_tree_delay(struct tegra210_emc *emc, int type) { bool periodic_training_update = type == PERIODIC_TRAINING_UPDATE; struct tegra210_emc_timing *last = emc->last; struct tegra210_emc_timing *next = emc->next; u32 last_timing_rate_mhz = last->rate / 1000; u32 next_timing_rate_mhz = next->rate / 1000; bool dvfs_update = type == DVFS_UPDATE; s32 tdel = 0, tmdel = 0, adel = 0; bool dvfs_pt1 = type == DVFS_PT1; unsigned long cval = 0; u32 temp[2][2], value; unsigned int i; /* * Dev0 MSB. */ if (dvfs_pt1 || periodic_training_update) { value = tegra210_emc_mrr_read(emc, 2, 19); for (i = 0; i < emc->num_channels; i++) { temp[i][0] = (value & 0x00ff) << 8; temp[i][1] = (value & 0xff00) << 0; value >>= 16; } /* * Dev0 LSB. */ value = tegra210_emc_mrr_read(emc, 2, 18); for (i = 0; i < emc->num_channels; i++) { temp[i][0] |= (value & 0x00ff) >> 0; temp[i][1] |= (value & 0xff00) >> 8; value >>= 16; } } if (dvfs_pt1 || periodic_training_update) { cval = tegra210_emc_actual_osc_clocks(last->run_clocks); cval *= 1000000; cval /= last_timing_rate_mhz * 2 * temp[0][0]; } if (dvfs_pt1) __INCREMENT_PTFV(C0D0U0, cval); else if (dvfs_update) __AVERAGE_PTFV(C0D0U0); else if (periodic_training_update) __WEIGHTED_UPDATE_PTFV(C0D0U0, cval); if (dvfs_update || periodic_training_update) { tdel = next->current_dram_clktree[C0D0U0] - __MOVAVG_AC(next, C0D0U0); tmdel = (tdel < 0) ? -1 * tdel : tdel; adel = tmdel; if (tmdel * 128 * next_timing_rate_mhz / 1000000 > next->tree_margin) next->current_dram_clktree[C0D0U0] = __MOVAVG_AC(next, C0D0U0); } if (dvfs_pt1 || periodic_training_update) { cval = tegra210_emc_actual_osc_clocks(last->run_clocks); cval *= 1000000; cval /= last_timing_rate_mhz * 2 * temp[0][1]; } if (dvfs_pt1) __INCREMENT_PTFV(C0D0U1, cval); else if (dvfs_update) __AVERAGE_PTFV(C0D0U1); else if (periodic_training_update) __WEIGHTED_UPDATE_PTFV(C0D0U1, cval); if (dvfs_update || periodic_training_update) { tdel = next->current_dram_clktree[C0D0U1] - __MOVAVG_AC(next, C0D0U1); tmdel = (tdel < 0) ? -1 * tdel : tdel; if (tmdel > adel) adel = tmdel; if (tmdel * 128 * next_timing_rate_mhz / 1000000 > next->tree_margin) next->current_dram_clktree[C0D0U1] = __MOVAVG_AC(next, C0D0U1); } if (emc->num_channels > 1) { if (dvfs_pt1 || periodic_training_update) { cval = tegra210_emc_actual_osc_clocks(last->run_clocks); cval *= 1000000; cval /= last_timing_rate_mhz * 2 * temp[1][0]; } if (dvfs_pt1) __INCREMENT_PTFV(C1D0U0, cval); else if (dvfs_update) __AVERAGE_PTFV(C1D0U0); else if (periodic_training_update) __WEIGHTED_UPDATE_PTFV(C1D0U0, cval); if (dvfs_update || periodic_training_update) { tdel = next->current_dram_clktree[C1D0U0] - __MOVAVG_AC(next, C1D0U0); tmdel = (tdel < 0) ? -1 * tdel : tdel; if (tmdel > adel) adel = tmdel; if (tmdel * 128 * next_timing_rate_mhz / 1000000 > next->tree_margin) next->current_dram_clktree[C1D0U0] = __MOVAVG_AC(next, C1D0U0); } if (dvfs_pt1 || periodic_training_update) { cval = tegra210_emc_actual_osc_clocks(last->run_clocks); cval *= 1000000; cval /= last_timing_rate_mhz * 2 * temp[1][1]; } if (dvfs_pt1) __INCREMENT_PTFV(C1D0U1, cval); else if (dvfs_update) __AVERAGE_PTFV(C1D0U1); else if (periodic_training_update) __WEIGHTED_UPDATE_PTFV(C1D0U1, cval); if (dvfs_update || periodic_training_update) { tdel = next->current_dram_clktree[C1D0U1] - __MOVAVG_AC(next, C1D0U1); tmdel = (tdel < 0) ? -1 * tdel : tdel; if (tmdel > adel) adel = tmdel; if (tmdel * 128 * next_timing_rate_mhz / 1000000 > next->tree_margin) next->current_dram_clktree[C1D0U1] = __MOVAVG_AC(next, C1D0U1); } } if (emc->num_devices < 2) goto done; /* * Dev1 MSB. */ if (dvfs_pt1 || periodic_training_update) { value = tegra210_emc_mrr_read(emc, 1, 19); for (i = 0; i < emc->num_channels; i++) { temp[i][0] = (value & 0x00ff) << 8; temp[i][1] = (value & 0xff00) << 0; value >>= 16; } /* * Dev1 LSB. */ value = tegra210_emc_mrr_read(emc, 2, 18); for (i = 0; i < emc->num_channels; i++) { temp[i][0] |= (value & 0x00ff) >> 0; temp[i][1] |= (value & 0xff00) >> 8; value >>= 16; } } if (dvfs_pt1 || periodic_training_update) { cval = tegra210_emc_actual_osc_clocks(last->run_clocks); cval *= 1000000; cval /= last_timing_rate_mhz * 2 * temp[0][0]; } if (dvfs_pt1) __INCREMENT_PTFV(C0D1U0, cval); else if (dvfs_update) __AVERAGE_PTFV(C0D1U0); else if (periodic_training_update) __WEIGHTED_UPDATE_PTFV(C0D1U0, cval); if (dvfs_update || periodic_training_update) { tdel = next->current_dram_clktree[C0D1U0] - __MOVAVG_AC(next, C0D1U0); tmdel = (tdel < 0) ? -1 * tdel : tdel; if (tmdel > adel) adel = tmdel; if (tmdel * 128 * next_timing_rate_mhz / 1000000 > next->tree_margin) next->current_dram_clktree[C0D1U0] = __MOVAVG_AC(next, C0D1U0); } if (dvfs_pt1 || periodic_training_update) { cval = tegra210_emc_actual_osc_clocks(last->run_clocks); cval *= 1000000; cval /= last_timing_rate_mhz * 2 * temp[0][1]; } if (dvfs_pt1) __INCREMENT_PTFV(C0D1U1, cval); else if (dvfs_update) __AVERAGE_PTFV(C0D1U1); else if (periodic_training_update) __WEIGHTED_UPDATE_PTFV(C0D1U1, cval); if (dvfs_update || periodic_training_update) { tdel = next->current_dram_clktree[C0D1U1] - __MOVAVG_AC(next, C0D1U1); tmdel = (tdel < 0) ? -1 * tdel : tdel; if (tmdel > adel) adel = tmdel; if (tmdel * 128 * next_timing_rate_mhz / 1000000 > next->tree_margin) next->current_dram_clktree[C0D1U1] = __MOVAVG_AC(next, C0D1U1); } if (emc->num_channels > 1) { if (dvfs_pt1 || periodic_training_update) { cval = tegra210_emc_actual_osc_clocks(last->run_clocks); cval *= 1000000; cval /= last_timing_rate_mhz * 2 * temp[1][0]; } if (dvfs_pt1) __INCREMENT_PTFV(C1D1U0, cval); else if (dvfs_update) __AVERAGE_PTFV(C1D1U0); else if (periodic_training_update) __WEIGHTED_UPDATE_PTFV(C1D1U0, cval); if (dvfs_update || periodic_training_update) { tdel = next->current_dram_clktree[C1D1U0] - __MOVAVG_AC(next, C1D1U0); tmdel = (tdel < 0) ? -1 * tdel : tdel; if (tmdel > adel) adel = tmdel; if (tmdel * 128 * next_timing_rate_mhz / 1000000 > next->tree_margin) next->current_dram_clktree[C1D1U0] = __MOVAVG_AC(next, C1D1U0); } if (dvfs_pt1 || periodic_training_update) { cval = tegra210_emc_actual_osc_clocks(last->run_clocks); cval *= 1000000; cval /= last_timing_rate_mhz * 2 * temp[1][1]; } if (dvfs_pt1) __INCREMENT_PTFV(C1D1U1, cval); else if (dvfs_update) __AVERAGE_PTFV(C1D1U1); else if (periodic_training_update) __WEIGHTED_UPDATE_PTFV(C1D1U1, cval); if (dvfs_update || periodic_training_update) { tdel = next->current_dram_clktree[C1D1U1] - __MOVAVG_AC(next, C1D1U1); tmdel = (tdel < 0) ? -1 * tdel : tdel; if (tmdel > adel) adel = tmdel; if (tmdel * 128 * next_timing_rate_mhz / 1000000 > next->tree_margin) next->current_dram_clktree[C1D1U1] = __MOVAVG_AC(next, C1D1U1); } } done: return adel; } static u32 periodic_compensation_handler(struct tegra210_emc *emc, u32 type, struct tegra210_emc_timing *last, struct tegra210_emc_timing *next) { #define __COPY_EMA(nt, lt, dev) \ ({ __MOVAVG(nt, dev) = __MOVAVG(lt, dev) * \ (nt)->ptfv_list[PTFV_DVFS_SAMPLES_INDEX]; }) u32 i, adel = 0, samples = next->ptfv_list[PTFV_DVFS_SAMPLES_INDEX]; u32 delay; delay = tegra210_emc_actual_osc_clocks(last->run_clocks); delay *= 1000; delay = 2 + (delay / last->rate); if (!next->periodic_training) return 0; if (type == DVFS_SEQUENCE) { if (last->periodic_training && (next->ptfv_list[PTFV_CONFIG_CTRL_INDEX] & PTFV_CONFIG_CTRL_USE_PREVIOUS_EMA)) { /* * If the previous frequency was using periodic * calibration then we can reuse the previous * frequencies EMA data. */ __COPY_EMA(next, last, C0D0U0); __COPY_EMA(next, last, C0D0U1); __COPY_EMA(next, last, C1D0U0); __COPY_EMA(next, last, C1D0U1); __COPY_EMA(next, last, C0D1U0); __COPY_EMA(next, last, C0D1U1); __COPY_EMA(next, last, C1D1U0); __COPY_EMA(next, last, C1D1U1); } else { /* Reset the EMA.*/ __MOVAVG(next, C0D0U0) = 0; __MOVAVG(next, C0D0U1) = 0; __MOVAVG(next, C1D0U0) = 0; __MOVAVG(next, C1D0U1) = 0; __MOVAVG(next, C0D1U0) = 0; __MOVAVG(next, C0D1U1) = 0; __MOVAVG(next, C1D1U0) = 0; __MOVAVG(next, C1D1U1) = 0; for (i = 0; i < samples; i++) { tegra210_emc_start_periodic_compensation(emc); udelay(delay); /* * Generate next sample of data. */ adel = update_clock_tree_delay(emc, DVFS_PT1); } } /* * Seems like it should be part of the * 'if (last_timing->periodic_training)' conditional * since is already done for the else clause. */ adel = update_clock_tree_delay(emc, DVFS_UPDATE); } if (type == PERIODIC_TRAINING_SEQUENCE) { tegra210_emc_start_periodic_compensation(emc); udelay(delay); adel = update_clock_tree_delay(emc, PERIODIC_TRAINING_UPDATE); } return adel; } static u32 tegra210_emc_r21021_periodic_compensation(struct tegra210_emc *emc) { u32 emc_cfg, emc_cfg_o, emc_cfg_update, del, value; u32 list[] = { EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_0, EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_1, EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_2, EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_3, EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_0, EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_1, EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_2, EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_3, EMC_DATA_BRLSHFT_0, EMC_DATA_BRLSHFT_1 }; struct tegra210_emc_timing *last = emc->last; unsigned int items = ARRAY_SIZE(list), i; unsigned long delay; if (last->periodic_training) { emc_dbg(emc, PER_TRAIN, "Periodic training starting\n"); value = emc_readl(emc, EMC_DBG); emc_cfg_o = emc_readl(emc, EMC_CFG); emc_cfg = emc_cfg_o & ~(EMC_CFG_DYN_SELF_REF | EMC_CFG_DRAM_ACPD | EMC_CFG_DRAM_CLKSTOP_PD | EMC_CFG_DRAM_CLKSTOP_PD); /* * 1. Power optimizations should be off. */ emc_writel(emc, emc_cfg, EMC_CFG); /* Does emc_timing_update() for above changes. */ tegra210_emc_dll_disable(emc); for (i = 0; i < emc->num_channels; i++) tegra210_emc_wait_for_update(emc, i, EMC_EMC_STATUS, EMC_EMC_STATUS_DRAM_IN_POWERDOWN_MASK, 0); for (i = 0; i < emc->num_channels; i++) tegra210_emc_wait_for_update(emc, i, EMC_EMC_STATUS, EMC_EMC_STATUS_DRAM_IN_SELF_REFRESH_MASK, 0); emc_cfg_update = value = emc_readl(emc, EMC_CFG_UPDATE); value &= ~EMC_CFG_UPDATE_UPDATE_DLL_IN_UPDATE_MASK; value |= (2 << EMC_CFG_UPDATE_UPDATE_DLL_IN_UPDATE_SHIFT); emc_writel(emc, value, EMC_CFG_UPDATE); /* * 2. osc kick off - this assumes training and dvfs have set * correct MR23. */ tegra210_emc_start_periodic_compensation(emc); /* * 3. Let dram capture its clock tree delays. */ delay = tegra210_emc_actual_osc_clocks(last->run_clocks); delay *= 1000; delay /= last->rate + 1; udelay(delay); /* * 4. Check delta wrt previous values (save value if margin * exceeds what is set in table). */ del = periodic_compensation_handler(emc, PERIODIC_TRAINING_SEQUENCE, last, last); /* * 5. Apply compensation w.r.t. trained values (if clock tree * has drifted more than the set margin). */ if (last->tree_margin < ((del * 128 * (last->rate / 1000)) / 1000000)) { for (i = 0; i < items; i++) { value = tegra210_emc_compensate(last, list[i]); emc_dbg(emc, EMA_WRITES, "0x%08x <= 0x%08x\n", list[i], value); emc_writel(emc, value, list[i]); } } emc_writel(emc, emc_cfg_o, EMC_CFG); /* * 6. Timing update actally applies the new trimmers. */ tegra210_emc_timing_update(emc); /* 6.1. Restore the UPDATE_DLL_IN_UPDATE field. */ emc_writel(emc, emc_cfg_update, EMC_CFG_UPDATE); /* 6.2. Restore the DLL. */ tegra210_emc_dll_enable(emc); } return 0; } /* * Do the clock change sequence. */ static void tegra210_emc_r21021_set_clock(struct tegra210_emc *emc, u32 clksrc) { /* state variables */ static bool fsp_for_next_freq; /* constant configuration parameters */ const bool save_restore_clkstop_pd = true; const u32 zqcal_before_cc_cutoff = 2400; const bool cya_allow_ref_cc = false; const bool cya_issue_pc_ref = false; const bool opt_cc_short_zcal = true; const bool ref_b4_sref_en = false; const u32 tZQCAL_lpddr4 = 1000000; const bool opt_short_zcal = true; const bool opt_do_sw_qrst = true; const u32 opt_dvfs_mode = MAN_SR; /* * This is the timing table for the source frequency. It does _not_ * necessarily correspond to the actual timing values in the EMC at the * moment. If the boot BCT differs from the table then this can happen. * However, we need it for accessing the dram_timings (which are not * really registers) array for the current frequency. */ struct tegra210_emc_timing *fake, *last = emc->last, *next = emc->next; u32 tRTM, RP_war, R2P_war, TRPab_war, deltaTWATM, W2P_war, tRPST; u32 mr13_flip_fspwr, mr13_flip_fspop, ramp_up_wait, ramp_down_wait; u32 zq_wait_long, zq_latch_dvfs_wait_time, tZQCAL_lpddr4_fc_adj; u32 emc_auto_cal_config, auto_cal_en, emc_cfg, emc_sel_dpd_ctrl; u32 tFC_lpddr4 = 1000 * next->dram_timings[T_FC_LPDDR4]; u32 bg_reg_mode_change, enable_bglp_reg, enable_bg_reg; bool opt_zcal_en_cc = false, is_lpddr3 = false; bool compensate_trimmer_applicable = false; u32 emc_dbg, emc_cfg_pipe_clk, emc_pin; u32 src_clk_period, dst_clk_period; /* in picoseconds */ bool shared_zq_resistor = false; u32 value, dram_type; u32 opt_dll_mode = 0; unsigned long delay; unsigned int i; emc_dbg(emc, INFO, "Running clock change.\n"); /* XXX fake == last */ fake = tegra210_emc_find_timing(emc, last->rate * 1000UL); fsp_for_next_freq = !fsp_for_next_freq; value = emc_readl(emc, EMC_FBIO_CFG5) & EMC_FBIO_CFG5_DRAM_TYPE_MASK; dram_type = value >> EMC_FBIO_CFG5_DRAM_TYPE_SHIFT; if (last->burst_regs[EMC_ZCAL_WAIT_CNT_INDEX] & BIT(31)) shared_zq_resistor = true; if ((next->burst_regs[EMC_ZCAL_INTERVAL_INDEX] != 0 && last->burst_regs[EMC_ZCAL_INTERVAL_INDEX] == 0) || dram_type == DRAM_TYPE_LPDDR4) opt_zcal_en_cc = true; if (dram_type == DRAM_TYPE_DDR3) opt_dll_mode = tegra210_emc_get_dll_state(next); if ((next->burst_regs[EMC_FBIO_CFG5_INDEX] & BIT(25)) && (dram_type == DRAM_TYPE_LPDDR2)) is_lpddr3 = true; emc_readl(emc, EMC_CFG); emc_readl(emc, EMC_AUTO_CAL_CONFIG); src_clk_period = 1000000000 / last->rate; dst_clk_period = 1000000000 / next->rate; if (dst_clk_period <= zqcal_before_cc_cutoff) tZQCAL_lpddr4_fc_adj = tZQCAL_lpddr4 - tFC_lpddr4; else tZQCAL_lpddr4_fc_adj = tZQCAL_lpddr4; tZQCAL_lpddr4_fc_adj /= dst_clk_period; emc_dbg = emc_readl(emc, EMC_DBG); emc_pin = emc_readl(emc, EMC_PIN); emc_cfg_pipe_clk = emc_readl(emc, EMC_CFG_PIPE_CLK); emc_cfg = next->burst_regs[EMC_CFG_INDEX]; emc_cfg &= ~(EMC_CFG_DYN_SELF_REF | EMC_CFG_DRAM_ACPD | EMC_CFG_DRAM_CLKSTOP_SR | EMC_CFG_DRAM_CLKSTOP_PD); emc_sel_dpd_ctrl = next->emc_sel_dpd_ctrl; emc_sel_dpd_ctrl &= ~(EMC_SEL_DPD_CTRL_CLK_SEL_DPD_EN | EMC_SEL_DPD_CTRL_CA_SEL_DPD_EN | EMC_SEL_DPD_CTRL_RESET_SEL_DPD_EN | EMC_SEL_DPD_CTRL_ODT_SEL_DPD_EN | EMC_SEL_DPD_CTRL_DATA_SEL_DPD_EN); emc_dbg(emc, INFO, "Clock change version: %d\n", DVFS_CLOCK_CHANGE_VERSION); emc_dbg(emc, INFO, "DRAM type = %d\n", dram_type); emc_dbg(emc, INFO, "DRAM dev #: %u\n", emc->num_devices); emc_dbg(emc, INFO, "Next EMC clksrc: 0x%08x\n", clksrc); emc_dbg(emc, INFO, "DLL clksrc: 0x%08x\n", next->dll_clk_src); emc_dbg(emc, INFO, "last rate: %u, next rate %u\n", last->rate, next->rate); emc_dbg(emc, INFO, "last period: %u, next period: %u\n", src_clk_period, dst_clk_period); emc_dbg(emc, INFO, " shared_zq_resistor: %d\n", !!shared_zq_resistor); emc_dbg(emc, INFO, " num_channels: %u\n", emc->num_channels); emc_dbg(emc, INFO, " opt_dll_mode: %d\n", opt_dll_mode); /* * Step 1: * Pre DVFS SW sequence. */ emc_dbg(emc, STEPS, "Step 1\n"); emc_dbg(emc, STEPS, "Step 1.1: Disable DLL temporarily.\n"); value = emc_readl(emc, EMC_CFG_DIG_DLL); value &= ~EMC_CFG_DIG_DLL_CFG_DLL_EN; emc_writel(emc, value, EMC_CFG_DIG_DLL); tegra210_emc_timing_update(emc); for (i = 0; i < emc->num_channels; i++) tegra210_emc_wait_for_update(emc, i, EMC_CFG_DIG_DLL, EMC_CFG_DIG_DLL_CFG_DLL_EN, 0); emc_dbg(emc, STEPS, "Step 1.2: Disable AUTOCAL temporarily.\n"); emc_auto_cal_config = next->emc_auto_cal_config; auto_cal_en = emc_auto_cal_config & EMC_AUTO_CAL_CONFIG_AUTO_CAL_ENABLE; emc_auto_cal_config &= ~EMC_AUTO_CAL_CONFIG_AUTO_CAL_START; emc_auto_cal_config |= EMC_AUTO_CAL_CONFIG_AUTO_CAL_MEASURE_STALL; emc_auto_cal_config |= EMC_AUTO_CAL_CONFIG_AUTO_CAL_UPDATE_STALL; emc_auto_cal_config |= auto_cal_en; emc_writel(emc, emc_auto_cal_config, EMC_AUTO_CAL_CONFIG); emc_readl(emc, EMC_AUTO_CAL_CONFIG); /* Flush write. */ emc_dbg(emc, STEPS, "Step 1.3: Disable other power features.\n"); tegra210_emc_set_shadow_bypass(emc, ACTIVE); emc_writel(emc, emc_cfg, EMC_CFG); emc_writel(emc, emc_sel_dpd_ctrl, EMC_SEL_DPD_CTRL); tegra210_emc_set_shadow_bypass(emc, ASSEMBLY); if (next->periodic_training) { tegra210_emc_reset_dram_clktree_values(next); for (i = 0; i < emc->num_channels; i++) tegra210_emc_wait_for_update(emc, i, EMC_EMC_STATUS, EMC_EMC_STATUS_DRAM_IN_POWERDOWN_MASK, 0); for (i = 0; i < emc->num_channels; i++) tegra210_emc_wait_for_update(emc, i, EMC_EMC_STATUS, EMC_EMC_STATUS_DRAM_IN_SELF_REFRESH_MASK, 0); tegra210_emc_start_periodic_compensation(emc); delay = 1000 * tegra210_emc_actual_osc_clocks(last->run_clocks); udelay((delay / last->rate) + 2); value = periodic_compensation_handler(emc, DVFS_SEQUENCE, fake, next); value = (value * 128 * next->rate / 1000) / 1000000; if (next->periodic_training && value > next->tree_margin) compensate_trimmer_applicable = true; } emc_writel(emc, EMC_INTSTATUS_CLKCHANGE_COMPLETE, EMC_INTSTATUS); tegra210_emc_set_shadow_bypass(emc, ACTIVE); emc_writel(emc, emc_cfg, EMC_CFG); emc_writel(emc, emc_sel_dpd_ctrl, EMC_SEL_DPD_CTRL); emc_writel(emc, emc_cfg_pipe_clk | EMC_CFG_PIPE_CLK_CLK_ALWAYS_ON, EMC_CFG_PIPE_CLK); emc_writel(emc, next->emc_fdpd_ctrl_cmd_no_ramp & ~EMC_FDPD_CTRL_CMD_NO_RAMP_CMD_DPD_NO_RAMP_ENABLE, EMC_FDPD_CTRL_CMD_NO_RAMP); bg_reg_mode_change = ((next->burst_regs[EMC_PMACRO_BG_BIAS_CTRL_0_INDEX] & EMC_PMACRO_BG_BIAS_CTRL_0_BGLP_E_PWRD) ^ (last->burst_regs[EMC_PMACRO_BG_BIAS_CTRL_0_INDEX] & EMC_PMACRO_BG_BIAS_CTRL_0_BGLP_E_PWRD)) || ((next->burst_regs[EMC_PMACRO_BG_BIAS_CTRL_0_INDEX] & EMC_PMACRO_BG_BIAS_CTRL_0_BG_E_PWRD) ^ (last->burst_regs[EMC_PMACRO_BG_BIAS_CTRL_0_INDEX] & EMC_PMACRO_BG_BIAS_CTRL_0_BG_E_PWRD)); enable_bglp_reg = (next->burst_regs[EMC_PMACRO_BG_BIAS_CTRL_0_INDEX] & EMC_PMACRO_BG_BIAS_CTRL_0_BGLP_E_PWRD) == 0; enable_bg_reg = (next->burst_regs[EMC_PMACRO_BG_BIAS_CTRL_0_INDEX] & EMC_PMACRO_BG_BIAS_CTRL_0_BG_E_PWRD) == 0; if (bg_reg_mode_change) { if (enable_bg_reg) emc_writel(emc, last->burst_regs [EMC_PMACRO_BG_BIAS_CTRL_0_INDEX] & ~EMC_PMACRO_BG_BIAS_CTRL_0_BG_E_PWRD, EMC_PMACRO_BG_BIAS_CTRL_0); if (enable_bglp_reg) emc_writel(emc, last->burst_regs [EMC_PMACRO_BG_BIAS_CTRL_0_INDEX] & ~EMC_PMACRO_BG_BIAS_CTRL_0_BGLP_E_PWRD, EMC_PMACRO_BG_BIAS_CTRL_0); } /* Check if we need to turn on VREF generator. */ if ((((last->burst_regs[EMC_PMACRO_DATA_PAD_TX_CTRL_INDEX] & EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQ_E_IVREF) == 0) && ((next->burst_regs[EMC_PMACRO_DATA_PAD_TX_CTRL_INDEX] & EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQ_E_IVREF) == 1)) || (((last->burst_regs[EMC_PMACRO_DATA_PAD_TX_CTRL_INDEX] & EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQS_E_IVREF) == 0) && ((next->burst_regs[EMC_PMACRO_DATA_PAD_TX_CTRL_INDEX] & EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQS_E_IVREF) != 0))) { u32 pad_tx_ctrl = next->burst_regs[EMC_PMACRO_DATA_PAD_TX_CTRL_INDEX]; u32 last_pad_tx_ctrl = last->burst_regs[EMC_PMACRO_DATA_PAD_TX_CTRL_INDEX]; u32 next_dq_e_ivref, next_dqs_e_ivref; next_dqs_e_ivref = pad_tx_ctrl & EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQS_E_IVREF; next_dq_e_ivref = pad_tx_ctrl & EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQ_E_IVREF; value = (last_pad_tx_ctrl & ~EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQ_E_IVREF & ~EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQS_E_IVREF) | next_dq_e_ivref | next_dqs_e_ivref; emc_writel(emc, value, EMC_PMACRO_DATA_PAD_TX_CTRL); udelay(1); } else if (bg_reg_mode_change) { udelay(1); } tegra210_emc_set_shadow_bypass(emc, ASSEMBLY); /* * Step 2: * Prelock the DLL. */ emc_dbg(emc, STEPS, "Step 2\n"); if (next->burst_regs[EMC_CFG_DIG_DLL_INDEX] & EMC_CFG_DIG_DLL_CFG_DLL_EN) { emc_dbg(emc, INFO, "Prelock enabled for target frequency.\n"); value = tegra210_emc_dll_prelock(emc, clksrc); emc_dbg(emc, INFO, "DLL out: 0x%03x\n", value); } else { emc_dbg(emc, INFO, "Disabling DLL for target frequency.\n"); tegra210_emc_dll_disable(emc); } /* * Step 3: * Prepare autocal for the clock change. */ emc_dbg(emc, STEPS, "Step 3\n"); tegra210_emc_set_shadow_bypass(emc, ACTIVE); emc_writel(emc, next->emc_auto_cal_config2, EMC_AUTO_CAL_CONFIG2); emc_writel(emc, next->emc_auto_cal_config3, EMC_AUTO_CAL_CONFIG3); emc_writel(emc, next->emc_auto_cal_config4, EMC_AUTO_CAL_CONFIG4); emc_writel(emc, next->emc_auto_cal_config5, EMC_AUTO_CAL_CONFIG5); emc_writel(emc, next->emc_auto_cal_config6, EMC_AUTO_CAL_CONFIG6); emc_writel(emc, next->emc_auto_cal_config7, EMC_AUTO_CAL_CONFIG7); emc_writel(emc, next->emc_auto_cal_config8, EMC_AUTO_CAL_CONFIG8); tegra210_emc_set_shadow_bypass(emc, ASSEMBLY); emc_auto_cal_config |= (EMC_AUTO_CAL_CONFIG_AUTO_CAL_COMPUTE_START | auto_cal_en); emc_writel(emc, emc_auto_cal_config, EMC_AUTO_CAL_CONFIG); /* * Step 4: * Update EMC_CFG. (??) */ emc_dbg(emc, STEPS, "Step 4\n"); if (src_clk_period > 50000 && dram_type == DRAM_TYPE_LPDDR4) ccfifo_writel(emc, 1, EMC_SELF_REF, 0); else emc_writel(emc, next->emc_cfg_2, EMC_CFG_2); /* * Step 5: * Prepare reference variables for ZQCAL regs. */ emc_dbg(emc, STEPS, "Step 5\n"); if (dram_type == DRAM_TYPE_LPDDR4) zq_wait_long = max((u32)1, div_o3(1000000, dst_clk_period)); else if (dram_type == DRAM_TYPE_LPDDR2 || is_lpddr3) zq_wait_long = max(next->min_mrs_wait, div_o3(360000, dst_clk_period)) + 4; else if (dram_type == DRAM_TYPE_DDR3) zq_wait_long = max((u32)256, div_o3(320000, dst_clk_period) + 2); else zq_wait_long = 0; /* * Step 6: * Training code - removed. */ emc_dbg(emc, STEPS, "Step 6\n"); /* * Step 7: * Program FSP reference registers and send MRWs to new FSPWR. */ emc_dbg(emc, STEPS, "Step 7\n"); emc_dbg(emc, SUB_STEPS, "Step 7.1: Bug 200024907 - Patch RP R2P"); /* WAR 200024907 */ if (dram_type == DRAM_TYPE_LPDDR4) { u32 nRTP = 16; if (src_clk_period >= 1000000 / 1866) /* 535.91 ps */ nRTP = 14; if (src_clk_period >= 1000000 / 1600) /* 625.00 ps */ nRTP = 12; if (src_clk_period >= 1000000 / 1333) /* 750.19 ps */ nRTP = 10; if (src_clk_period >= 1000000 / 1066) /* 938.09 ps */ nRTP = 8; deltaTWATM = max_t(u32, div_o3(7500, src_clk_period), 8); /* * Originally there was a + .5 in the tRPST calculation. * However since we can't do FP in the kernel and the tRTM * computation was in a floating point ceiling function, adding * one to tRTP should be ok. There is no other source of non * integer values, so the result was always going to be * something for the form: f_ceil(N + .5) = N + 1; */ tRPST = (last->emc_mrw & 0x80) >> 7; tRTM = fake->dram_timings[RL] + div_o3(3600, src_clk_period) + max_t(u32, div_o3(7500, src_clk_period), 8) + tRPST + 1 + nRTP; emc_dbg(emc, INFO, "tRTM = %u, EMC_RP = %u\n", tRTM, next->burst_regs[EMC_RP_INDEX]); if (last->burst_regs[EMC_RP_INDEX] < tRTM) { if (tRTM > (last->burst_regs[EMC_R2P_INDEX] + last->burst_regs[EMC_RP_INDEX])) { R2P_war = tRTM - last->burst_regs[EMC_RP_INDEX]; RP_war = last->burst_regs[EMC_RP_INDEX]; TRPab_war = last->burst_regs[EMC_TRPAB_INDEX]; if (R2P_war > 63) { RP_war = R2P_war + last->burst_regs[EMC_RP_INDEX] - 63; if (TRPab_war < RP_war) TRPab_war = RP_war; R2P_war = 63; } } else { R2P_war = last->burst_regs[EMC_R2P_INDEX]; RP_war = last->burst_regs[EMC_RP_INDEX]; TRPab_war = last->burst_regs[EMC_TRPAB_INDEX]; } if (RP_war < deltaTWATM) { W2P_war = last->burst_regs[EMC_W2P_INDEX] + deltaTWATM - RP_war; if (W2P_war > 63) { RP_war = RP_war + W2P_war - 63; if (TRPab_war < RP_war) TRPab_war = RP_war; W2P_war = 63; } } else { W2P_war = last->burst_regs[ EMC_W2P_INDEX]; } if ((last->burst_regs[EMC_W2P_INDEX] ^ W2P_war) || (last->burst_regs[EMC_R2P_INDEX] ^ R2P_war) || (last->burst_regs[EMC_RP_INDEX] ^ RP_war) || (last->burst_regs[EMC_TRPAB_INDEX] ^ TRPab_war)) { emc_writel(emc, RP_war, EMC_RP); emc_writel(emc, R2P_war, EMC_R2P); emc_writel(emc, W2P_war, EMC_W2P); emc_writel(emc, TRPab_war, EMC_TRPAB); } tegra210_emc_timing_update(emc); } else { emc_dbg(emc, INFO, "Skipped WAR\n"); } } if (!fsp_for_next_freq) { mr13_flip_fspwr = (next->emc_mrw3 & 0xffffff3f) | 0x80; mr13_flip_fspop = (next->emc_mrw3 & 0xffffff3f) | 0x00; } else { mr13_flip_fspwr = (next->emc_mrw3 & 0xffffff3f) | 0x40; mr13_flip_fspop = (next->emc_mrw3 & 0xffffff3f) | 0xc0; } if (dram_type == DRAM_TYPE_LPDDR4) { emc_writel(emc, mr13_flip_fspwr, EMC_MRW3); emc_writel(emc, next->emc_mrw, EMC_MRW); emc_writel(emc, next->emc_mrw2, EMC_MRW2); } /* * Step 8: * Program the shadow registers. */ emc_dbg(emc, STEPS, "Step 8\n"); emc_dbg(emc, SUB_STEPS, "Writing burst_regs\n"); for (i = 0; i < next->num_burst; i++) { const u16 *offsets = emc->offsets->burst; u16 offset; if (!offsets[i]) continue; value = next->burst_regs[i]; offset = offsets[i]; if (dram_type != DRAM_TYPE_LPDDR4 && (offset == EMC_MRW6 || offset == EMC_MRW7 || offset == EMC_MRW8 || offset == EMC_MRW9 || offset == EMC_MRW10 || offset == EMC_MRW11 || offset == EMC_MRW12 || offset == EMC_MRW13 || offset == EMC_MRW14 || offset == EMC_MRW15 || offset == EMC_TRAINING_CTRL)) continue; /* Pain... And suffering. */ if (offset == EMC_CFG) { value &= ~EMC_CFG_DRAM_ACPD; value &= ~EMC_CFG_DYN_SELF_REF; if (dram_type == DRAM_TYPE_LPDDR4) { value &= ~EMC_CFG_DRAM_CLKSTOP_SR; value &= ~EMC_CFG_DRAM_CLKSTOP_PD; } } else if (offset == EMC_MRS_WAIT_CNT && dram_type == DRAM_TYPE_LPDDR2 && opt_zcal_en_cc && !opt_cc_short_zcal && opt_short_zcal) { value = (value & ~(EMC_MRS_WAIT_CNT_SHORT_WAIT_MASK << EMC_MRS_WAIT_CNT_SHORT_WAIT_SHIFT)) | ((zq_wait_long & EMC_MRS_WAIT_CNT_SHORT_WAIT_MASK) << EMC_MRS_WAIT_CNT_SHORT_WAIT_SHIFT); } else if (offset == EMC_ZCAL_WAIT_CNT && dram_type == DRAM_TYPE_DDR3 && opt_zcal_en_cc && !opt_cc_short_zcal && opt_short_zcal) { value = (value & ~(EMC_ZCAL_WAIT_CNT_ZCAL_WAIT_CNT_MASK << EMC_ZCAL_WAIT_CNT_ZCAL_WAIT_CNT_SHIFT)) | ((zq_wait_long & EMC_ZCAL_WAIT_CNT_ZCAL_WAIT_CNT_MASK) << EMC_MRS_WAIT_CNT_SHORT_WAIT_SHIFT); } else if (offset == EMC_ZCAL_INTERVAL && opt_zcal_en_cc) { value = 0; /* EMC_ZCAL_INTERVAL reset value. */ } else if (offset == EMC_PMACRO_AUTOCAL_CFG_COMMON) { value |= EMC_PMACRO_AUTOCAL_CFG_COMMON_E_CAL_BYPASS_DVFS; } else if (offset == EMC_PMACRO_DATA_PAD_TX_CTRL) { value &= ~(EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQSP_TX_E_DCC | EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQSN_TX_E_DCC | EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQ_TX_E_DCC | EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_CMD_TX_E_DCC); } else if (offset == EMC_PMACRO_CMD_PAD_TX_CTRL) { value |= EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_DQ_TX_DRVFORCEON; value &= ~(EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_DQSP_TX_E_DCC | EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_DQSN_TX_E_DCC | EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_DQ_TX_E_DCC | EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_CMD_TX_E_DCC); } else if (offset == EMC_PMACRO_BRICK_CTRL_RFU1) { value &= 0xf800f800; } else if (offset == EMC_PMACRO_COMMON_PAD_TX_CTRL) { value &= 0xfffffff0; } emc_writel(emc, value, offset); } if (dram_type == DRAM_TYPE_LPDDR4) { value = (23 << EMC_MRW_MRW_MA_SHIFT) | (next->run_clocks & EMC_MRW_MRW_OP_MASK); emc_writel(emc, value, EMC_MRW); } /* Per channel burst registers. */ emc_dbg(emc, SUB_STEPS, "Writing burst_regs_per_ch\n"); for (i = 0; i < next->num_burst_per_ch; i++) { const struct tegra210_emc_per_channel_regs *burst = emc->offsets->burst_per_channel; if (!burst[i].offset) continue; if (dram_type != DRAM_TYPE_LPDDR4 && (burst[i].offset == EMC_MRW6 || burst[i].offset == EMC_MRW7 || burst[i].offset == EMC_MRW8 || burst[i].offset == EMC_MRW9 || burst[i].offset == EMC_MRW10 || burst[i].offset == EMC_MRW11 || burst[i].offset == EMC_MRW12 || burst[i].offset == EMC_MRW13 || burst[i].offset == EMC_MRW14 || burst[i].offset == EMC_MRW15)) continue; /* Filter out second channel if not in DUAL_CHANNEL mode. */ if (emc->num_channels < 2 && burst[i].bank >= 1) continue; emc_dbg(emc, REG_LISTS, "(%u) 0x%08x => 0x%08x\n", i, next->burst_reg_per_ch[i], burst[i].offset); emc_channel_writel(emc, burst[i].bank, next->burst_reg_per_ch[i], burst[i].offset); } /* Vref regs. */ emc_dbg(emc, SUB_STEPS, "Writing vref_regs\n"); for (i = 0; i < next->vref_num; i++) { const struct tegra210_emc_per_channel_regs *vref = emc->offsets->vref_per_channel; if (!vref[i].offset) continue; if (emc->num_channels < 2 && vref[i].bank >= 1) continue; emc_dbg(emc, REG_LISTS, "(%u) 0x%08x => 0x%08x\n", i, next->vref_perch_regs[i], vref[i].offset); emc_channel_writel(emc, vref[i].bank, next->vref_perch_regs[i], vref[i].offset); } /* Trimmers. */ emc_dbg(emc, SUB_STEPS, "Writing trim_regs\n"); for (i = 0; i < next->num_trim; i++) { const u16 *offsets = emc->offsets->trim; if (!offsets[i]) continue; if (compensate_trimmer_applicable && (offsets[i] == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_0 || offsets[i] == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_1 || offsets[i] == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_2 || offsets[i] == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_3 || offsets[i] == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_0 || offsets[i] == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_1 || offsets[i] == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_2 || offsets[i] == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_3 || offsets[i] == EMC_DATA_BRLSHFT_0 || offsets[i] == EMC_DATA_BRLSHFT_1)) { value = tegra210_emc_compensate(next, offsets[i]); emc_dbg(emc, REG_LISTS, "(%u) 0x%08x => 0x%08x\n", i, value, offsets[i]); emc_dbg(emc, EMA_WRITES, "0x%08x <= 0x%08x\n", (u32)(u64)offsets[i], value); emc_writel(emc, value, offsets[i]); } else { emc_dbg(emc, REG_LISTS, "(%u) 0x%08x => 0x%08x\n", i, next->trim_regs[i], offsets[i]); emc_writel(emc, next->trim_regs[i], offsets[i]); } } /* Per channel trimmers. */ emc_dbg(emc, SUB_STEPS, "Writing trim_regs_per_ch\n"); for (i = 0; i < next->num_trim_per_ch; i++) { const struct tegra210_emc_per_channel_regs *trim = &emc->offsets->trim_per_channel[0]; unsigned int offset; if (!trim[i].offset) continue; if (emc->num_channels < 2 && trim[i].bank >= 1) continue; offset = trim[i].offset; if (compensate_trimmer_applicable && (offset == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_0 || offset == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_1 || offset == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_2 || offset == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_3 || offset == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_0 || offset == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_1 || offset == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_2 || offset == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_3 || offset == EMC_DATA_BRLSHFT_0 || offset == EMC_DATA_BRLSHFT_1)) { value = tegra210_emc_compensate(next, offset); emc_dbg(emc, REG_LISTS, "(%u) 0x%08x => 0x%08x\n", i, value, offset); emc_dbg(emc, EMA_WRITES, "0x%08x <= 0x%08x\n", offset, value); emc_channel_writel(emc, trim[i].bank, value, offset); } else { emc_dbg(emc, REG_LISTS, "(%u) 0x%08x => 0x%08x\n", i, next->trim_perch_regs[i], offset); emc_channel_writel(emc, trim[i].bank, next->trim_perch_regs[i], offset); } } emc_dbg(emc, SUB_STEPS, "Writing burst_mc_regs\n"); for (i = 0; i < next->num_mc_regs; i++) { const u16 *offsets = emc->offsets->burst_mc; u32 *values = next->burst_mc_regs; emc_dbg(emc, REG_LISTS, "(%u) 0x%08x => 0x%08x\n", i, values[i], offsets[i]); mc_writel(emc->mc, values[i], offsets[i]); } /* Registers to be programmed on the faster clock. */ if (next->rate < last->rate) { const u16 *la = emc->offsets->la_scale; emc_dbg(emc, SUB_STEPS, "Writing la_scale_regs\n"); for (i = 0; i < next->num_up_down; i++) { emc_dbg(emc, REG_LISTS, "(%u) 0x%08x => 0x%08x\n", i, next->la_scale_regs[i], la[i]); mc_writel(emc->mc, next->la_scale_regs[i], la[i]); } } /* Flush all the burst register writes. */ mc_readl(emc->mc, MC_EMEM_ADR_CFG); /* * Step 9: * LPDDR4 section A. */ emc_dbg(emc, STEPS, "Step 9\n"); value = next->burst_regs[EMC_ZCAL_WAIT_CNT_INDEX]; value &= ~EMC_ZCAL_WAIT_CNT_ZCAL_WAIT_CNT_MASK; if (dram_type == DRAM_TYPE_LPDDR4) { emc_writel(emc, 0, EMC_ZCAL_INTERVAL); emc_writel(emc, value, EMC_ZCAL_WAIT_CNT); value = emc_dbg | (EMC_DBG_WRITE_MUX_ACTIVE | EMC_DBG_WRITE_ACTIVE_ONLY); emc_writel(emc, value, EMC_DBG); emc_writel(emc, 0, EMC_ZCAL_INTERVAL); emc_writel(emc, emc_dbg, EMC_DBG); } /* * Step 10: * LPDDR4 and DDR3 common section. */ emc_dbg(emc, STEPS, "Step 10\n"); if (opt_dvfs_mode == MAN_SR || dram_type == DRAM_TYPE_LPDDR4) { if (dram_type == DRAM_TYPE_LPDDR4) ccfifo_writel(emc, 0x101, EMC_SELF_REF, 0); else ccfifo_writel(emc, 0x1, EMC_SELF_REF, 0); if (dram_type == DRAM_TYPE_LPDDR4 && dst_clk_period <= zqcal_before_cc_cutoff) { ccfifo_writel(emc, mr13_flip_fspwr ^ 0x40, EMC_MRW3, 0); ccfifo_writel(emc, (next->burst_regs[EMC_MRW6_INDEX] & 0xFFFF3F3F) | (last->burst_regs[EMC_MRW6_INDEX] & 0x0000C0C0), EMC_MRW6, 0); ccfifo_writel(emc, (next->burst_regs[EMC_MRW14_INDEX] & 0xFFFF0707) | (last->burst_regs[EMC_MRW14_INDEX] & 0x00003838), EMC_MRW14, 0); if (emc->num_devices > 1) { ccfifo_writel(emc, (next->burst_regs[EMC_MRW7_INDEX] & 0xFFFF3F3F) | (last->burst_regs[EMC_MRW7_INDEX] & 0x0000C0C0), EMC_MRW7, 0); ccfifo_writel(emc, (next->burst_regs[EMC_MRW15_INDEX] & 0xFFFF0707) | (last->burst_regs[EMC_MRW15_INDEX] & 0x00003838), EMC_MRW15, 0); } if (opt_zcal_en_cc) { if (emc->num_devices < 2) ccfifo_writel(emc, 2UL << EMC_ZQ_CAL_DEV_SEL_SHIFT | EMC_ZQ_CAL_ZQ_CAL_CMD, EMC_ZQ_CAL, 0); else if (shared_zq_resistor) ccfifo_writel(emc, 2UL << EMC_ZQ_CAL_DEV_SEL_SHIFT | EMC_ZQ_CAL_ZQ_CAL_CMD, EMC_ZQ_CAL, 0); else ccfifo_writel(emc, EMC_ZQ_CAL_ZQ_CAL_CMD, EMC_ZQ_CAL, 0); } } } if (dram_type == DRAM_TYPE_LPDDR4) { value = (1000 * fake->dram_timings[T_RP]) / src_clk_period; ccfifo_writel(emc, mr13_flip_fspop | 0x8, EMC_MRW3, value); ccfifo_writel(emc, 0, 0, tFC_lpddr4 / src_clk_period); } if (dram_type == DRAM_TYPE_LPDDR4 || opt_dvfs_mode != MAN_SR) { delay = 30; if (cya_allow_ref_cc) { delay += (1000 * fake->dram_timings[T_RP]) / src_clk_period; delay += 4000 * fake->dram_timings[T_RFC]; } ccfifo_writel(emc, emc_pin & ~(EMC_PIN_PIN_CKE_PER_DEV | EMC_PIN_PIN_CKEB | EMC_PIN_PIN_CKE), EMC_PIN, delay); } /* calculate reference delay multiplier */ value = 1; if (ref_b4_sref_en) value++; if (cya_allow_ref_cc) value++; if (cya_issue_pc_ref) value++; if (dram_type != DRAM_TYPE_LPDDR4) { delay = ((1000 * fake->dram_timings[T_RP] / src_clk_period) + (1000 * fake->dram_timings[T_RFC] / src_clk_period)); delay = value * delay + 20; } else { delay = 0; } /* * Step 11: * Ramp down. */ emc_dbg(emc, STEPS, "Step 11\n"); ccfifo_writel(emc, 0x0, EMC_CFG_SYNC, delay); value = emc_dbg | EMC_DBG_WRITE_MUX_ACTIVE | EMC_DBG_WRITE_ACTIVE_ONLY; ccfifo_writel(emc, value, EMC_DBG, 0); ramp_down_wait = tegra210_emc_dvfs_power_ramp_down(emc, src_clk_period, 0); /* * Step 12: * And finally - trigger the clock change. */ emc_dbg(emc, STEPS, "Step 12\n"); ccfifo_writel(emc, 1, EMC_STALL_THEN_EXE_AFTER_CLKCHANGE, 0); value &= ~EMC_DBG_WRITE_ACTIVE_ONLY; ccfifo_writel(emc, value, EMC_DBG, 0); /* * Step 13: * Ramp up. */ emc_dbg(emc, STEPS, "Step 13\n"); ramp_up_wait = tegra210_emc_dvfs_power_ramp_up(emc, dst_clk_period, 0); ccfifo_writel(emc, emc_dbg, EMC_DBG, 0); /* * Step 14: * Bringup CKE pins. */ emc_dbg(emc, STEPS, "Step 14\n"); if (dram_type == DRAM_TYPE_LPDDR4) { value = emc_pin | EMC_PIN_PIN_CKE; if (emc->num_devices <= 1) value &= ~(EMC_PIN_PIN_CKEB | EMC_PIN_PIN_CKE_PER_DEV); else value |= EMC_PIN_PIN_CKEB | EMC_PIN_PIN_CKE_PER_DEV; ccfifo_writel(emc, value, EMC_PIN, 0); } /* * Step 15: (two step 15s ??) * Calculate zqlatch wait time; has dependency on ramping times. */ emc_dbg(emc, STEPS, "Step 15\n"); if (dst_clk_period <= zqcal_before_cc_cutoff) { s32 t = (s32)(ramp_up_wait + ramp_down_wait) / (s32)dst_clk_period; zq_latch_dvfs_wait_time = (s32)tZQCAL_lpddr4_fc_adj - t; } else { zq_latch_dvfs_wait_time = tZQCAL_lpddr4_fc_adj - div_o3(1000 * next->dram_timings[T_PDEX], dst_clk_period); } emc_dbg(emc, INFO, "tZQCAL_lpddr4_fc_adj = %u\n", tZQCAL_lpddr4_fc_adj); emc_dbg(emc, INFO, "dst_clk_period = %u\n", dst_clk_period); emc_dbg(emc, INFO, "next->dram_timings[T_PDEX] = %u\n", next->dram_timings[T_PDEX]); emc_dbg(emc, INFO, "zq_latch_dvfs_wait_time = %d\n", max_t(s32, 0, zq_latch_dvfs_wait_time)); if (dram_type == DRAM_TYPE_LPDDR4 && opt_zcal_en_cc) { delay = div_o3(1000 * next->dram_timings[T_PDEX], dst_clk_period); if (emc->num_devices < 2) { if (dst_clk_period > zqcal_before_cc_cutoff) ccfifo_writel(emc, 2UL << EMC_ZQ_CAL_DEV_SEL_SHIFT | EMC_ZQ_CAL_ZQ_CAL_CMD, EMC_ZQ_CAL, delay); value = (mr13_flip_fspop & 0xfffffff7) | 0x0c000000; ccfifo_writel(emc, value, EMC_MRW3, delay); ccfifo_writel(emc, 0, EMC_SELF_REF, 0); ccfifo_writel(emc, 0, EMC_REF, 0); ccfifo_writel(emc, 2UL << EMC_ZQ_CAL_DEV_SEL_SHIFT | EMC_ZQ_CAL_ZQ_LATCH_CMD, EMC_ZQ_CAL, max_t(s32, 0, zq_latch_dvfs_wait_time)); } else if (shared_zq_resistor) { if (dst_clk_period > zqcal_before_cc_cutoff) ccfifo_writel(emc, 2UL << EMC_ZQ_CAL_DEV_SEL_SHIFT | EMC_ZQ_CAL_ZQ_CAL_CMD, EMC_ZQ_CAL, delay); ccfifo_writel(emc, 2UL << EMC_ZQ_CAL_DEV_SEL_SHIFT | EMC_ZQ_CAL_ZQ_LATCH_CMD, EMC_ZQ_CAL, max_t(s32, 0, zq_latch_dvfs_wait_time) + delay); ccfifo_writel(emc, 1UL << EMC_ZQ_CAL_DEV_SEL_SHIFT | EMC_ZQ_CAL_ZQ_LATCH_CMD, EMC_ZQ_CAL, 0); value = (mr13_flip_fspop & 0xfffffff7) | 0x0c000000; ccfifo_writel(emc, value, EMC_MRW3, 0); ccfifo_writel(emc, 0, EMC_SELF_REF, 0); ccfifo_writel(emc, 0, EMC_REF, 0); ccfifo_writel(emc, 1UL << EMC_ZQ_CAL_DEV_SEL_SHIFT | EMC_ZQ_CAL_ZQ_LATCH_CMD, EMC_ZQ_CAL, tZQCAL_lpddr4 / dst_clk_period); } else { if (dst_clk_period > zqcal_before_cc_cutoff) ccfifo_writel(emc, EMC_ZQ_CAL_ZQ_CAL_CMD, EMC_ZQ_CAL, delay); value = (mr13_flip_fspop & 0xfffffff7) | 0x0c000000; ccfifo_writel(emc, value, EMC_MRW3, delay); ccfifo_writel(emc, 0, EMC_SELF_REF, 0); ccfifo_writel(emc, 0, EMC_REF, 0); ccfifo_writel(emc, EMC_ZQ_CAL_ZQ_LATCH_CMD, EMC_ZQ_CAL, max_t(s32, 0, zq_latch_dvfs_wait_time)); } } /* WAR: delay for zqlatch */ ccfifo_writel(emc, 0, 0, 10); /* * Step 16: * LPDDR4 Conditional Training Kickoff. Removed. */ /* * Step 17: * MANSR exit self refresh. */ emc_dbg(emc, STEPS, "Step 17\n"); if (opt_dvfs_mode == MAN_SR && dram_type != DRAM_TYPE_LPDDR4) ccfifo_writel(emc, 0, EMC_SELF_REF, 0); /* * Step 18: * Send MRWs to LPDDR3/DDR3. */ emc_dbg(emc, STEPS, "Step 18\n"); if (dram_type == DRAM_TYPE_LPDDR2) { ccfifo_writel(emc, next->emc_mrw2, EMC_MRW2, 0); ccfifo_writel(emc, next->emc_mrw, EMC_MRW, 0); if (is_lpddr3) ccfifo_writel(emc, next->emc_mrw4, EMC_MRW4, 0); } else if (dram_type == DRAM_TYPE_DDR3) { if (opt_dll_mode) ccfifo_writel(emc, next->emc_emrs & ~EMC_EMRS_USE_EMRS_LONG_CNT, EMC_EMRS, 0); ccfifo_writel(emc, next->emc_emrs2 & ~EMC_EMRS2_USE_EMRS2_LONG_CNT, EMC_EMRS2, 0); ccfifo_writel(emc, next->emc_mrs | EMC_EMRS_USE_EMRS_LONG_CNT, EMC_MRS, 0); } /* * Step 19: * ZQCAL for LPDDR3/DDR3 */ emc_dbg(emc, STEPS, "Step 19\n"); if (opt_zcal_en_cc) { if (dram_type == DRAM_TYPE_LPDDR2) { value = opt_cc_short_zcal ? 90000 : 360000; value = div_o3(value, dst_clk_period); value = value << EMC_MRS_WAIT_CNT2_MRS_EXT2_WAIT_CNT_SHIFT | value << EMC_MRS_WAIT_CNT2_MRS_EXT1_WAIT_CNT_SHIFT; ccfifo_writel(emc, value, EMC_MRS_WAIT_CNT2, 0); value = opt_cc_short_zcal ? 0x56 : 0xab; ccfifo_writel(emc, 2 << EMC_MRW_MRW_DEV_SELECTN_SHIFT | EMC_MRW_USE_MRW_EXT_CNT | 10 << EMC_MRW_MRW_MA_SHIFT | value << EMC_MRW_MRW_OP_SHIFT, EMC_MRW, 0); if (emc->num_devices > 1) { value = 1 << EMC_MRW_MRW_DEV_SELECTN_SHIFT | EMC_MRW_USE_MRW_EXT_CNT | 10 << EMC_MRW_MRW_MA_SHIFT | value << EMC_MRW_MRW_OP_SHIFT; ccfifo_writel(emc, value, EMC_MRW, 0); } } else if (dram_type == DRAM_TYPE_DDR3) { value = opt_cc_short_zcal ? 0 : EMC_ZQ_CAL_LONG; ccfifo_writel(emc, value | 2 << EMC_ZQ_CAL_DEV_SEL_SHIFT | EMC_ZQ_CAL_ZQ_CAL_CMD, EMC_ZQ_CAL, 0); if (emc->num_devices > 1) { value = value | 1 << EMC_ZQ_CAL_DEV_SEL_SHIFT | EMC_ZQ_CAL_ZQ_CAL_CMD; ccfifo_writel(emc, value, EMC_ZQ_CAL, 0); } } } if (bg_reg_mode_change) { tegra210_emc_set_shadow_bypass(emc, ACTIVE); if (ramp_up_wait <= 1250000) delay = (1250000 - ramp_up_wait) / dst_clk_period; else delay = 0; ccfifo_writel(emc, next->burst_regs[EMC_PMACRO_BG_BIAS_CTRL_0_INDEX], EMC_PMACRO_BG_BIAS_CTRL_0, delay); tegra210_emc_set_shadow_bypass(emc, ASSEMBLY); } /* * Step 20: * Issue ref and optional QRST. */ emc_dbg(emc, STEPS, "Step 20\n"); if (dram_type != DRAM_TYPE_LPDDR4) ccfifo_writel(emc, 0, EMC_REF, 0); if (opt_do_sw_qrst) { ccfifo_writel(emc, 1, EMC_ISSUE_QRST, 0); ccfifo_writel(emc, 0, EMC_ISSUE_QRST, 2); } /* * Step 21: * Restore ZCAL and ZCAL interval. */ emc_dbg(emc, STEPS, "Step 21\n"); if (save_restore_clkstop_pd || opt_zcal_en_cc) { ccfifo_writel(emc, emc_dbg | EMC_DBG_WRITE_MUX_ACTIVE, EMC_DBG, 0); if (opt_zcal_en_cc && dram_type != DRAM_TYPE_LPDDR4) ccfifo_writel(emc, next->burst_regs[EMC_ZCAL_INTERVAL_INDEX], EMC_ZCAL_INTERVAL, 0); if (save_restore_clkstop_pd) ccfifo_writel(emc, next->burst_regs[EMC_CFG_INDEX] & ~EMC_CFG_DYN_SELF_REF, EMC_CFG, 0); ccfifo_writel(emc, emc_dbg, EMC_DBG, 0); } /* * Step 22: * Restore EMC_CFG_PIPE_CLK. */ emc_dbg(emc, STEPS, "Step 22\n"); ccfifo_writel(emc, emc_cfg_pipe_clk, EMC_CFG_PIPE_CLK, 0); if (bg_reg_mode_change) { if (enable_bg_reg) emc_writel(emc, next->burst_regs[EMC_PMACRO_BG_BIAS_CTRL_0_INDEX] & ~EMC_PMACRO_BG_BIAS_CTRL_0_BGLP_E_PWRD, EMC_PMACRO_BG_BIAS_CTRL_0); else emc_writel(emc, next->burst_regs[EMC_PMACRO_BG_BIAS_CTRL_0_INDEX] & ~EMC_PMACRO_BG_BIAS_CTRL_0_BG_E_PWRD, EMC_PMACRO_BG_BIAS_CTRL_0); } /* * Step 23: */ emc_dbg(emc, STEPS, "Step 23\n"); value = emc_readl(emc, EMC_CFG_DIG_DLL); value |= EMC_CFG_DIG_DLL_CFG_DLL_STALL_ALL_TRAFFIC; value &= ~EMC_CFG_DIG_DLL_CFG_DLL_STALL_RW_UNTIL_LOCK; value &= ~EMC_CFG_DIG_DLL_CFG_DLL_STALL_ALL_UNTIL_LOCK; value &= ~EMC_CFG_DIG_DLL_CFG_DLL_EN; value = (value & ~EMC_CFG_DIG_DLL_CFG_DLL_MODE_MASK) | (2 << EMC_CFG_DIG_DLL_CFG_DLL_MODE_SHIFT); emc_writel(emc, value, EMC_CFG_DIG_DLL); tegra210_emc_do_clock_change(emc, clksrc); /* * Step 24: * Save training results. Removed. */ /* * Step 25: * Program MC updown registers. */ emc_dbg(emc, STEPS, "Step 25\n"); if (next->rate > last->rate) { for (i = 0; i < next->num_up_down; i++) mc_writel(emc->mc, next->la_scale_regs[i], emc->offsets->la_scale[i]); tegra210_emc_timing_update(emc); } /* * Step 26: * Restore ZCAL registers. */ emc_dbg(emc, STEPS, "Step 26\n"); if (dram_type == DRAM_TYPE_LPDDR4) { tegra210_emc_set_shadow_bypass(emc, ACTIVE); emc_writel(emc, next->burst_regs[EMC_ZCAL_WAIT_CNT_INDEX], EMC_ZCAL_WAIT_CNT); emc_writel(emc, next->burst_regs[EMC_ZCAL_INTERVAL_INDEX], EMC_ZCAL_INTERVAL); tegra210_emc_set_shadow_bypass(emc, ASSEMBLY); } if (dram_type != DRAM_TYPE_LPDDR4 && opt_zcal_en_cc && !opt_short_zcal && opt_cc_short_zcal) { udelay(2); tegra210_emc_set_shadow_bypass(emc, ACTIVE); if (dram_type == DRAM_TYPE_LPDDR2) emc_writel(emc, next->burst_regs[EMC_MRS_WAIT_CNT_INDEX], EMC_MRS_WAIT_CNT); else if (dram_type == DRAM_TYPE_DDR3) emc_writel(emc, next->burst_regs[EMC_ZCAL_WAIT_CNT_INDEX], EMC_ZCAL_WAIT_CNT); tegra210_emc_set_shadow_bypass(emc, ASSEMBLY); } /* * Step 27: * Restore EMC_CFG, FDPD registers. */ emc_dbg(emc, STEPS, "Step 27\n"); tegra210_emc_set_shadow_bypass(emc, ACTIVE); emc_writel(emc, next->burst_regs[EMC_CFG_INDEX], EMC_CFG); tegra210_emc_set_shadow_bypass(emc, ASSEMBLY); emc_writel(emc, next->emc_fdpd_ctrl_cmd_no_ramp, EMC_FDPD_CTRL_CMD_NO_RAMP); emc_writel(emc, next->emc_sel_dpd_ctrl, EMC_SEL_DPD_CTRL); /* * Step 28: * Training recover. Removed. */ emc_dbg(emc, STEPS, "Step 28\n"); tegra210_emc_set_shadow_bypass(emc, ACTIVE); emc_writel(emc, next->burst_regs[EMC_PMACRO_AUTOCAL_CFG_COMMON_INDEX], EMC_PMACRO_AUTOCAL_CFG_COMMON); tegra210_emc_set_shadow_bypass(emc, ASSEMBLY); /* * Step 29: * Power fix WAR. */ emc_dbg(emc, STEPS, "Step 29\n"); emc_writel(emc, EMC_PMACRO_CFG_PM_GLOBAL_0_DISABLE_CFG_BYTE0 | EMC_PMACRO_CFG_PM_GLOBAL_0_DISABLE_CFG_BYTE1 | EMC_PMACRO_CFG_PM_GLOBAL_0_DISABLE_CFG_BYTE2 | EMC_PMACRO_CFG_PM_GLOBAL_0_DISABLE_CFG_BYTE3 | EMC_PMACRO_CFG_PM_GLOBAL_0_DISABLE_CFG_BYTE4 | EMC_PMACRO_CFG_PM_GLOBAL_0_DISABLE_CFG_BYTE5 | EMC_PMACRO_CFG_PM_GLOBAL_0_DISABLE_CFG_BYTE6 | EMC_PMACRO_CFG_PM_GLOBAL_0_DISABLE_CFG_BYTE7, EMC_PMACRO_CFG_PM_GLOBAL_0); emc_writel(emc, EMC_PMACRO_TRAINING_CTRL_0_CH0_TRAINING_E_WRPTR, EMC_PMACRO_TRAINING_CTRL_0); emc_writel(emc, EMC_PMACRO_TRAINING_CTRL_1_CH1_TRAINING_E_WRPTR, EMC_PMACRO_TRAINING_CTRL_1); emc_writel(emc, 0, EMC_PMACRO_CFG_PM_GLOBAL_0); /* * Step 30: * Re-enable autocal. */ emc_dbg(emc, STEPS, "Step 30: Re-enable DLL and AUTOCAL\n"); if (next->burst_regs[EMC_CFG_DIG_DLL_INDEX] & EMC_CFG_DIG_DLL_CFG_DLL_EN) { value = emc_readl(emc, EMC_CFG_DIG_DLL); value |= EMC_CFG_DIG_DLL_CFG_DLL_STALL_ALL_TRAFFIC; value |= EMC_CFG_DIG_DLL_CFG_DLL_EN; value &= ~EMC_CFG_DIG_DLL_CFG_DLL_STALL_RW_UNTIL_LOCK; value &= ~EMC_CFG_DIG_DLL_CFG_DLL_STALL_ALL_UNTIL_LOCK; value = (value & ~EMC_CFG_DIG_DLL_CFG_DLL_MODE_MASK) | (2 << EMC_CFG_DIG_DLL_CFG_DLL_MODE_SHIFT); emc_writel(emc, value, EMC_CFG_DIG_DLL); tegra210_emc_timing_update(emc); } emc_writel(emc, next->emc_auto_cal_config, EMC_AUTO_CAL_CONFIG); /* Done! Yay. */ } const struct tegra210_emc_sequence tegra210_emc_r21021 = { .revision = 0x7, .set_clock = tegra210_emc_r21021_set_clock, .periodic_compensation = tegra210_emc_r21021_periodic_compensation, };