/* * serial_ir.c * * serial_ir - Device driver that records pulse- and pause-lengths * (space-lengths) between DDCD event on a serial port. * * Copyright (C) 1996,97 Ralph Metzler * Copyright (C) 1998 Trent Piepho * Copyright (C) 1998 Ben Pfaff * Copyright (C) 1999 Christoph Bartelmus * Copyright (C) 2007 Andrei Tanas (suspend/resume support) * Copyright (C) 2016 Sean Young (port to rc-core) * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #include #include #include #include struct serial_ir_hw { int signal_pin; int signal_pin_change; u8 on; u8 off; unsigned set_send_carrier:1; unsigned set_duty_cycle:1; void (*send_pulse)(unsigned int length, ktime_t edge); void (*send_space)(void); spinlock_t lock; }; #define IR_HOMEBREW 0 #define IR_IRDEO 1 #define IR_IRDEO_REMOTE 2 #define IR_ANIMAX 3 #define IR_IGOR 4 /* module parameters */ static int type; static int io; static int irq; static ulong iommap; static int ioshift; static bool softcarrier = true; static bool share_irq; static int sense = -1; /* -1 = auto, 0 = active high, 1 = active low */ static bool txsense; /* 0 = active high, 1 = active low */ /* forward declarations */ static void send_pulse_irdeo(unsigned int length, ktime_t edge); static void send_space_irdeo(void); #ifdef CONFIG_IR_SERIAL_TRANSMITTER static void send_pulse_homebrew(unsigned int length, ktime_t edge); static void send_space_homebrew(void); #endif static struct serial_ir_hw hardware[] = { [IR_HOMEBREW] = { .lock = __SPIN_LOCK_UNLOCKED(hardware[IR_HOMEBREW].lock), .signal_pin = UART_MSR_DCD, .signal_pin_change = UART_MSR_DDCD, .on = (UART_MCR_RTS | UART_MCR_OUT2 | UART_MCR_DTR), .off = (UART_MCR_RTS | UART_MCR_OUT2), #ifdef CONFIG_IR_SERIAL_TRANSMITTER .send_pulse = send_pulse_homebrew, .send_space = send_space_homebrew, .set_send_carrier = true, .set_duty_cycle = true, #endif }, [IR_IRDEO] = { .lock = __SPIN_LOCK_UNLOCKED(hardware[IR_IRDEO].lock), .signal_pin = UART_MSR_DSR, .signal_pin_change = UART_MSR_DDSR, .on = UART_MCR_OUT2, .off = (UART_MCR_RTS | UART_MCR_DTR | UART_MCR_OUT2), .send_pulse = send_pulse_irdeo, .send_space = send_space_irdeo, .set_duty_cycle = true, }, [IR_IRDEO_REMOTE] = { .lock = __SPIN_LOCK_UNLOCKED(hardware[IR_IRDEO_REMOTE].lock), .signal_pin = UART_MSR_DSR, .signal_pin_change = UART_MSR_DDSR, .on = (UART_MCR_RTS | UART_MCR_DTR | UART_MCR_OUT2), .off = (UART_MCR_RTS | UART_MCR_DTR | UART_MCR_OUT2), .send_pulse = send_pulse_irdeo, .send_space = send_space_irdeo, .set_duty_cycle = true, }, [IR_ANIMAX] = { .lock = __SPIN_LOCK_UNLOCKED(hardware[IR_ANIMAX].lock), .signal_pin = UART_MSR_DCD, .signal_pin_change = UART_MSR_DDCD, .on = 0, .off = (UART_MCR_RTS | UART_MCR_DTR | UART_MCR_OUT2), }, [IR_IGOR] = { .lock = __SPIN_LOCK_UNLOCKED(hardware[IR_IGOR].lock), .signal_pin = UART_MSR_DSR, .signal_pin_change = UART_MSR_DDSR, .on = (UART_MCR_RTS | UART_MCR_OUT2 | UART_MCR_DTR), .off = (UART_MCR_RTS | UART_MCR_OUT2), #ifdef CONFIG_IR_SERIAL_TRANSMITTER .send_pulse = send_pulse_homebrew, .send_space = send_space_homebrew, .set_send_carrier = true, .set_duty_cycle = true, #endif }, }; #define RS_ISR_PASS_LIMIT 256 struct serial_ir { ktime_t lastkt; struct rc_dev *rcdev; struct platform_device *pdev; struct timer_list timeout_timer; unsigned int freq; unsigned int duty_cycle; unsigned int pulse_width, space_width; }; static struct serial_ir serial_ir; /* fetch serial input packet (1 byte) from register offset */ static u8 sinp(int offset) { if (iommap) /* the register is memory-mapped */ offset <<= ioshift; return inb(io + offset); } /* write serial output packet (1 byte) of value to register offset */ static void soutp(int offset, u8 value) { if (iommap) /* the register is memory-mapped */ offset <<= ioshift; outb(value, io + offset); } static void on(void) { if (txsense) soutp(UART_MCR, hardware[type].off); else soutp(UART_MCR, hardware[type].on); } static void off(void) { if (txsense) soutp(UART_MCR, hardware[type].on); else soutp(UART_MCR, hardware[type].off); } static void init_timing_params(unsigned int new_duty_cycle, unsigned int new_freq) { serial_ir.duty_cycle = new_duty_cycle; serial_ir.freq = new_freq; serial_ir.pulse_width = DIV_ROUND_CLOSEST( new_duty_cycle * NSEC_PER_SEC, new_freq * 100l); serial_ir.space_width = DIV_ROUND_CLOSEST( (100l - new_duty_cycle) * NSEC_PER_SEC, new_freq * 100l); } static void send_pulse_irdeo(unsigned int length, ktime_t target) { long rawbits; int i; unsigned char output; unsigned char chunk, shifted; /* how many bits have to be sent ? */ rawbits = length * 1152 / 10000; if (serial_ir.duty_cycle > 50) chunk = 3; else chunk = 1; for (i = 0, output = 0x7f; rawbits > 0; rawbits -= 3) { shifted = chunk << (i * 3); shifted >>= 1; output &= (~shifted); i++; if (i == 3) { soutp(UART_TX, output); while (!(sinp(UART_LSR) & UART_LSR_THRE)) ; output = 0x7f; i = 0; } } if (i != 0) { soutp(UART_TX, output); while (!(sinp(UART_LSR) & UART_LSR_TEMT)) ; } } static void send_space_irdeo(void) { } #ifdef CONFIG_IR_SERIAL_TRANSMITTER static void send_pulse_homebrew_softcarrier(unsigned int length, ktime_t edge) { ktime_t now, target = ktime_add_us(edge, length); /* * delta should never exceed 4 seconds and on m68k * ndelay(s64) does not compile; so use s32 rather than s64. */ s32 delta; for (;;) { now = ktime_get(); if (ktime_compare(now, target) >= 0) break; on(); edge = ktime_add_ns(edge, serial_ir.pulse_width); delta = ktime_to_ns(ktime_sub(edge, now)); if (delta > 0) ndelay(delta); now = ktime_get(); off(); if (ktime_compare(now, target) >= 0) break; edge = ktime_add_ns(edge, serial_ir.space_width); delta = ktime_to_ns(ktime_sub(edge, now)); if (delta > 0) ndelay(delta); } } static void send_pulse_homebrew(unsigned int length, ktime_t edge) { if (softcarrier) send_pulse_homebrew_softcarrier(length, edge); else on(); } static void send_space_homebrew(void) { off(); } #endif static void frbwrite(unsigned int l, bool is_pulse) { /* simple noise filter */ static unsigned int ptr, pulse, space; DEFINE_IR_RAW_EVENT(ev); if (ptr > 0 && is_pulse) { pulse += l; if (pulse > 250000) { ev.duration = space; ev.pulse = false; ir_raw_event_store_with_filter(serial_ir.rcdev, &ev); ev.duration = pulse; ev.pulse = true; ir_raw_event_store_with_filter(serial_ir.rcdev, &ev); ptr = 0; pulse = 0; } return; } if (!is_pulse) { if (ptr == 0) { if (l > 20000000) { space = l; ptr++; return; } } else { if (l > 20000000) { space += pulse; if (space > IR_MAX_DURATION) space = IR_MAX_DURATION; space += l; if (space > IR_MAX_DURATION) space = IR_MAX_DURATION; pulse = 0; return; } ev.duration = space; ev.pulse = false; ir_raw_event_store_with_filter(serial_ir.rcdev, &ev); ev.duration = pulse; ev.pulse = true; ir_raw_event_store_with_filter(serial_ir.rcdev, &ev); ptr = 0; pulse = 0; } } ev.duration = l; ev.pulse = is_pulse; ir_raw_event_store_with_filter(serial_ir.rcdev, &ev); } static irqreturn_t serial_ir_irq_handler(int i, void *blah) { ktime_t kt; int counter, dcd; u8 status; ktime_t delkt; unsigned int data; static int last_dcd = -1; if ((sinp(UART_IIR) & UART_IIR_NO_INT)) { /* not our interrupt */ return IRQ_NONE; } counter = 0; do { counter++; status = sinp(UART_MSR); if (counter > RS_ISR_PASS_LIMIT) { dev_err(&serial_ir.pdev->dev, "Trapped in interrupt"); break; } if ((status & hardware[type].signal_pin_change) && sense != -1) { /* get current time */ kt = ktime_get(); /* * The driver needs to know if your receiver is * active high or active low, or the space/pulse * sense could be inverted. */ /* calc time since last interrupt in nanoseconds */ dcd = (status & hardware[type].signal_pin) ? 1 : 0; if (dcd == last_dcd) { dev_err(&serial_ir.pdev->dev, "ignoring spike: %d %d %lldns %lldns\n", dcd, sense, ktime_to_ns(kt), ktime_to_ns(serial_ir.lastkt)); continue; } delkt = ktime_sub(kt, serial_ir.lastkt); if (ktime_compare(delkt, ktime_set(15, 0)) > 0) { data = IR_MAX_DURATION; /* really long time */ if (!(dcd ^ sense)) { /* sanity check */ dev_err(&serial_ir.pdev->dev, "dcd unexpected: %d %d %lldns %lldns\n", dcd, sense, ktime_to_ns(kt), ktime_to_ns(serial_ir.lastkt)); /* * detecting pulse while this * MUST be a space! */ sense = sense ? 0 : 1; } } else { data = ktime_to_ns(delkt); } frbwrite(data, !(dcd ^ sense)); serial_ir.lastkt = kt; last_dcd = dcd; } } while (!(sinp(UART_IIR) & UART_IIR_NO_INT)); /* still pending ? */ mod_timer(&serial_ir.timeout_timer, jiffies + nsecs_to_jiffies(serial_ir.rcdev->timeout)); ir_raw_event_handle(serial_ir.rcdev); return IRQ_HANDLED; } static int hardware_init_port(void) { u8 scratch, scratch2, scratch3; /* * This is a simple port existence test, borrowed from the autoconfig * function in drivers/tty/serial/8250/8250_port.c */ scratch = sinp(UART_IER); soutp(UART_IER, 0); #ifdef __i386__ outb(0xff, 0x080); #endif scratch2 = sinp(UART_IER) & 0x0f; soutp(UART_IER, 0x0f); #ifdef __i386__ outb(0x00, 0x080); #endif scratch3 = sinp(UART_IER) & 0x0f; soutp(UART_IER, scratch); if (scratch2 != 0 || scratch3 != 0x0f) { /* we fail, there's nothing here */ pr_err("port existence test failed, cannot continue\n"); return -ENODEV; } /* Set DLAB 0. */ soutp(UART_LCR, sinp(UART_LCR) & (~UART_LCR_DLAB)); /* First of all, disable all interrupts */ soutp(UART_IER, sinp(UART_IER) & (~(UART_IER_MSI | UART_IER_RLSI | UART_IER_THRI | UART_IER_RDI))); /* Clear registers. */ sinp(UART_LSR); sinp(UART_RX); sinp(UART_IIR); sinp(UART_MSR); /* Set line for power source */ off(); /* Clear registers again to be sure. */ sinp(UART_LSR); sinp(UART_RX); sinp(UART_IIR); sinp(UART_MSR); switch (type) { case IR_IRDEO: case IR_IRDEO_REMOTE: /* setup port to 7N1 @ 115200 Baud */ /* 7N1+start = 9 bits at 115200 ~ 3 bits at 38kHz */ /* Set DLAB 1. */ soutp(UART_LCR, sinp(UART_LCR) | UART_LCR_DLAB); /* Set divisor to 1 => 115200 Baud */ soutp(UART_DLM, 0); soutp(UART_DLL, 1); /* Set DLAB 0 + 7N1 */ soutp(UART_LCR, UART_LCR_WLEN7); /* THR interrupt already disabled at this point */ break; default: break; } return 0; } static void serial_ir_timeout(unsigned long arg) { DEFINE_IR_RAW_EVENT(ev); ev.timeout = true; ev.duration = serial_ir.rcdev->timeout; ir_raw_event_store_with_filter(serial_ir.rcdev, &ev); ir_raw_event_handle(serial_ir.rcdev); } /* Needed by serial_ir_probe() */ static int serial_ir_tx(struct rc_dev *dev, unsigned int *txbuf, unsigned int count); static int serial_ir_tx_duty_cycle(struct rc_dev *dev, u32 cycle); static int serial_ir_tx_carrier(struct rc_dev *dev, u32 carrier); static int serial_ir_open(struct rc_dev *rcdev); static void serial_ir_close(struct rc_dev *rcdev); static int serial_ir_probe(struct platform_device *dev) { struct rc_dev *rcdev; int i, nlow, nhigh, result; rcdev = devm_rc_allocate_device(&dev->dev, RC_DRIVER_IR_RAW); if (!rcdev) return -ENOMEM; if (hardware[type].send_pulse && hardware[type].send_space) rcdev->tx_ir = serial_ir_tx; if (hardware[type].set_send_carrier) rcdev->s_tx_carrier = serial_ir_tx_carrier; if (hardware[type].set_duty_cycle) rcdev->s_tx_duty_cycle = serial_ir_tx_duty_cycle; switch (type) { case IR_HOMEBREW: rcdev->device_name = "Serial IR type home-brew"; break; case IR_IRDEO: rcdev->device_name = "Serial IR type IRdeo"; break; case IR_IRDEO_REMOTE: rcdev->device_name = "Serial IR type IRdeo remote"; break; case IR_ANIMAX: rcdev->device_name = "Serial IR type AnimaX"; break; case IR_IGOR: rcdev->device_name = "Serial IR type IgorPlug"; break; } rcdev->input_phys = KBUILD_MODNAME "/input0"; rcdev->input_id.bustype = BUS_HOST; rcdev->input_id.vendor = 0x0001; rcdev->input_id.product = 0x0001; rcdev->input_id.version = 0x0100; rcdev->open = serial_ir_open; rcdev->close = serial_ir_close; rcdev->dev.parent = &serial_ir.pdev->dev; rcdev->allowed_protocols = RC_BIT_ALL_IR_DECODER; rcdev->driver_name = KBUILD_MODNAME; rcdev->map_name = RC_MAP_RC6_MCE; rcdev->min_timeout = 1; rcdev->timeout = IR_DEFAULT_TIMEOUT; rcdev->max_timeout = 10 * IR_DEFAULT_TIMEOUT; rcdev->rx_resolution = 250000; serial_ir.rcdev = rcdev; setup_timer(&serial_ir.timeout_timer, serial_ir_timeout, (unsigned long)&serial_ir); result = devm_request_irq(&dev->dev, irq, serial_ir_irq_handler, share_irq ? IRQF_SHARED : 0, KBUILD_MODNAME, &hardware); if (result < 0) { if (result == -EBUSY) dev_err(&dev->dev, "IRQ %d busy\n", irq); else if (result == -EINVAL) dev_err(&dev->dev, "Bad irq number or handler\n"); return result; } /* Reserve io region. */ if ((iommap && (devm_request_mem_region(&dev->dev, iommap, 8 << ioshift, KBUILD_MODNAME) == NULL)) || (!iommap && (devm_request_region(&dev->dev, io, 8, KBUILD_MODNAME) == NULL))) { dev_err(&dev->dev, "port %04x already in use\n", io); dev_warn(&dev->dev, "use 'setserial /dev/ttySX uart none'\n"); dev_warn(&dev->dev, "or compile the serial port driver as module and\n"); dev_warn(&dev->dev, "make sure this module is loaded first\n"); return -EBUSY; } result = hardware_init_port(); if (result < 0) return result; /* Initialize pulse/space widths */ init_timing_params(50, 38000); /* If pin is high, then this must be an active low receiver. */ if (sense == -1) { /* wait 1/2 sec for the power supply */ msleep(500); /* * probe 9 times every 0.04s, collect "votes" for * active high/low */ nlow = 0; nhigh = 0; for (i = 0; i < 9; i++) { if (sinp(UART_MSR) & hardware[type].signal_pin) nlow++; else nhigh++; msleep(40); } sense = nlow >= nhigh ? 1 : 0; dev_info(&dev->dev, "auto-detected active %s receiver\n", sense ? "low" : "high"); } else dev_info(&dev->dev, "Manually using active %s receiver\n", sense ? "low" : "high"); dev_dbg(&dev->dev, "Interrupt %d, port %04x obtained\n", irq, io); return devm_rc_register_device(&dev->dev, rcdev); } static int serial_ir_open(struct rc_dev *rcdev) { unsigned long flags; /* initialize timestamp */ serial_ir.lastkt = ktime_get(); spin_lock_irqsave(&hardware[type].lock, flags); /* Set DLAB 0. */ soutp(UART_LCR, sinp(UART_LCR) & (~UART_LCR_DLAB)); soutp(UART_IER, sinp(UART_IER) | UART_IER_MSI); spin_unlock_irqrestore(&hardware[type].lock, flags); return 0; } static void serial_ir_close(struct rc_dev *rcdev) { unsigned long flags; spin_lock_irqsave(&hardware[type].lock, flags); /* Set DLAB 0. */ soutp(UART_LCR, sinp(UART_LCR) & (~UART_LCR_DLAB)); /* First of all, disable all interrupts */ soutp(UART_IER, sinp(UART_IER) & (~(UART_IER_MSI | UART_IER_RLSI | UART_IER_THRI | UART_IER_RDI))); spin_unlock_irqrestore(&hardware[type].lock, flags); } static int serial_ir_tx(struct rc_dev *dev, unsigned int *txbuf, unsigned int count) { unsigned long flags; ktime_t edge; s64 delta; int i; spin_lock_irqsave(&hardware[type].lock, flags); if (type == IR_IRDEO) { /* DTR, RTS down */ on(); } edge = ktime_get(); for (i = 0; i < count; i++) { if (i % 2) hardware[type].send_space(); else hardware[type].send_pulse(txbuf[i], edge); edge = ktime_add_us(edge, txbuf[i]); delta = ktime_us_delta(edge, ktime_get()); if (delta > 25) { spin_unlock_irqrestore(&hardware[type].lock, flags); usleep_range(delta - 25, delta + 25); spin_lock_irqsave(&hardware[type].lock, flags); } else if (delta > 0) { udelay(delta); } } off(); spin_unlock_irqrestore(&hardware[type].lock, flags); return count; } static int serial_ir_tx_duty_cycle(struct rc_dev *dev, u32 cycle) { init_timing_params(cycle, serial_ir.freq); return 0; } static int serial_ir_tx_carrier(struct rc_dev *dev, u32 carrier) { if (carrier > 500000 || carrier < 20000) return -EINVAL; init_timing_params(serial_ir.duty_cycle, carrier); return 0; } static int serial_ir_suspend(struct platform_device *dev, pm_message_t state) { /* Set DLAB 0. */ soutp(UART_LCR, sinp(UART_LCR) & (~UART_LCR_DLAB)); /* Disable all interrupts */ soutp(UART_IER, sinp(UART_IER) & (~(UART_IER_MSI | UART_IER_RLSI | UART_IER_THRI | UART_IER_RDI))); /* Clear registers. */ sinp(UART_LSR); sinp(UART_RX); sinp(UART_IIR); sinp(UART_MSR); return 0; } static int serial_ir_resume(struct platform_device *dev) { unsigned long flags; int result; result = hardware_init_port(); if (result < 0) return result; spin_lock_irqsave(&hardware[type].lock, flags); /* Enable Interrupt */ serial_ir.lastkt = ktime_get(); soutp(UART_IER, sinp(UART_IER) | UART_IER_MSI); off(); spin_unlock_irqrestore(&hardware[type].lock, flags); return 0; } static struct platform_driver serial_ir_driver = { .probe = serial_ir_probe, .suspend = serial_ir_suspend, .resume = serial_ir_resume, .driver = { .name = "serial_ir", }, }; static int __init serial_ir_init(void) { int result; result = platform_driver_register(&serial_ir_driver); if (result) return result; serial_ir.pdev = platform_device_alloc("serial_ir", 0); if (!serial_ir.pdev) { result = -ENOMEM; goto exit_driver_unregister; } result = platform_device_add(serial_ir.pdev); if (result) goto exit_device_put; return 0; exit_device_put: platform_device_put(serial_ir.pdev); exit_driver_unregister: platform_driver_unregister(&serial_ir_driver); return result; } static void serial_ir_exit(void) { platform_device_unregister(serial_ir.pdev); platform_driver_unregister(&serial_ir_driver); } static int __init serial_ir_init_module(void) { int result; switch (type) { case IR_HOMEBREW: case IR_IRDEO: case IR_IRDEO_REMOTE: case IR_ANIMAX: case IR_IGOR: /* if nothing specified, use ttyS0/com1 and irq 4 */ io = io ? io : 0x3f8; irq = irq ? irq : 4; break; default: return -EINVAL; } if (!softcarrier) { switch (type) { case IR_HOMEBREW: case IR_IGOR: hardware[type].set_send_carrier = false; hardware[type].set_duty_cycle = false; break; } } /* make sure sense is either -1, 0, or 1 */ if (sense != -1) sense = !!sense; result = serial_ir_init(); if (!result) return 0; serial_ir_exit(); return result; } static void __exit serial_ir_exit_module(void) { del_timer_sync(&serial_ir.timeout_timer); serial_ir_exit(); } module_init(serial_ir_init_module); module_exit(serial_ir_exit_module); MODULE_DESCRIPTION("Infra-red receiver driver for serial ports."); MODULE_AUTHOR("Ralph Metzler, Trent Piepho, Ben Pfaff, Christoph Bartelmus, Andrei Tanas"); MODULE_LICENSE("GPL"); module_param(type, int, 0444); MODULE_PARM_DESC(type, "Hardware type (0 = home-brew, 1 = IRdeo, 2 = IRdeo Remote, 3 = AnimaX, 4 = IgorPlug"); module_param_hw(io, int, ioport, 0444); MODULE_PARM_DESC(io, "I/O address base (0x3f8 or 0x2f8)"); /* some architectures (e.g. intel xscale) have memory mapped registers */ module_param_hw(iommap, ulong, other, 0444); MODULE_PARM_DESC(iommap, "physical base for memory mapped I/O (0 = no memory mapped io)"); /* * some architectures (e.g. intel xscale) align the 8bit serial registers * on 32bit word boundaries. * See linux-kernel/drivers/tty/serial/8250/8250.c serial_in()/out() */ module_param_hw(ioshift, int, other, 0444); MODULE_PARM_DESC(ioshift, "shift I/O register offset (0 = no shift)"); module_param_hw(irq, int, irq, 0444); MODULE_PARM_DESC(irq, "Interrupt (4 or 3)"); module_param_hw(share_irq, bool, other, 0444); MODULE_PARM_DESC(share_irq, "Share interrupts (0 = off, 1 = on)"); module_param(sense, int, 0444); MODULE_PARM_DESC(sense, "Override autodetection of IR receiver circuit (0 = active high, 1 = active low )"); #ifdef CONFIG_IR_SERIAL_TRANSMITTER module_param(txsense, bool, 0444); MODULE_PARM_DESC(txsense, "Sense of transmitter circuit (0 = active high, 1 = active low )"); #endif module_param(softcarrier, bool, 0444); MODULE_PARM_DESC(softcarrier, "Software carrier (0 = off, 1 = on, default on)");