/* * Copyright © 2016 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * */ #include #include "i915_drv.h" #include "i915_vgpu.h" #include "intel_ringbuffer.h" #include "intel_lrc.h" /* Haswell does have the CXT_SIZE register however it does not appear to be * valid. Now, docs explain in dwords what is in the context object. The full * size is 70720 bytes, however, the power context and execlist context will * never be saved (power context is stored elsewhere, and execlists don't work * on HSW) - so the final size, including the extra state required for the * Resource Streamer, is 66944 bytes, which rounds to 17 pages. */ #define HSW_CXT_TOTAL_SIZE (17 * PAGE_SIZE) #define DEFAULT_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE) #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE) #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE) #define GEN10_LR_CONTEXT_RENDER_SIZE (18 * PAGE_SIZE) #define GEN11_LR_CONTEXT_RENDER_SIZE (14 * PAGE_SIZE) #define GEN8_LR_CONTEXT_OTHER_SIZE ( 2 * PAGE_SIZE) struct engine_class_info { const char *name; int (*init_legacy)(struct intel_engine_cs *engine); int (*init_execlists)(struct intel_engine_cs *engine); u8 uabi_class; }; static const struct engine_class_info intel_engine_classes[] = { [RENDER_CLASS] = { .name = "rcs", .init_execlists = logical_render_ring_init, .init_legacy = intel_init_render_ring_buffer, .uabi_class = I915_ENGINE_CLASS_RENDER, }, [COPY_ENGINE_CLASS] = { .name = "bcs", .init_execlists = logical_xcs_ring_init, .init_legacy = intel_init_blt_ring_buffer, .uabi_class = I915_ENGINE_CLASS_COPY, }, [VIDEO_DECODE_CLASS] = { .name = "vcs", .init_execlists = logical_xcs_ring_init, .init_legacy = intel_init_bsd_ring_buffer, .uabi_class = I915_ENGINE_CLASS_VIDEO, }, [VIDEO_ENHANCEMENT_CLASS] = { .name = "vecs", .init_execlists = logical_xcs_ring_init, .init_legacy = intel_init_vebox_ring_buffer, .uabi_class = I915_ENGINE_CLASS_VIDEO_ENHANCE, }, }; #define MAX_MMIO_BASES 3 struct engine_info { unsigned int hw_id; unsigned int uabi_id; u8 class; u8 instance; /* mmio bases table *must* be sorted in reverse gen order */ struct engine_mmio_base { u32 gen : 8; u32 base : 24; } mmio_bases[MAX_MMIO_BASES]; }; static const struct engine_info intel_engines[] = { [RCS] = { .hw_id = RCS_HW, .uabi_id = I915_EXEC_RENDER, .class = RENDER_CLASS, .instance = 0, .mmio_bases = { { .gen = 1, .base = RENDER_RING_BASE } }, }, [BCS] = { .hw_id = BCS_HW, .uabi_id = I915_EXEC_BLT, .class = COPY_ENGINE_CLASS, .instance = 0, .mmio_bases = { { .gen = 6, .base = BLT_RING_BASE } }, }, [VCS] = { .hw_id = VCS_HW, .uabi_id = I915_EXEC_BSD, .class = VIDEO_DECODE_CLASS, .instance = 0, .mmio_bases = { { .gen = 11, .base = GEN11_BSD_RING_BASE }, { .gen = 6, .base = GEN6_BSD_RING_BASE }, { .gen = 4, .base = BSD_RING_BASE } }, }, [VCS2] = { .hw_id = VCS2_HW, .uabi_id = I915_EXEC_BSD, .class = VIDEO_DECODE_CLASS, .instance = 1, .mmio_bases = { { .gen = 11, .base = GEN11_BSD2_RING_BASE }, { .gen = 8, .base = GEN8_BSD2_RING_BASE } }, }, [VCS3] = { .hw_id = VCS3_HW, .uabi_id = I915_EXEC_BSD, .class = VIDEO_DECODE_CLASS, .instance = 2, .mmio_bases = { { .gen = 11, .base = GEN11_BSD3_RING_BASE } }, }, [VCS4] = { .hw_id = VCS4_HW, .uabi_id = I915_EXEC_BSD, .class = VIDEO_DECODE_CLASS, .instance = 3, .mmio_bases = { { .gen = 11, .base = GEN11_BSD4_RING_BASE } }, }, [VECS] = { .hw_id = VECS_HW, .uabi_id = I915_EXEC_VEBOX, .class = VIDEO_ENHANCEMENT_CLASS, .instance = 0, .mmio_bases = { { .gen = 11, .base = GEN11_VEBOX_RING_BASE }, { .gen = 7, .base = VEBOX_RING_BASE } }, }, [VECS2] = { .hw_id = VECS2_HW, .uabi_id = I915_EXEC_VEBOX, .class = VIDEO_ENHANCEMENT_CLASS, .instance = 1, .mmio_bases = { { .gen = 11, .base = GEN11_VEBOX2_RING_BASE } }, }, }; /** * ___intel_engine_context_size() - return the size of the context for an engine * @dev_priv: i915 device private * @class: engine class * * Each engine class may require a different amount of space for a context * image. * * Return: size (in bytes) of an engine class specific context image * * Note: this size includes the HWSP, which is part of the context image * in LRC mode, but does not include the "shared data page" used with * GuC submission. The caller should account for this if using the GuC. */ static u32 __intel_engine_context_size(struct drm_i915_private *dev_priv, u8 class) { u32 cxt_size; BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE); switch (class) { case RENDER_CLASS: switch (INTEL_GEN(dev_priv)) { default: MISSING_CASE(INTEL_GEN(dev_priv)); return DEFAULT_LR_CONTEXT_RENDER_SIZE; case 11: return GEN11_LR_CONTEXT_RENDER_SIZE; case 10: return GEN10_LR_CONTEXT_RENDER_SIZE; case 9: return GEN9_LR_CONTEXT_RENDER_SIZE; case 8: return GEN8_LR_CONTEXT_RENDER_SIZE; case 7: if (IS_HASWELL(dev_priv)) return HSW_CXT_TOTAL_SIZE; cxt_size = I915_READ(GEN7_CXT_SIZE); return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64, PAGE_SIZE); case 6: cxt_size = I915_READ(CXT_SIZE); return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64, PAGE_SIZE); case 5: case 4: case 3: case 2: /* For the special day when i810 gets merged. */ case 1: return 0; } break; default: MISSING_CASE(class); case VIDEO_DECODE_CLASS: case VIDEO_ENHANCEMENT_CLASS: case COPY_ENGINE_CLASS: if (INTEL_GEN(dev_priv) < 8) return 0; return GEN8_LR_CONTEXT_OTHER_SIZE; } } static u32 __engine_mmio_base(struct drm_i915_private *i915, const struct engine_mmio_base *bases) { int i; for (i = 0; i < MAX_MMIO_BASES; i++) if (INTEL_GEN(i915) >= bases[i].gen) break; GEM_BUG_ON(i == MAX_MMIO_BASES); GEM_BUG_ON(!bases[i].base); return bases[i].base; } static void __sprint_engine_name(char *name, const struct engine_info *info) { WARN_ON(snprintf(name, INTEL_ENGINE_CS_MAX_NAME, "%s%u", intel_engine_classes[info->class].name, info->instance) >= INTEL_ENGINE_CS_MAX_NAME); } static int intel_engine_setup(struct drm_i915_private *dev_priv, enum intel_engine_id id) { const struct engine_info *info = &intel_engines[id]; struct intel_engine_cs *engine; GEM_BUG_ON(info->class >= ARRAY_SIZE(intel_engine_classes)); BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH)); BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH)); if (GEM_WARN_ON(info->class > MAX_ENGINE_CLASS)) return -EINVAL; if (GEM_WARN_ON(info->instance > MAX_ENGINE_INSTANCE)) return -EINVAL; if (GEM_WARN_ON(dev_priv->engine_class[info->class][info->instance])) return -EINVAL; GEM_BUG_ON(dev_priv->engine[id]); engine = kzalloc(sizeof(*engine), GFP_KERNEL); if (!engine) return -ENOMEM; engine->id = id; engine->i915 = dev_priv; __sprint_engine_name(engine->name, info); engine->hw_id = engine->guc_id = info->hw_id; engine->mmio_base = __engine_mmio_base(dev_priv, info->mmio_bases); engine->class = info->class; engine->instance = info->instance; engine->uabi_id = info->uabi_id; engine->uabi_class = intel_engine_classes[info->class].uabi_class; engine->context_size = __intel_engine_context_size(dev_priv, engine->class); if (WARN_ON(engine->context_size > BIT(20))) engine->context_size = 0; /* Nothing to do here, execute in order of dependencies */ engine->schedule = NULL; seqlock_init(&engine->stats.lock); ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier); dev_priv->engine_class[info->class][info->instance] = engine; dev_priv->engine[id] = engine; return 0; } /** * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers * @dev_priv: i915 device private * * Return: non-zero if the initialization failed. */ int intel_engines_init_mmio(struct drm_i915_private *dev_priv) { struct intel_device_info *device_info = mkwrite_device_info(dev_priv); const unsigned int ring_mask = INTEL_INFO(dev_priv)->ring_mask; struct intel_engine_cs *engine; enum intel_engine_id id; unsigned int mask = 0; unsigned int i; int err; WARN_ON(ring_mask == 0); WARN_ON(ring_mask & GENMASK(sizeof(mask) * BITS_PER_BYTE - 1, I915_NUM_ENGINES)); for (i = 0; i < ARRAY_SIZE(intel_engines); i++) { if (!HAS_ENGINE(dev_priv, i)) continue; err = intel_engine_setup(dev_priv, i); if (err) goto cleanup; mask |= ENGINE_MASK(i); } /* * Catch failures to update intel_engines table when the new engines * are added to the driver by a warning and disabling the forgotten * engines. */ if (WARN_ON(mask != ring_mask)) device_info->ring_mask = mask; /* We always presume we have at least RCS available for later probing */ if (WARN_ON(!HAS_ENGINE(dev_priv, RCS))) { err = -ENODEV; goto cleanup; } device_info->num_rings = hweight32(mask); i915_check_and_clear_faults(dev_priv); return 0; cleanup: for_each_engine(engine, dev_priv, id) kfree(engine); return err; } /** * intel_engines_init() - init the Engine Command Streamers * @dev_priv: i915 device private * * Return: non-zero if the initialization failed. */ int intel_engines_init(struct drm_i915_private *dev_priv) { struct intel_engine_cs *engine; enum intel_engine_id id, err_id; int err; for_each_engine(engine, dev_priv, id) { const struct engine_class_info *class_info = &intel_engine_classes[engine->class]; int (*init)(struct intel_engine_cs *engine); if (HAS_EXECLISTS(dev_priv)) init = class_info->init_execlists; else init = class_info->init_legacy; err = -EINVAL; err_id = id; if (GEM_WARN_ON(!init)) goto cleanup; err = init(engine); if (err) goto cleanup; GEM_BUG_ON(!engine->submit_request); } return 0; cleanup: for_each_engine(engine, dev_priv, id) { if (id >= err_id) { kfree(engine); dev_priv->engine[id] = NULL; } else { dev_priv->gt.cleanup_engine(engine); } } return err; } void intel_engine_init_global_seqno(struct intel_engine_cs *engine, u32 seqno) { struct drm_i915_private *dev_priv = engine->i915; /* Our semaphore implementation is strictly monotonic (i.e. we proceed * so long as the semaphore value in the register/page is greater * than the sync value), so whenever we reset the seqno, * so long as we reset the tracking semaphore value to 0, it will * always be before the next request's seqno. If we don't reset * the semaphore value, then when the seqno moves backwards all * future waits will complete instantly (causing rendering corruption). */ if (IS_GEN6(dev_priv) || IS_GEN7(dev_priv)) { I915_WRITE(RING_SYNC_0(engine->mmio_base), 0); I915_WRITE(RING_SYNC_1(engine->mmio_base), 0); if (HAS_VEBOX(dev_priv)) I915_WRITE(RING_SYNC_2(engine->mmio_base), 0); } intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno); clear_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted); /* After manually advancing the seqno, fake the interrupt in case * there are any waiters for that seqno. */ intel_engine_wakeup(engine); GEM_BUG_ON(intel_engine_get_seqno(engine) != seqno); } static void intel_engine_init_batch_pool(struct intel_engine_cs *engine) { i915_gem_batch_pool_init(&engine->batch_pool, engine); } static bool csb_force_mmio(struct drm_i915_private *i915) { /* Older GVT emulation depends upon intercepting CSB mmio */ if (intel_vgpu_active(i915) && !intel_vgpu_has_hwsp_emulation(i915)) return true; return false; } static void intel_engine_init_execlist(struct intel_engine_cs *engine) { struct intel_engine_execlists * const execlists = &engine->execlists; execlists->csb_use_mmio = csb_force_mmio(engine->i915); execlists->port_mask = 1; BUILD_BUG_ON_NOT_POWER_OF_2(execlists_num_ports(execlists)); GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS); execlists->queue_priority = INT_MIN; execlists->queue = RB_ROOT; execlists->first = NULL; } /** * intel_engines_setup_common - setup engine state not requiring hw access * @engine: Engine to setup. * * Initializes @engine@ structure members shared between legacy and execlists * submission modes which do not require hardware access. * * Typically done early in the submission mode specific engine setup stage. */ void intel_engine_setup_common(struct intel_engine_cs *engine) { i915_timeline_init(engine->i915, &engine->timeline, engine->name); intel_engine_init_execlist(engine); intel_engine_init_hangcheck(engine); intel_engine_init_batch_pool(engine); intel_engine_init_cmd_parser(engine); } int intel_engine_create_scratch(struct intel_engine_cs *engine, int size) { struct drm_i915_gem_object *obj; struct i915_vma *vma; int ret; WARN_ON(engine->scratch); obj = i915_gem_object_create_stolen(engine->i915, size); if (!obj) obj = i915_gem_object_create_internal(engine->i915, size); if (IS_ERR(obj)) { DRM_ERROR("Failed to allocate scratch page\n"); return PTR_ERR(obj); } vma = i915_vma_instance(obj, &engine->i915->ggtt.base, NULL); if (IS_ERR(vma)) { ret = PTR_ERR(vma); goto err_unref; } ret = i915_vma_pin(vma, 0, 4096, PIN_GLOBAL | PIN_HIGH); if (ret) goto err_unref; engine->scratch = vma; return 0; err_unref: i915_gem_object_put(obj); return ret; } static void intel_engine_cleanup_scratch(struct intel_engine_cs *engine) { i915_vma_unpin_and_release(&engine->scratch); } static void cleanup_phys_status_page(struct intel_engine_cs *engine) { struct drm_i915_private *dev_priv = engine->i915; if (!dev_priv->status_page_dmah) return; drm_pci_free(&dev_priv->drm, dev_priv->status_page_dmah); engine->status_page.page_addr = NULL; } static void cleanup_status_page(struct intel_engine_cs *engine) { struct i915_vma *vma; struct drm_i915_gem_object *obj; vma = fetch_and_zero(&engine->status_page.vma); if (!vma) return; obj = vma->obj; i915_vma_unpin(vma); i915_vma_close(vma); i915_gem_object_unpin_map(obj); __i915_gem_object_release_unless_active(obj); } static int init_status_page(struct intel_engine_cs *engine) { struct drm_i915_gem_object *obj; struct i915_vma *vma; unsigned int flags; void *vaddr; int ret; obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE); if (IS_ERR(obj)) { DRM_ERROR("Failed to allocate status page\n"); return PTR_ERR(obj); } ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC); if (ret) goto err; vma = i915_vma_instance(obj, &engine->i915->ggtt.base, NULL); if (IS_ERR(vma)) { ret = PTR_ERR(vma); goto err; } flags = PIN_GLOBAL; if (!HAS_LLC(engine->i915)) /* On g33, we cannot place HWS above 256MiB, so * restrict its pinning to the low mappable arena. * Though this restriction is not documented for * gen4, gen5, or byt, they also behave similarly * and hang if the HWS is placed at the top of the * GTT. To generalise, it appears that all !llc * platforms have issues with us placing the HWS * above the mappable region (even though we never * actually map it). */ flags |= PIN_MAPPABLE; else flags |= PIN_HIGH; ret = i915_vma_pin(vma, 0, 4096, flags); if (ret) goto err; vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB); if (IS_ERR(vaddr)) { ret = PTR_ERR(vaddr); goto err_unpin; } engine->status_page.vma = vma; engine->status_page.ggtt_offset = i915_ggtt_offset(vma); engine->status_page.page_addr = memset(vaddr, 0, PAGE_SIZE); return 0; err_unpin: i915_vma_unpin(vma); err: i915_gem_object_put(obj); return ret; } static int init_phys_status_page(struct intel_engine_cs *engine) { struct drm_i915_private *dev_priv = engine->i915; GEM_BUG_ON(engine->id != RCS); dev_priv->status_page_dmah = drm_pci_alloc(&dev_priv->drm, PAGE_SIZE, PAGE_SIZE); if (!dev_priv->status_page_dmah) return -ENOMEM; engine->status_page.page_addr = dev_priv->status_page_dmah->vaddr; memset(engine->status_page.page_addr, 0, PAGE_SIZE); return 0; } static void __intel_context_unpin(struct i915_gem_context *ctx, struct intel_engine_cs *engine) { intel_context_unpin(to_intel_context(ctx, engine)); } /** * intel_engines_init_common - initialize cengine state which might require hw access * @engine: Engine to initialize. * * Initializes @engine@ structure members shared between legacy and execlists * submission modes which do require hardware access. * * Typcally done at later stages of submission mode specific engine setup. * * Returns zero on success or an error code on failure. */ int intel_engine_init_common(struct intel_engine_cs *engine) { struct drm_i915_private *i915 = engine->i915; struct intel_context *ce; int ret; engine->set_default_submission(engine); /* We may need to do things with the shrinker which * require us to immediately switch back to the default * context. This can cause a problem as pinning the * default context also requires GTT space which may not * be available. To avoid this we always pin the default * context. */ ce = intel_context_pin(i915->kernel_context, engine); if (IS_ERR(ce)) return PTR_ERR(ce); /* * Similarly the preempt context must always be available so that * we can interrupt the engine at any time. */ if (i915->preempt_context) { ce = intel_context_pin(i915->preempt_context, engine); if (IS_ERR(ce)) { ret = PTR_ERR(ce); goto err_unpin_kernel; } } ret = intel_engine_init_breadcrumbs(engine); if (ret) goto err_unpin_preempt; if (HWS_NEEDS_PHYSICAL(i915)) ret = init_phys_status_page(engine); else ret = init_status_page(engine); if (ret) goto err_breadcrumbs; return 0; err_breadcrumbs: intel_engine_fini_breadcrumbs(engine); err_unpin_preempt: if (i915->preempt_context) __intel_context_unpin(i915->preempt_context, engine); err_unpin_kernel: __intel_context_unpin(i915->kernel_context, engine); return ret; } /** * intel_engines_cleanup_common - cleans up the engine state created by * the common initiailizers. * @engine: Engine to cleanup. * * This cleans up everything created by the common helpers. */ void intel_engine_cleanup_common(struct intel_engine_cs *engine) { struct drm_i915_private *i915 = engine->i915; intel_engine_cleanup_scratch(engine); if (HWS_NEEDS_PHYSICAL(engine->i915)) cleanup_phys_status_page(engine); else cleanup_status_page(engine); intel_engine_fini_breadcrumbs(engine); intel_engine_cleanup_cmd_parser(engine); i915_gem_batch_pool_fini(&engine->batch_pool); if (engine->default_state) i915_gem_object_put(engine->default_state); if (i915->preempt_context) __intel_context_unpin(i915->preempt_context, engine); __intel_context_unpin(i915->kernel_context, engine); i915_timeline_fini(&engine->timeline); } u64 intel_engine_get_active_head(const struct intel_engine_cs *engine) { struct drm_i915_private *dev_priv = engine->i915; u64 acthd; if (INTEL_GEN(dev_priv) >= 8) acthd = I915_READ64_2x32(RING_ACTHD(engine->mmio_base), RING_ACTHD_UDW(engine->mmio_base)); else if (INTEL_GEN(dev_priv) >= 4) acthd = I915_READ(RING_ACTHD(engine->mmio_base)); else acthd = I915_READ(ACTHD); return acthd; } u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine) { struct drm_i915_private *dev_priv = engine->i915; u64 bbaddr; if (INTEL_GEN(dev_priv) >= 8) bbaddr = I915_READ64_2x32(RING_BBADDR(engine->mmio_base), RING_BBADDR_UDW(engine->mmio_base)); else bbaddr = I915_READ(RING_BBADDR(engine->mmio_base)); return bbaddr; } int intel_engine_stop_cs(struct intel_engine_cs *engine) { struct drm_i915_private *dev_priv = engine->i915; const u32 base = engine->mmio_base; const i915_reg_t mode = RING_MI_MODE(base); int err; if (INTEL_GEN(dev_priv) < 3) return -ENODEV; GEM_TRACE("%s\n", engine->name); I915_WRITE_FW(mode, _MASKED_BIT_ENABLE(STOP_RING)); err = 0; if (__intel_wait_for_register_fw(dev_priv, mode, MODE_IDLE, MODE_IDLE, 1000, 0, NULL)) { GEM_TRACE("%s: timed out on STOP_RING -> IDLE\n", engine->name); err = -ETIMEDOUT; } /* A final mmio read to let GPU writes be hopefully flushed to memory */ POSTING_READ_FW(mode); return err; } const char *i915_cache_level_str(struct drm_i915_private *i915, int type) { switch (type) { case I915_CACHE_NONE: return " uncached"; case I915_CACHE_LLC: return HAS_LLC(i915) ? " LLC" : " snooped"; case I915_CACHE_L3_LLC: return " L3+LLC"; case I915_CACHE_WT: return " WT"; default: return ""; } } static inline uint32_t read_subslice_reg(struct drm_i915_private *dev_priv, int slice, int subslice, i915_reg_t reg) { uint32_t mcr_slice_subslice_mask; uint32_t mcr_slice_subslice_select; uint32_t mcr; uint32_t ret; enum forcewake_domains fw_domains; if (INTEL_GEN(dev_priv) >= 11) { mcr_slice_subslice_mask = GEN11_MCR_SLICE_MASK | GEN11_MCR_SUBSLICE_MASK; mcr_slice_subslice_select = GEN11_MCR_SLICE(slice) | GEN11_MCR_SUBSLICE(subslice); } else { mcr_slice_subslice_mask = GEN8_MCR_SLICE_MASK | GEN8_MCR_SUBSLICE_MASK; mcr_slice_subslice_select = GEN8_MCR_SLICE(slice) | GEN8_MCR_SUBSLICE(subslice); } fw_domains = intel_uncore_forcewake_for_reg(dev_priv, reg, FW_REG_READ); fw_domains |= intel_uncore_forcewake_for_reg(dev_priv, GEN8_MCR_SELECTOR, FW_REG_READ | FW_REG_WRITE); spin_lock_irq(&dev_priv->uncore.lock); intel_uncore_forcewake_get__locked(dev_priv, fw_domains); mcr = I915_READ_FW(GEN8_MCR_SELECTOR); /* * The HW expects the slice and sublice selectors to be reset to 0 * after reading out the registers. */ WARN_ON_ONCE(mcr & mcr_slice_subslice_mask); mcr &= ~mcr_slice_subslice_mask; mcr |= mcr_slice_subslice_select; I915_WRITE_FW(GEN8_MCR_SELECTOR, mcr); ret = I915_READ_FW(reg); mcr &= ~mcr_slice_subslice_mask; I915_WRITE_FW(GEN8_MCR_SELECTOR, mcr); intel_uncore_forcewake_put__locked(dev_priv, fw_domains); spin_unlock_irq(&dev_priv->uncore.lock); return ret; } /* NB: please notice the memset */ void intel_engine_get_instdone(struct intel_engine_cs *engine, struct intel_instdone *instdone) { struct drm_i915_private *dev_priv = engine->i915; u32 mmio_base = engine->mmio_base; int slice; int subslice; memset(instdone, 0, sizeof(*instdone)); switch (INTEL_GEN(dev_priv)) { default: instdone->instdone = I915_READ(RING_INSTDONE(mmio_base)); if (engine->id != RCS) break; instdone->slice_common = I915_READ(GEN7_SC_INSTDONE); for_each_instdone_slice_subslice(dev_priv, slice, subslice) { instdone->sampler[slice][subslice] = read_subslice_reg(dev_priv, slice, subslice, GEN7_SAMPLER_INSTDONE); instdone->row[slice][subslice] = read_subslice_reg(dev_priv, slice, subslice, GEN7_ROW_INSTDONE); } break; case 7: instdone->instdone = I915_READ(RING_INSTDONE(mmio_base)); if (engine->id != RCS) break; instdone->slice_common = I915_READ(GEN7_SC_INSTDONE); instdone->sampler[0][0] = I915_READ(GEN7_SAMPLER_INSTDONE); instdone->row[0][0] = I915_READ(GEN7_ROW_INSTDONE); break; case 6: case 5: case 4: instdone->instdone = I915_READ(RING_INSTDONE(mmio_base)); if (engine->id == RCS) /* HACK: Using the wrong struct member */ instdone->slice_common = I915_READ(GEN4_INSTDONE1); break; case 3: case 2: instdone->instdone = I915_READ(GEN2_INSTDONE); break; } } static bool ring_is_idle(struct intel_engine_cs *engine) { struct drm_i915_private *dev_priv = engine->i915; bool idle = true; /* If the whole device is asleep, the engine must be idle */ if (!intel_runtime_pm_get_if_in_use(dev_priv)) return true; /* First check that no commands are left in the ring */ if ((I915_READ_HEAD(engine) & HEAD_ADDR) != (I915_READ_TAIL(engine) & TAIL_ADDR)) idle = false; /* No bit for gen2, so assume the CS parser is idle */ if (INTEL_GEN(dev_priv) > 2 && !(I915_READ_MODE(engine) & MODE_IDLE)) idle = false; intel_runtime_pm_put(dev_priv); return idle; } /** * intel_engine_is_idle() - Report if the engine has finished process all work * @engine: the intel_engine_cs * * Return true if there are no requests pending, nothing left to be submitted * to hardware, and that the engine is idle. */ bool intel_engine_is_idle(struct intel_engine_cs *engine) { struct drm_i915_private *dev_priv = engine->i915; /* More white lies, if wedged, hw state is inconsistent */ if (i915_terminally_wedged(&dev_priv->gpu_error)) return true; /* Any inflight/incomplete requests? */ if (!i915_seqno_passed(intel_engine_get_seqno(engine), intel_engine_last_submit(engine))) return false; if (I915_SELFTEST_ONLY(engine->breadcrumbs.mock)) return true; /* Waiting to drain ELSP? */ if (READ_ONCE(engine->execlists.active)) { struct intel_engine_execlists *execlists = &engine->execlists; if (tasklet_trylock(&execlists->tasklet)) { execlists->tasklet.func(execlists->tasklet.data); tasklet_unlock(&execlists->tasklet); } if (READ_ONCE(execlists->active)) return false; } /* ELSP is empty, but there are ready requests? E.g. after reset */ if (READ_ONCE(engine->execlists.first)) return false; /* Ring stopped? */ if (!ring_is_idle(engine)) return false; return true; } bool intel_engines_are_idle(struct drm_i915_private *dev_priv) { struct intel_engine_cs *engine; enum intel_engine_id id; /* * If the driver is wedged, HW state may be very inconsistent and * report that it is still busy, even though we have stopped using it. */ if (i915_terminally_wedged(&dev_priv->gpu_error)) return true; for_each_engine(engine, dev_priv, id) { if (!intel_engine_is_idle(engine)) return false; } return true; } /** * intel_engine_has_kernel_context: * @engine: the engine * * Returns true if the last context to be executed on this engine, or has been * executed if the engine is already idle, is the kernel context * (#i915.kernel_context). */ bool intel_engine_has_kernel_context(const struct intel_engine_cs *engine) { const struct intel_context *kernel_context = to_intel_context(engine->i915->kernel_context, engine); struct i915_request *rq; lockdep_assert_held(&engine->i915->drm.struct_mutex); /* * Check the last context seen by the engine. If active, it will be * the last request that remains in the timeline. When idle, it is * the last executed context as tracked by retirement. */ rq = __i915_gem_active_peek(&engine->timeline.last_request); if (rq) return rq->hw_context == kernel_context; else return engine->last_retired_context == kernel_context; } void intel_engines_reset_default_submission(struct drm_i915_private *i915) { struct intel_engine_cs *engine; enum intel_engine_id id; for_each_engine(engine, i915, id) engine->set_default_submission(engine); } /** * intel_engines_park: called when the GT is transitioning from busy->idle * @i915: the i915 device * * The GT is now idle and about to go to sleep (maybe never to wake again?). * Time for us to tidy and put away our toys (release resources back to the * system). */ void intel_engines_park(struct drm_i915_private *i915) { struct intel_engine_cs *engine; enum intel_engine_id id; for_each_engine(engine, i915, id) { /* Flush the residual irq tasklets first. */ intel_engine_disarm_breadcrumbs(engine); tasklet_kill(&engine->execlists.tasklet); /* * We are committed now to parking the engines, make sure there * will be no more interrupts arriving later and the engines * are truly idle. */ if (wait_for(intel_engine_is_idle(engine), 10)) { struct drm_printer p = drm_debug_printer(__func__); dev_err(i915->drm.dev, "%s is not idle before parking\n", engine->name); intel_engine_dump(engine, &p, NULL); } /* Must be reset upon idling, or we may miss the busy wakeup. */ GEM_BUG_ON(engine->execlists.queue_priority != INT_MIN); if (engine->park) engine->park(engine); if (engine->pinned_default_state) { i915_gem_object_unpin_map(engine->default_state); engine->pinned_default_state = NULL; } i915_gem_batch_pool_fini(&engine->batch_pool); engine->execlists.no_priolist = false; } } /** * intel_engines_unpark: called when the GT is transitioning from idle->busy * @i915: the i915 device * * The GT was idle and now about to fire up with some new user requests. */ void intel_engines_unpark(struct drm_i915_private *i915) { struct intel_engine_cs *engine; enum intel_engine_id id; for_each_engine(engine, i915, id) { void *map; /* Pin the default state for fast resets from atomic context. */ map = NULL; if (engine->default_state) map = i915_gem_object_pin_map(engine->default_state, I915_MAP_WB); if (!IS_ERR_OR_NULL(map)) engine->pinned_default_state = map; if (engine->unpark) engine->unpark(engine); intel_engine_init_hangcheck(engine); } } /** * intel_engine_lost_context: called when the GPU is reset into unknown state * @engine: the engine * * We have either reset the GPU or otherwise about to lose state tracking of * the current GPU logical state (e.g. suspend). On next use, it is therefore * imperative that we make no presumptions about the current state and load * from scratch. */ void intel_engine_lost_context(struct intel_engine_cs *engine) { struct intel_context *ce; lockdep_assert_held(&engine->i915->drm.struct_mutex); engine->legacy_active_context = NULL; engine->legacy_active_ppgtt = NULL; ce = fetch_and_zero(&engine->last_retired_context); if (ce) intel_context_unpin(ce); } bool intel_engine_can_store_dword(struct intel_engine_cs *engine) { switch (INTEL_GEN(engine->i915)) { case 2: return false; /* uses physical not virtual addresses */ case 3: /* maybe only uses physical not virtual addresses */ return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915)); case 6: return engine->class != VIDEO_DECODE_CLASS; /* b0rked */ default: return true; } } unsigned int intel_engines_has_context_isolation(struct drm_i915_private *i915) { struct intel_engine_cs *engine; enum intel_engine_id id; unsigned int which; which = 0; for_each_engine(engine, i915, id) if (engine->default_state) which |= BIT(engine->uabi_class); return which; } static int print_sched_attr(struct drm_i915_private *i915, const struct i915_sched_attr *attr, char *buf, int x, int len) { if (attr->priority == I915_PRIORITY_INVALID) return x; x += snprintf(buf + x, len - x, " prio=%d", attr->priority); return x; } static void print_request(struct drm_printer *m, struct i915_request *rq, const char *prefix) { const char *name = rq->fence.ops->get_timeline_name(&rq->fence); char buf[80] = ""; int x = 0; x = print_sched_attr(rq->i915, &rq->sched.attr, buf, x, sizeof(buf)); drm_printf(m, "%s%x%s [%llx:%x]%s @ %dms: %s\n", prefix, rq->global_seqno, i915_request_completed(rq) ? "!" : "", rq->fence.context, rq->fence.seqno, buf, jiffies_to_msecs(jiffies - rq->emitted_jiffies), name); } static void hexdump(struct drm_printer *m, const void *buf, size_t len) { const size_t rowsize = 8 * sizeof(u32); const void *prev = NULL; bool skip = false; size_t pos; for (pos = 0; pos < len; pos += rowsize) { char line[128]; if (prev && !memcmp(prev, buf + pos, rowsize)) { if (!skip) { drm_printf(m, "*\n"); skip = true; } continue; } WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos, rowsize, sizeof(u32), line, sizeof(line), false) >= sizeof(line)); drm_printf(m, "%08zx %s\n", pos, line); prev = buf + pos; skip = false; } } static void intel_engine_print_registers(const struct intel_engine_cs *engine, struct drm_printer *m) { struct drm_i915_private *dev_priv = engine->i915; const struct intel_engine_execlists * const execlists = &engine->execlists; u64 addr; drm_printf(m, "\tRING_START: 0x%08x\n", I915_READ(RING_START(engine->mmio_base))); drm_printf(m, "\tRING_HEAD: 0x%08x\n", I915_READ(RING_HEAD(engine->mmio_base)) & HEAD_ADDR); drm_printf(m, "\tRING_TAIL: 0x%08x\n", I915_READ(RING_TAIL(engine->mmio_base)) & TAIL_ADDR); drm_printf(m, "\tRING_CTL: 0x%08x%s\n", I915_READ(RING_CTL(engine->mmio_base)), I915_READ(RING_CTL(engine->mmio_base)) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : ""); if (INTEL_GEN(engine->i915) > 2) { drm_printf(m, "\tRING_MODE: 0x%08x%s\n", I915_READ(RING_MI_MODE(engine->mmio_base)), I915_READ(RING_MI_MODE(engine->mmio_base)) & (MODE_IDLE) ? " [idle]" : ""); } if (INTEL_GEN(dev_priv) >= 6) { drm_printf(m, "\tRING_IMR: %08x\n", I915_READ_IMR(engine)); } if (HAS_LEGACY_SEMAPHORES(dev_priv)) { drm_printf(m, "\tSYNC_0: 0x%08x\n", I915_READ(RING_SYNC_0(engine->mmio_base))); drm_printf(m, "\tSYNC_1: 0x%08x\n", I915_READ(RING_SYNC_1(engine->mmio_base))); if (HAS_VEBOX(dev_priv)) drm_printf(m, "\tSYNC_2: 0x%08x\n", I915_READ(RING_SYNC_2(engine->mmio_base))); } addr = intel_engine_get_active_head(engine); drm_printf(m, "\tACTHD: 0x%08x_%08x\n", upper_32_bits(addr), lower_32_bits(addr)); addr = intel_engine_get_last_batch_head(engine); drm_printf(m, "\tBBADDR: 0x%08x_%08x\n", upper_32_bits(addr), lower_32_bits(addr)); if (INTEL_GEN(dev_priv) >= 8) addr = I915_READ64_2x32(RING_DMA_FADD(engine->mmio_base), RING_DMA_FADD_UDW(engine->mmio_base)); else if (INTEL_GEN(dev_priv) >= 4) addr = I915_READ(RING_DMA_FADD(engine->mmio_base)); else addr = I915_READ(DMA_FADD_I8XX); drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n", upper_32_bits(addr), lower_32_bits(addr)); if (INTEL_GEN(dev_priv) >= 4) { drm_printf(m, "\tIPEIR: 0x%08x\n", I915_READ(RING_IPEIR(engine->mmio_base))); drm_printf(m, "\tIPEHR: 0x%08x\n", I915_READ(RING_IPEHR(engine->mmio_base))); } else { drm_printf(m, "\tIPEIR: 0x%08x\n", I915_READ(IPEIR)); drm_printf(m, "\tIPEHR: 0x%08x\n", I915_READ(IPEHR)); } if (HAS_EXECLISTS(dev_priv)) { const u32 *hws = &engine->status_page.page_addr[I915_HWS_CSB_BUF0_INDEX]; u32 ptr, read, write; unsigned int idx; drm_printf(m, "\tExeclist status: 0x%08x %08x\n", I915_READ(RING_EXECLIST_STATUS_LO(engine)), I915_READ(RING_EXECLIST_STATUS_HI(engine))); ptr = I915_READ(RING_CONTEXT_STATUS_PTR(engine)); read = GEN8_CSB_READ_PTR(ptr); write = GEN8_CSB_WRITE_PTR(ptr); drm_printf(m, "\tExeclist CSB read %d [%d cached], write %d [%d from hws], interrupt posted? %s, tasklet queued? %s (%s)\n", read, execlists->csb_head, write, intel_read_status_page(engine, intel_hws_csb_write_index(engine->i915)), yesno(test_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted)), yesno(test_bit(TASKLET_STATE_SCHED, &engine->execlists.tasklet.state)), enableddisabled(!atomic_read(&engine->execlists.tasklet.count))); if (read >= GEN8_CSB_ENTRIES) read = 0; if (write >= GEN8_CSB_ENTRIES) write = 0; if (read > write) write += GEN8_CSB_ENTRIES; while (read < write) { idx = ++read % GEN8_CSB_ENTRIES; drm_printf(m, "\tExeclist CSB[%d]: 0x%08x [0x%08x in hwsp], context: %d [%d in hwsp]\n", idx, I915_READ(RING_CONTEXT_STATUS_BUF_LO(engine, idx)), hws[idx * 2], I915_READ(RING_CONTEXT_STATUS_BUF_HI(engine, idx)), hws[idx * 2 + 1]); } rcu_read_lock(); for (idx = 0; idx < execlists_num_ports(execlists); idx++) { struct i915_request *rq; unsigned int count; rq = port_unpack(&execlists->port[idx], &count); if (rq) { char hdr[80]; snprintf(hdr, sizeof(hdr), "\t\tELSP[%d] count=%d, ring->start=%08x, rq: ", idx, count, i915_ggtt_offset(rq->ring->vma)); print_request(m, rq, hdr); } else { drm_printf(m, "\t\tELSP[%d] idle\n", idx); } } drm_printf(m, "\t\tHW active? 0x%x\n", execlists->active); rcu_read_unlock(); } else if (INTEL_GEN(dev_priv) > 6) { drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n", I915_READ(RING_PP_DIR_BASE(engine))); drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n", I915_READ(RING_PP_DIR_BASE_READ(engine))); drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n", I915_READ(RING_PP_DIR_DCLV(engine))); } } void intel_engine_dump(struct intel_engine_cs *engine, struct drm_printer *m, const char *header, ...) { const int MAX_REQUESTS_TO_SHOW = 8; struct intel_breadcrumbs * const b = &engine->breadcrumbs; const struct intel_engine_execlists * const execlists = &engine->execlists; struct i915_gpu_error * const error = &engine->i915->gpu_error; struct i915_request *rq, *last; unsigned long flags; struct rb_node *rb; int count; if (header) { va_list ap; va_start(ap, header); drm_vprintf(m, header, &ap); va_end(ap); } if (i915_terminally_wedged(&engine->i915->gpu_error)) drm_printf(m, "*** WEDGED ***\n"); drm_printf(m, "\tcurrent seqno %x, last %x, hangcheck %x [%d ms]\n", intel_engine_get_seqno(engine), intel_engine_last_submit(engine), engine->hangcheck.seqno, jiffies_to_msecs(jiffies - engine->hangcheck.action_timestamp)); drm_printf(m, "\tReset count: %d (global %d)\n", i915_reset_engine_count(error, engine), i915_reset_count(error)); rcu_read_lock(); drm_printf(m, "\tRequests:\n"); rq = list_first_entry(&engine->timeline.requests, struct i915_request, link); if (&rq->link != &engine->timeline.requests) print_request(m, rq, "\t\tfirst "); rq = list_last_entry(&engine->timeline.requests, struct i915_request, link); if (&rq->link != &engine->timeline.requests) print_request(m, rq, "\t\tlast "); rq = i915_gem_find_active_request(engine); if (rq) { print_request(m, rq, "\t\tactive "); drm_printf(m, "\t\t[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]\n", rq->head, rq->postfix, rq->tail, rq->batch ? upper_32_bits(rq->batch->node.start) : ~0u, rq->batch ? lower_32_bits(rq->batch->node.start) : ~0u); drm_printf(m, "\t\tring->start: 0x%08x\n", i915_ggtt_offset(rq->ring->vma)); drm_printf(m, "\t\tring->head: 0x%08x\n", rq->ring->head); drm_printf(m, "\t\tring->tail: 0x%08x\n", rq->ring->tail); drm_printf(m, "\t\tring->emit: 0x%08x\n", rq->ring->emit); drm_printf(m, "\t\tring->space: 0x%08x\n", rq->ring->space); } rcu_read_unlock(); if (intel_runtime_pm_get_if_in_use(engine->i915)) { intel_engine_print_registers(engine, m); intel_runtime_pm_put(engine->i915); } else { drm_printf(m, "\tDevice is asleep; skipping register dump\n"); } local_irq_save(flags); spin_lock(&engine->timeline.lock); last = NULL; count = 0; list_for_each_entry(rq, &engine->timeline.requests, link) { if (count++ < MAX_REQUESTS_TO_SHOW - 1) print_request(m, rq, "\t\tE "); else last = rq; } if (last) { if (count > MAX_REQUESTS_TO_SHOW) { drm_printf(m, "\t\t...skipping %d executing requests...\n", count - MAX_REQUESTS_TO_SHOW); } print_request(m, last, "\t\tE "); } last = NULL; count = 0; drm_printf(m, "\t\tQueue priority: %d\n", execlists->queue_priority); for (rb = execlists->first; rb; rb = rb_next(rb)) { struct i915_priolist *p = rb_entry(rb, typeof(*p), node); list_for_each_entry(rq, &p->requests, sched.link) { if (count++ < MAX_REQUESTS_TO_SHOW - 1) print_request(m, rq, "\t\tQ "); else last = rq; } } if (last) { if (count > MAX_REQUESTS_TO_SHOW) { drm_printf(m, "\t\t...skipping %d queued requests...\n", count - MAX_REQUESTS_TO_SHOW); } print_request(m, last, "\t\tQ "); } spin_unlock(&engine->timeline.lock); spin_lock(&b->rb_lock); for (rb = rb_first(&b->waiters); rb; rb = rb_next(rb)) { struct intel_wait *w = rb_entry(rb, typeof(*w), node); drm_printf(m, "\t%s [%d] waiting for %x\n", w->tsk->comm, w->tsk->pid, w->seqno); } spin_unlock(&b->rb_lock); local_irq_restore(flags); drm_printf(m, "IRQ? 0x%lx (breadcrumbs? %s) (execlists? %s)\n", engine->irq_posted, yesno(test_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted)), yesno(test_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted))); drm_printf(m, "HWSP:\n"); hexdump(m, engine->status_page.page_addr, PAGE_SIZE); drm_printf(m, "Idle? %s\n", yesno(intel_engine_is_idle(engine))); } static u8 user_class_map[] = { [I915_ENGINE_CLASS_RENDER] = RENDER_CLASS, [I915_ENGINE_CLASS_COPY] = COPY_ENGINE_CLASS, [I915_ENGINE_CLASS_VIDEO] = VIDEO_DECODE_CLASS, [I915_ENGINE_CLASS_VIDEO_ENHANCE] = VIDEO_ENHANCEMENT_CLASS, }; struct intel_engine_cs * intel_engine_lookup_user(struct drm_i915_private *i915, u8 class, u8 instance) { if (class >= ARRAY_SIZE(user_class_map)) return NULL; class = user_class_map[class]; GEM_BUG_ON(class > MAX_ENGINE_CLASS); if (instance > MAX_ENGINE_INSTANCE) return NULL; return i915->engine_class[class][instance]; } /** * intel_enable_engine_stats() - Enable engine busy tracking on engine * @engine: engine to enable stats collection * * Start collecting the engine busyness data for @engine. * * Returns 0 on success or a negative error code. */ int intel_enable_engine_stats(struct intel_engine_cs *engine) { struct intel_engine_execlists *execlists = &engine->execlists; unsigned long flags; int err = 0; if (!intel_engine_supports_stats(engine)) return -ENODEV; tasklet_disable(&execlists->tasklet); write_seqlock_irqsave(&engine->stats.lock, flags); if (unlikely(engine->stats.enabled == ~0)) { err = -EBUSY; goto unlock; } if (engine->stats.enabled++ == 0) { const struct execlist_port *port = execlists->port; unsigned int num_ports = execlists_num_ports(execlists); engine->stats.enabled_at = ktime_get(); /* XXX submission method oblivious? */ while (num_ports-- && port_isset(port)) { engine->stats.active++; port++; } if (engine->stats.active) engine->stats.start = engine->stats.enabled_at; } unlock: write_sequnlock_irqrestore(&engine->stats.lock, flags); tasklet_enable(&execlists->tasklet); return err; } static ktime_t __intel_engine_get_busy_time(struct intel_engine_cs *engine) { ktime_t total = engine->stats.total; /* * If the engine is executing something at the moment * add it to the total. */ if (engine->stats.active) total = ktime_add(total, ktime_sub(ktime_get(), engine->stats.start)); return total; } /** * intel_engine_get_busy_time() - Return current accumulated engine busyness * @engine: engine to report on * * Returns accumulated time @engine was busy since engine stats were enabled. */ ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine) { unsigned int seq; ktime_t total; do { seq = read_seqbegin(&engine->stats.lock); total = __intel_engine_get_busy_time(engine); } while (read_seqretry(&engine->stats.lock, seq)); return total; } /** * intel_disable_engine_stats() - Disable engine busy tracking on engine * @engine: engine to disable stats collection * * Stops collecting the engine busyness data for @engine. */ void intel_disable_engine_stats(struct intel_engine_cs *engine) { unsigned long flags; if (!intel_engine_supports_stats(engine)) return; write_seqlock_irqsave(&engine->stats.lock, flags); WARN_ON_ONCE(engine->stats.enabled == 0); if (--engine->stats.enabled == 0) { engine->stats.total = __intel_engine_get_busy_time(engine); engine->stats.active = 0; } write_sequnlock_irqrestore(&engine->stats.lock, flags); } #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) #include "selftests/mock_engine.c" #include "selftests/intel_engine_cs.c" #endif