/* * Copyright 2022 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include #include #include "amdgpu.h" #include "amdgpu_ucode.h" #include "amdgpu_vpe.h" #include "amdgpu_smu.h" #include "soc15_common.h" #include "vpe_v6_1.h" #define AMDGPU_CSA_VPE_SIZE 64 /* VPE CSA resides in the 4th page of CSA */ #define AMDGPU_CSA_VPE_OFFSET (4096 * 3) /* 1 second timeout */ #define VPE_IDLE_TIMEOUT msecs_to_jiffies(1000) #define VPE_MAX_DPM_LEVEL 4 #define FIXED1_8_BITS_PER_FRACTIONAL_PART 8 #define GET_PRATIO_INTEGER_PART(x) ((x) >> FIXED1_8_BITS_PER_FRACTIONAL_PART) static void vpe_set_ring_funcs(struct amdgpu_device *adev); static inline uint16_t div16_u16_rem(uint16_t dividend, uint16_t divisor, uint16_t *remainder) { *remainder = dividend % divisor; return dividend / divisor; } static inline uint16_t complete_integer_division_u16( uint16_t dividend, uint16_t divisor, uint16_t *remainder) { return div16_u16_rem(dividend, divisor, (uint16_t *)remainder); } static uint16_t vpe_u1_8_from_fraction(uint16_t numerator, uint16_t denominator) { u16 arg1_value = numerator; u16 arg2_value = denominator; uint16_t remainder; /* determine integer part */ uint16_t res_value = complete_integer_division_u16( arg1_value, arg2_value, &remainder); if (res_value > 127 /* CHAR_MAX */) return 0; /* determine fractional part */ { unsigned int i = FIXED1_8_BITS_PER_FRACTIONAL_PART; do { remainder <<= 1; res_value <<= 1; if (remainder >= arg2_value) { res_value |= 1; remainder -= arg2_value; } } while (--i != 0); } /* round up LSB */ { uint16_t summand = (remainder << 1) >= arg2_value; if ((res_value + summand) > 32767 /* SHRT_MAX */) return 0; res_value += summand; } return res_value; } static uint16_t vpe_internal_get_pratio(uint16_t from_frequency, uint16_t to_frequency) { uint16_t pratio = vpe_u1_8_from_fraction(from_frequency, to_frequency); if (GET_PRATIO_INTEGER_PART(pratio) > 1) pratio = 0; return pratio; } /* * VPE has 4 DPM levels from level 0 (lowerest) to 3 (highest), * VPE FW will dynamically decide which level should be used according to current loading. * * Get VPE and SOC clocks from PM, and select the appropriate four clock values, * calculate the ratios of adjusting from one clock to another. * The VPE FW can then request the appropriate frequency from the PMFW. */ int amdgpu_vpe_configure_dpm(struct amdgpu_vpe *vpe) { struct amdgpu_device *adev = vpe->ring.adev; uint32_t dpm_ctl; if (adev->pm.dpm_enabled) { struct dpm_clocks clock_table = { 0 }; struct dpm_clock *VPEClks; struct dpm_clock *SOCClks; uint32_t idx; uint32_t vpeclk_enalbled_num = 0; uint32_t pratio_vmax_vnorm = 0, pratio_vnorm_vmid = 0, pratio_vmid_vmin = 0; uint16_t pratio_vmin_freq = 0, pratio_vmid_freq = 0, pratio_vnorm_freq = 0, pratio_vmax_freq = 0; dpm_ctl = RREG32(vpe_get_reg_offset(vpe, 0, vpe->regs.dpm_enable)); dpm_ctl |= 1; /* DPM enablement */ WREG32(vpe_get_reg_offset(vpe, 0, vpe->regs.dpm_enable), dpm_ctl); /* Get VPECLK and SOCCLK */ if (amdgpu_dpm_get_dpm_clock_table(adev, &clock_table)) { dev_dbg(adev->dev, "%s: get clock failed!\n", __func__); goto disable_dpm; } SOCClks = clock_table.SocClocks; VPEClks = clock_table.VPEClocks; /* Comfirm enabled vpe clk num * Enabled VPE clocks are ordered from low to high in VPEClks * The highest valid clock index+1 is the number of VPEClks */ for (idx = PP_SMU_NUM_VPECLK_DPM_LEVELS; idx && !vpeclk_enalbled_num; idx--) if (VPEClks[idx-1].Freq) vpeclk_enalbled_num = idx; /* vpe dpm only cares 4 levels. */ for (idx = 0; idx < VPE_MAX_DPM_LEVEL; idx++) { uint32_t soc_dpm_level; uint32_t min_freq; if (idx == 0) soc_dpm_level = 0; else soc_dpm_level = (idx * 2) + 1; /* clamp the max level */ if (soc_dpm_level > vpeclk_enalbled_num - 1) soc_dpm_level = vpeclk_enalbled_num - 1; min_freq = (SOCClks[soc_dpm_level].Freq < VPEClks[soc_dpm_level].Freq) ? SOCClks[soc_dpm_level].Freq : VPEClks[soc_dpm_level].Freq; switch (idx) { case 0: pratio_vmin_freq = min_freq; break; case 1: pratio_vmid_freq = min_freq; break; case 2: pratio_vnorm_freq = min_freq; break; case 3: pratio_vmax_freq = min_freq; break; default: break; } } if (pratio_vmin_freq && pratio_vmid_freq && pratio_vnorm_freq && pratio_vmax_freq) { uint32_t pratio_ctl; pratio_vmax_vnorm = (uint32_t)vpe_internal_get_pratio(pratio_vmax_freq, pratio_vnorm_freq); pratio_vnorm_vmid = (uint32_t)vpe_internal_get_pratio(pratio_vnorm_freq, pratio_vmid_freq); pratio_vmid_vmin = (uint32_t)vpe_internal_get_pratio(pratio_vmid_freq, pratio_vmin_freq); pratio_ctl = pratio_vmax_vnorm | (pratio_vnorm_vmid << 9) | (pratio_vmid_vmin << 18); WREG32(vpe_get_reg_offset(vpe, 0, vpe->regs.dpm_pratio), pratio_ctl); /* PRatio */ WREG32(vpe_get_reg_offset(vpe, 0, vpe->regs.dpm_request_interval), 24000); /* 1ms, unit=1/24MHz */ WREG32(vpe_get_reg_offset(vpe, 0, vpe->regs.dpm_decision_threshold), 1200000); /* 50ms */ WREG32(vpe_get_reg_offset(vpe, 0, vpe->regs.dpm_busy_clamp_threshold), 1200000);/* 50ms */ WREG32(vpe_get_reg_offset(vpe, 0, vpe->regs.dpm_idle_clamp_threshold), 1200000);/* 50ms */ dev_dbg(adev->dev, "%s: configure vpe dpm pratio done!\n", __func__); } else { dev_dbg(adev->dev, "%s: invalid pratio parameters!\n", __func__); goto disable_dpm; } } return 0; disable_dpm: dpm_ctl = RREG32(vpe_get_reg_offset(vpe, 0, vpe->regs.dpm_enable)); dpm_ctl &= 0xfffffffe; /* Disable DPM */ WREG32(vpe_get_reg_offset(vpe, 0, vpe->regs.dpm_enable), dpm_ctl); dev_dbg(adev->dev, "%s: disable vpe dpm\n", __func__); return -EINVAL; } int amdgpu_vpe_psp_update_sram(struct amdgpu_device *adev) { struct amdgpu_firmware_info ucode = { .ucode_id = AMDGPU_UCODE_ID_VPE, .mc_addr = adev->vpe.cmdbuf_gpu_addr, .ucode_size = 8, }; return psp_execute_ip_fw_load(&adev->psp, &ucode); } int amdgpu_vpe_init_microcode(struct amdgpu_vpe *vpe) { struct amdgpu_device *adev = vpe->ring.adev; const struct vpe_firmware_header_v1_0 *vpe_hdr; char fw_prefix[32]; int ret; amdgpu_ucode_ip_version_decode(adev, VPE_HWIP, fw_prefix, sizeof(fw_prefix)); ret = amdgpu_ucode_request(adev, &adev->vpe.fw, "amdgpu/%s.bin", fw_prefix); if (ret) goto out; vpe_hdr = (const struct vpe_firmware_header_v1_0 *)adev->vpe.fw->data; adev->vpe.fw_version = le32_to_cpu(vpe_hdr->header.ucode_version); adev->vpe.feature_version = le32_to_cpu(vpe_hdr->ucode_feature_version); if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) { struct amdgpu_firmware_info *info; info = &adev->firmware.ucode[AMDGPU_UCODE_ID_VPE_CTX]; info->ucode_id = AMDGPU_UCODE_ID_VPE_CTX; info->fw = adev->vpe.fw; adev->firmware.fw_size += ALIGN(le32_to_cpu(vpe_hdr->ctx_ucode_size_bytes), PAGE_SIZE); info = &adev->firmware.ucode[AMDGPU_UCODE_ID_VPE_CTL]; info->ucode_id = AMDGPU_UCODE_ID_VPE_CTL; info->fw = adev->vpe.fw; adev->firmware.fw_size += ALIGN(le32_to_cpu(vpe_hdr->ctl_ucode_size_bytes), PAGE_SIZE); } return 0; out: dev_err(adev->dev, "fail to initialize vpe microcode\n"); release_firmware(adev->vpe.fw); adev->vpe.fw = NULL; return ret; } int amdgpu_vpe_ring_init(struct amdgpu_vpe *vpe) { struct amdgpu_device *adev = container_of(vpe, struct amdgpu_device, vpe); struct amdgpu_ring *ring = &vpe->ring; int ret; ring->ring_obj = NULL; ring->use_doorbell = true; ring->vm_hub = AMDGPU_MMHUB0(0); ring->doorbell_index = (adev->doorbell_index.vpe_ring << 1); snprintf(ring->name, 4, "vpe"); ret = amdgpu_ring_init(adev, ring, 1024, &vpe->trap_irq, 0, AMDGPU_RING_PRIO_DEFAULT, NULL); if (ret) return ret; return 0; } int amdgpu_vpe_ring_fini(struct amdgpu_vpe *vpe) { amdgpu_ring_fini(&vpe->ring); return 0; } static int vpe_early_init(struct amdgpu_ip_block *ip_block) { struct amdgpu_device *adev = ip_block->adev; struct amdgpu_vpe *vpe = &adev->vpe; switch (amdgpu_ip_version(adev, VPE_HWIP, 0)) { case IP_VERSION(6, 1, 0): case IP_VERSION(6, 1, 3): vpe_v6_1_set_funcs(vpe); break; case IP_VERSION(6, 1, 1): vpe_v6_1_set_funcs(vpe); vpe->collaborate_mode = true; break; default: return -EINVAL; } vpe_set_ring_funcs(adev); vpe_set_regs(vpe); dev_info(adev->dev, "VPE: collaborate mode %s", vpe->collaborate_mode ? "true" : "false"); return 0; } static void vpe_idle_work_handler(struct work_struct *work) { struct amdgpu_device *adev = container_of(work, struct amdgpu_device, vpe.idle_work.work); unsigned int fences = 0; fences += amdgpu_fence_count_emitted(&adev->vpe.ring); if (fences == 0) amdgpu_device_ip_set_powergating_state(adev, AMD_IP_BLOCK_TYPE_VPE, AMD_PG_STATE_GATE); else schedule_delayed_work(&adev->vpe.idle_work, VPE_IDLE_TIMEOUT); } static int vpe_common_init(struct amdgpu_vpe *vpe) { struct amdgpu_device *adev = container_of(vpe, struct amdgpu_device, vpe); int r; r = amdgpu_bo_create_kernel(adev, PAGE_SIZE, PAGE_SIZE, AMDGPU_GEM_DOMAIN_GTT, &adev->vpe.cmdbuf_obj, &adev->vpe.cmdbuf_gpu_addr, (void **)&adev->vpe.cmdbuf_cpu_addr); if (r) { dev_err(adev->dev, "VPE: failed to allocate cmdbuf bo %d\n", r); return r; } vpe->context_started = false; INIT_DELAYED_WORK(&adev->vpe.idle_work, vpe_idle_work_handler); return 0; } static int vpe_sw_init(struct amdgpu_ip_block *ip_block) { struct amdgpu_device *adev = ip_block->adev; struct amdgpu_vpe *vpe = &adev->vpe; int ret; ret = vpe_common_init(vpe); if (ret) goto out; ret = vpe_irq_init(vpe); if (ret) goto out; ret = vpe_ring_init(vpe); if (ret) goto out; ret = vpe_init_microcode(vpe); if (ret) goto out; out: return ret; } static int vpe_sw_fini(struct amdgpu_ip_block *ip_block) { struct amdgpu_device *adev = ip_block->adev; struct amdgpu_vpe *vpe = &adev->vpe; release_firmware(vpe->fw); vpe->fw = NULL; vpe_ring_fini(vpe); amdgpu_bo_free_kernel(&adev->vpe.cmdbuf_obj, &adev->vpe.cmdbuf_gpu_addr, (void **)&adev->vpe.cmdbuf_cpu_addr); return 0; } static int vpe_hw_init(struct amdgpu_ip_block *ip_block) { struct amdgpu_device *adev = ip_block->adev; struct amdgpu_vpe *vpe = &adev->vpe; int ret; /* Power on VPE */ ret = amdgpu_device_ip_set_powergating_state(adev, AMD_IP_BLOCK_TYPE_VPE, AMD_PG_STATE_UNGATE); if (ret) return ret; ret = vpe_load_microcode(vpe); if (ret) return ret; ret = vpe_ring_start(vpe); if (ret) return ret; return 0; } static int vpe_hw_fini(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; struct amdgpu_vpe *vpe = &adev->vpe; vpe_ring_stop(vpe); /* Power off VPE */ amdgpu_device_ip_set_powergating_state(adev, AMD_IP_BLOCK_TYPE_VPE, AMD_PG_STATE_GATE); return 0; } static int vpe_suspend(struct amdgpu_ip_block *ip_block) { struct amdgpu_device *adev = ip_block->adev; cancel_delayed_work_sync(&adev->vpe.idle_work); return vpe_hw_fini(adev); } static int vpe_resume(struct amdgpu_ip_block *ip_block) { return vpe_hw_init(ip_block); } static void vpe_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count) { int i; for (i = 0; i < count; i++) if (i == 0) amdgpu_ring_write(ring, ring->funcs->nop | VPE_CMD_NOP_HEADER_COUNT(count - 1)); else amdgpu_ring_write(ring, ring->funcs->nop); } static uint64_t vpe_get_csa_mc_addr(struct amdgpu_ring *ring, uint32_t vmid) { struct amdgpu_device *adev = ring->adev; uint32_t index = 0; uint64_t csa_mc_addr; if (amdgpu_sriov_vf(adev) || vmid == 0 || !adev->gfx.mcbp) return 0; csa_mc_addr = amdgpu_csa_vaddr(adev) + AMDGPU_CSA_VPE_OFFSET + index * AMDGPU_CSA_VPE_SIZE; return csa_mc_addr; } static void vpe_ring_emit_pred_exec(struct amdgpu_ring *ring, uint32_t device_select, uint32_t exec_count) { if (!ring->adev->vpe.collaborate_mode) return; amdgpu_ring_write(ring, VPE_CMD_HEADER(VPE_CMD_OPCODE_PRED_EXE, 0) | (device_select << 16)); amdgpu_ring_write(ring, exec_count & 0x1fff); } static void vpe_ring_emit_ib(struct amdgpu_ring *ring, struct amdgpu_job *job, struct amdgpu_ib *ib, uint32_t flags) { uint32_t vmid = AMDGPU_JOB_GET_VMID(job); uint64_t csa_mc_addr = vpe_get_csa_mc_addr(ring, vmid); amdgpu_ring_write(ring, VPE_CMD_HEADER(VPE_CMD_OPCODE_INDIRECT, 0) | VPE_CMD_INDIRECT_HEADER_VMID(vmid & 0xf)); /* base must be 32 byte aligned */ amdgpu_ring_write(ring, ib->gpu_addr & 0xffffffe0); amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr)); amdgpu_ring_write(ring, ib->length_dw); amdgpu_ring_write(ring, lower_32_bits(csa_mc_addr)); amdgpu_ring_write(ring, upper_32_bits(csa_mc_addr)); } static void vpe_ring_emit_fence(struct amdgpu_ring *ring, uint64_t addr, uint64_t seq, unsigned int flags) { int i = 0; do { /* write the fence */ amdgpu_ring_write(ring, VPE_CMD_HEADER(VPE_CMD_OPCODE_FENCE, 0)); /* zero in first two bits */ WARN_ON_ONCE(addr & 0x3); amdgpu_ring_write(ring, lower_32_bits(addr)); amdgpu_ring_write(ring, upper_32_bits(addr)); amdgpu_ring_write(ring, i == 0 ? lower_32_bits(seq) : upper_32_bits(seq)); addr += 4; } while ((flags & AMDGPU_FENCE_FLAG_64BIT) && (i++ < 1)); if (flags & AMDGPU_FENCE_FLAG_INT) { /* generate an interrupt */ amdgpu_ring_write(ring, VPE_CMD_HEADER(VPE_CMD_OPCODE_TRAP, 0)); amdgpu_ring_write(ring, 0); } } static void vpe_ring_emit_pipeline_sync(struct amdgpu_ring *ring) { uint32_t seq = ring->fence_drv.sync_seq; uint64_t addr = ring->fence_drv.gpu_addr; vpe_ring_emit_pred_exec(ring, 0, 6); /* wait for idle */ amdgpu_ring_write(ring, VPE_CMD_HEADER(VPE_CMD_OPCODE_POLL_REGMEM, VPE_POLL_REGMEM_SUBOP_REGMEM) | VPE_CMD_POLL_REGMEM_HEADER_FUNC(3) | /* equal */ VPE_CMD_POLL_REGMEM_HEADER_MEM(1)); amdgpu_ring_write(ring, addr & 0xfffffffc); amdgpu_ring_write(ring, upper_32_bits(addr)); amdgpu_ring_write(ring, seq); /* reference */ amdgpu_ring_write(ring, 0xffffffff); /* mask */ amdgpu_ring_write(ring, VPE_CMD_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) | VPE_CMD_POLL_REGMEM_DW5_INTERVAL(4)); } static void vpe_ring_emit_wreg(struct amdgpu_ring *ring, uint32_t reg, uint32_t val) { vpe_ring_emit_pred_exec(ring, 0, 3); amdgpu_ring_write(ring, VPE_CMD_HEADER(VPE_CMD_OPCODE_REG_WRITE, 0)); amdgpu_ring_write(ring, reg << 2); amdgpu_ring_write(ring, val); } static void vpe_ring_emit_reg_wait(struct amdgpu_ring *ring, uint32_t reg, uint32_t val, uint32_t mask) { vpe_ring_emit_pred_exec(ring, 0, 6); amdgpu_ring_write(ring, VPE_CMD_HEADER(VPE_CMD_OPCODE_POLL_REGMEM, VPE_POLL_REGMEM_SUBOP_REGMEM) | VPE_CMD_POLL_REGMEM_HEADER_FUNC(3) | /* equal */ VPE_CMD_POLL_REGMEM_HEADER_MEM(0)); amdgpu_ring_write(ring, reg << 2); amdgpu_ring_write(ring, 0); amdgpu_ring_write(ring, val); /* reference */ amdgpu_ring_write(ring, mask); /* mask */ amdgpu_ring_write(ring, VPE_CMD_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) | VPE_CMD_POLL_REGMEM_DW5_INTERVAL(10)); } static void vpe_ring_emit_vm_flush(struct amdgpu_ring *ring, unsigned int vmid, uint64_t pd_addr) { amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr); } static unsigned int vpe_ring_init_cond_exec(struct amdgpu_ring *ring, uint64_t addr) { unsigned int ret; amdgpu_ring_write(ring, VPE_CMD_HEADER(VPE_CMD_OPCODE_COND_EXE, 0)); amdgpu_ring_write(ring, lower_32_bits(addr)); amdgpu_ring_write(ring, upper_32_bits(addr)); amdgpu_ring_write(ring, 1); ret = ring->wptr & ring->buf_mask; amdgpu_ring_write(ring, 0); return ret; } static int vpe_ring_preempt_ib(struct amdgpu_ring *ring) { struct amdgpu_device *adev = ring->adev; struct amdgpu_vpe *vpe = &adev->vpe; uint32_t preempt_reg = vpe->regs.queue0_preempt; int i, r = 0; /* assert preemption condition */ amdgpu_ring_set_preempt_cond_exec(ring, false); /* emit the trailing fence */ ring->trail_seq += 1; amdgpu_ring_alloc(ring, 10); vpe_ring_emit_fence(ring, ring->trail_fence_gpu_addr, ring->trail_seq, 0); amdgpu_ring_commit(ring); /* assert IB preemption */ WREG32(vpe_get_reg_offset(vpe, ring->me, preempt_reg), 1); /* poll the trailing fence */ for (i = 0; i < adev->usec_timeout; i++) { if (ring->trail_seq == le32_to_cpu(*(ring->trail_fence_cpu_addr))) break; udelay(1); } if (i >= adev->usec_timeout) { r = -EINVAL; dev_err(adev->dev, "ring %d failed to be preempted\n", ring->idx); } /* deassert IB preemption */ WREG32(vpe_get_reg_offset(vpe, ring->me, preempt_reg), 0); /* deassert the preemption condition */ amdgpu_ring_set_preempt_cond_exec(ring, true); return r; } static int vpe_set_clockgating_state(void *handle, enum amd_clockgating_state state) { return 0; } static int vpe_set_powergating_state(void *handle, enum amd_powergating_state state) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; struct amdgpu_vpe *vpe = &adev->vpe; if (!adev->pm.dpm_enabled) dev_err(adev->dev, "Without PM, cannot support powergating\n"); dev_dbg(adev->dev, "%s: %s!\n", __func__, (state == AMD_PG_STATE_GATE) ? "GATE":"UNGATE"); if (state == AMD_PG_STATE_GATE) { amdgpu_dpm_enable_vpe(adev, false); vpe->context_started = false; } else { amdgpu_dpm_enable_vpe(adev, true); } return 0; } static uint64_t vpe_ring_get_rptr(struct amdgpu_ring *ring) { struct amdgpu_device *adev = ring->adev; struct amdgpu_vpe *vpe = &adev->vpe; uint64_t rptr; if (ring->use_doorbell) { rptr = atomic64_read((atomic64_t *)ring->rptr_cpu_addr); dev_dbg(adev->dev, "rptr/doorbell before shift == 0x%016llx\n", rptr); } else { rptr = RREG32(vpe_get_reg_offset(vpe, ring->me, vpe->regs.queue0_rb_rptr_hi)); rptr = rptr << 32; rptr |= RREG32(vpe_get_reg_offset(vpe, ring->me, vpe->regs.queue0_rb_rptr_lo)); dev_dbg(adev->dev, "rptr before shift [%i] == 0x%016llx\n", ring->me, rptr); } return (rptr >> 2); } static uint64_t vpe_ring_get_wptr(struct amdgpu_ring *ring) { struct amdgpu_device *adev = ring->adev; struct amdgpu_vpe *vpe = &adev->vpe; uint64_t wptr; if (ring->use_doorbell) { wptr = atomic64_read((atomic64_t *)ring->wptr_cpu_addr); dev_dbg(adev->dev, "wptr/doorbell before shift == 0x%016llx\n", wptr); } else { wptr = RREG32(vpe_get_reg_offset(vpe, ring->me, vpe->regs.queue0_rb_wptr_hi)); wptr = wptr << 32; wptr |= RREG32(vpe_get_reg_offset(vpe, ring->me, vpe->regs.queue0_rb_wptr_lo)); dev_dbg(adev->dev, "wptr before shift [%i] == 0x%016llx\n", ring->me, wptr); } return (wptr >> 2); } static void vpe_ring_set_wptr(struct amdgpu_ring *ring) { struct amdgpu_device *adev = ring->adev; struct amdgpu_vpe *vpe = &adev->vpe; if (ring->use_doorbell) { dev_dbg(adev->dev, "Using doorbell, \ wptr_offs == 0x%08x, \ lower_32_bits(ring->wptr) << 2 == 0x%08x, \ upper_32_bits(ring->wptr) << 2 == 0x%08x\n", ring->wptr_offs, lower_32_bits(ring->wptr << 2), upper_32_bits(ring->wptr << 2)); atomic64_set((atomic64_t *)ring->wptr_cpu_addr, ring->wptr << 2); WDOORBELL64(ring->doorbell_index, ring->wptr << 2); if (vpe->collaborate_mode) WDOORBELL64(ring->doorbell_index + 4, ring->wptr << 2); } else { int i; for (i = 0; i < vpe->num_instances; i++) { dev_dbg(adev->dev, "Not using doorbell, \ regVPEC_QUEUE0_RB_WPTR == 0x%08x, \ regVPEC_QUEUE0_RB_WPTR_HI == 0x%08x\n", lower_32_bits(ring->wptr << 2), upper_32_bits(ring->wptr << 2)); WREG32(vpe_get_reg_offset(vpe, i, vpe->regs.queue0_rb_wptr_lo), lower_32_bits(ring->wptr << 2)); WREG32(vpe_get_reg_offset(vpe, i, vpe->regs.queue0_rb_wptr_hi), upper_32_bits(ring->wptr << 2)); } } } static int vpe_ring_test_ring(struct amdgpu_ring *ring) { struct amdgpu_device *adev = ring->adev; const uint32_t test_pattern = 0xdeadbeef; uint32_t index, i; uint64_t wb_addr; int ret; ret = amdgpu_device_wb_get(adev, &index); if (ret) { dev_err(adev->dev, "(%d) failed to allocate wb slot\n", ret); return ret; } adev->wb.wb[index] = 0; wb_addr = adev->wb.gpu_addr + (index * 4); ret = amdgpu_ring_alloc(ring, 4); if (ret) { dev_err(adev->dev, "amdgpu: dma failed to lock ring %d (%d).\n", ring->idx, ret); goto out; } amdgpu_ring_write(ring, VPE_CMD_HEADER(VPE_CMD_OPCODE_FENCE, 0)); amdgpu_ring_write(ring, lower_32_bits(wb_addr)); amdgpu_ring_write(ring, upper_32_bits(wb_addr)); amdgpu_ring_write(ring, test_pattern); amdgpu_ring_commit(ring); for (i = 0; i < adev->usec_timeout; i++) { if (le32_to_cpu(adev->wb.wb[index]) == test_pattern) goto out; udelay(1); } ret = -ETIMEDOUT; out: amdgpu_device_wb_free(adev, index); return ret; } static int vpe_ring_test_ib(struct amdgpu_ring *ring, long timeout) { struct amdgpu_device *adev = ring->adev; const uint32_t test_pattern = 0xdeadbeef; struct amdgpu_ib ib = {}; struct dma_fence *f = NULL; uint32_t index; uint64_t wb_addr; int ret; ret = amdgpu_device_wb_get(adev, &index); if (ret) { dev_err(adev->dev, "(%d) failed to allocate wb slot\n", ret); return ret; } adev->wb.wb[index] = 0; wb_addr = adev->wb.gpu_addr + (index * 4); ret = amdgpu_ib_get(adev, NULL, 256, AMDGPU_IB_POOL_DIRECT, &ib); if (ret) goto err0; ib.ptr[0] = VPE_CMD_HEADER(VPE_CMD_OPCODE_FENCE, 0); ib.ptr[1] = lower_32_bits(wb_addr); ib.ptr[2] = upper_32_bits(wb_addr); ib.ptr[3] = test_pattern; ib.ptr[4] = VPE_CMD_HEADER(VPE_CMD_OPCODE_NOP, 0); ib.ptr[5] = VPE_CMD_HEADER(VPE_CMD_OPCODE_NOP, 0); ib.ptr[6] = VPE_CMD_HEADER(VPE_CMD_OPCODE_NOP, 0); ib.ptr[7] = VPE_CMD_HEADER(VPE_CMD_OPCODE_NOP, 0); ib.length_dw = 8; ret = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f); if (ret) goto err1; ret = dma_fence_wait_timeout(f, false, timeout); if (ret <= 0) { ret = ret ? : -ETIMEDOUT; goto err1; } ret = (le32_to_cpu(adev->wb.wb[index]) == test_pattern) ? 0 : -EINVAL; err1: amdgpu_ib_free(adev, &ib, NULL); dma_fence_put(f); err0: amdgpu_device_wb_free(adev, index); return ret; } static void vpe_ring_begin_use(struct amdgpu_ring *ring) { struct amdgpu_device *adev = ring->adev; struct amdgpu_vpe *vpe = &adev->vpe; cancel_delayed_work_sync(&adev->vpe.idle_work); /* Power on VPE and notify VPE of new context */ if (!vpe->context_started) { uint32_t context_notify; /* Power on VPE */ amdgpu_device_ip_set_powergating_state(adev, AMD_IP_BLOCK_TYPE_VPE, AMD_PG_STATE_UNGATE); /* Indicates that a job from a new context has been submitted. */ context_notify = RREG32(vpe_get_reg_offset(vpe, 0, vpe->regs.context_indicator)); if ((context_notify & 0x1) == 0) context_notify |= 0x1; else context_notify &= ~(0x1); WREG32(vpe_get_reg_offset(vpe, 0, vpe->regs.context_indicator), context_notify); vpe->context_started = true; } } static void vpe_ring_end_use(struct amdgpu_ring *ring) { struct amdgpu_device *adev = ring->adev; schedule_delayed_work(&adev->vpe.idle_work, VPE_IDLE_TIMEOUT); } static const struct amdgpu_ring_funcs vpe_ring_funcs = { .type = AMDGPU_RING_TYPE_VPE, .align_mask = 0xf, .nop = VPE_CMD_HEADER(VPE_CMD_OPCODE_NOP, 0), .support_64bit_ptrs = true, .get_rptr = vpe_ring_get_rptr, .get_wptr = vpe_ring_get_wptr, .set_wptr = vpe_ring_set_wptr, .emit_frame_size = 5 + /* vpe_ring_init_cond_exec */ 6 + /* vpe_ring_emit_pipeline_sync */ 10 + 10 + 10 + /* vpe_ring_emit_fence */ /* vpe_ring_emit_vm_flush */ SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 + SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6, .emit_ib_size = 7 + 6, .emit_ib = vpe_ring_emit_ib, .emit_pipeline_sync = vpe_ring_emit_pipeline_sync, .emit_fence = vpe_ring_emit_fence, .emit_vm_flush = vpe_ring_emit_vm_flush, .emit_wreg = vpe_ring_emit_wreg, .emit_reg_wait = vpe_ring_emit_reg_wait, .emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper, .insert_nop = vpe_ring_insert_nop, .pad_ib = amdgpu_ring_generic_pad_ib, .test_ring = vpe_ring_test_ring, .test_ib = vpe_ring_test_ib, .init_cond_exec = vpe_ring_init_cond_exec, .preempt_ib = vpe_ring_preempt_ib, .begin_use = vpe_ring_begin_use, .end_use = vpe_ring_end_use, }; static void vpe_set_ring_funcs(struct amdgpu_device *adev) { adev->vpe.ring.funcs = &vpe_ring_funcs; } const struct amd_ip_funcs vpe_ip_funcs = { .name = "vpe_v6_1", .early_init = vpe_early_init, .late_init = NULL, .sw_init = vpe_sw_init, .sw_fini = vpe_sw_fini, .hw_init = vpe_hw_init, .hw_fini = vpe_hw_fini, .suspend = vpe_suspend, .resume = vpe_resume, .soft_reset = NULL, .set_clockgating_state = vpe_set_clockgating_state, .set_powergating_state = vpe_set_powergating_state, }; const struct amdgpu_ip_block_version vpe_v6_1_ip_block = { .type = AMD_IP_BLOCK_TYPE_VPE, .major = 6, .minor = 1, .rev = 0, .funcs = &vpe_ip_funcs, };