// SPDX-License-Identifier: GPL-2.0-or-later /* * acpi_osl.c - OS-dependent functions ($Revision: 83 $) * * Copyright (C) 2000 Andrew Henroid * Copyright (C) 2001, 2002 Andy Grover * Copyright (C) 2001, 2002 Paul Diefenbaugh * Copyright (c) 2008 Intel Corporation * Author: Matthew Wilcox */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "acpica/accommon.h" #include "acpica/acnamesp.h" #include "internal.h" #define _COMPONENT ACPI_OS_SERVICES ACPI_MODULE_NAME("osl"); struct acpi_os_dpc { acpi_osd_exec_callback function; void *context; struct work_struct work; }; #ifdef ENABLE_DEBUGGER #include /* stuff for debugger support */ int acpi_in_debugger; EXPORT_SYMBOL(acpi_in_debugger); #endif /*ENABLE_DEBUGGER */ static int (*__acpi_os_prepare_sleep)(u8 sleep_state, u32 pm1a_ctrl, u32 pm1b_ctrl); static int (*__acpi_os_prepare_extended_sleep)(u8 sleep_state, u32 val_a, u32 val_b); static acpi_osd_handler acpi_irq_handler; static void *acpi_irq_context; static struct workqueue_struct *kacpid_wq; static struct workqueue_struct *kacpi_notify_wq; static struct workqueue_struct *kacpi_hotplug_wq; static bool acpi_os_initialized; unsigned int acpi_sci_irq = INVALID_ACPI_IRQ; bool acpi_permanent_mmap = false; /* * This list of permanent mappings is for memory that may be accessed from * interrupt context, where we can't do the ioremap(). */ struct acpi_ioremap { struct list_head list; void __iomem *virt; acpi_physical_address phys; acpi_size size; unsigned long refcount; }; static LIST_HEAD(acpi_ioremaps); static DEFINE_MUTEX(acpi_ioremap_lock); static void __init acpi_request_region (struct acpi_generic_address *gas, unsigned int length, char *desc) { u64 addr; /* Handle possible alignment issues */ memcpy(&addr, &gas->address, sizeof(addr)); if (!addr || !length) return; /* Resources are never freed */ if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_IO) request_region(addr, length, desc); else if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) request_mem_region(addr, length, desc); } static int __init acpi_reserve_resources(void) { acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length, "ACPI PM1a_EVT_BLK"); acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length, "ACPI PM1b_EVT_BLK"); acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length, "ACPI PM1a_CNT_BLK"); acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length, "ACPI PM1b_CNT_BLK"); if (acpi_gbl_FADT.pm_timer_length == 4) acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR"); acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length, "ACPI PM2_CNT_BLK"); /* Length of GPE blocks must be a non-negative multiple of 2 */ if (!(acpi_gbl_FADT.gpe0_block_length & 0x1)) acpi_request_region(&acpi_gbl_FADT.xgpe0_block, acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK"); if (!(acpi_gbl_FADT.gpe1_block_length & 0x1)) acpi_request_region(&acpi_gbl_FADT.xgpe1_block, acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK"); return 0; } fs_initcall_sync(acpi_reserve_resources); void acpi_os_printf(const char *fmt, ...) { va_list args; va_start(args, fmt); acpi_os_vprintf(fmt, args); va_end(args); } EXPORT_SYMBOL(acpi_os_printf); void acpi_os_vprintf(const char *fmt, va_list args) { static char buffer[512]; vsprintf(buffer, fmt, args); #ifdef ENABLE_DEBUGGER if (acpi_in_debugger) { kdb_printf("%s", buffer); } else { if (printk_get_level(buffer)) printk("%s", buffer); else printk(KERN_CONT "%s", buffer); } #else if (acpi_debugger_write_log(buffer) < 0) { if (printk_get_level(buffer)) printk("%s", buffer); else printk(KERN_CONT "%s", buffer); } #endif } #ifdef CONFIG_KEXEC static unsigned long acpi_rsdp; static int __init setup_acpi_rsdp(char *arg) { return kstrtoul(arg, 16, &acpi_rsdp); } early_param("acpi_rsdp", setup_acpi_rsdp); #endif acpi_physical_address __init acpi_os_get_root_pointer(void) { acpi_physical_address pa; #ifdef CONFIG_KEXEC /* * We may have been provided with an RSDP on the command line, * but if a malicious user has done so they may be pointing us * at modified ACPI tables that could alter kernel behaviour - * so, we check the lockdown status before making use of * it. If we trust it then also stash it in an architecture * specific location (if appropriate) so it can be carried * over further kexec()s. */ if (acpi_rsdp && !security_locked_down(LOCKDOWN_ACPI_TABLES)) { acpi_arch_set_root_pointer(acpi_rsdp); return acpi_rsdp; } #endif pa = acpi_arch_get_root_pointer(); if (pa) return pa; if (efi_enabled(EFI_CONFIG_TABLES)) { if (efi.acpi20 != EFI_INVALID_TABLE_ADDR) return efi.acpi20; if (efi.acpi != EFI_INVALID_TABLE_ADDR) return efi.acpi; pr_err(PREFIX "System description tables not found\n"); } else if (IS_ENABLED(CONFIG_ACPI_LEGACY_TABLES_LOOKUP)) { acpi_find_root_pointer(&pa); } return pa; } /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */ static struct acpi_ioremap * acpi_map_lookup(acpi_physical_address phys, acpi_size size) { struct acpi_ioremap *map; list_for_each_entry_rcu(map, &acpi_ioremaps, list) if (map->phys <= phys && phys + size <= map->phys + map->size) return map; return NULL; } /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */ static void __iomem * acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size) { struct acpi_ioremap *map; map = acpi_map_lookup(phys, size); if (map) return map->virt + (phys - map->phys); return NULL; } void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size) { struct acpi_ioremap *map; void __iomem *virt = NULL; mutex_lock(&acpi_ioremap_lock); map = acpi_map_lookup(phys, size); if (map) { virt = map->virt + (phys - map->phys); map->refcount++; } mutex_unlock(&acpi_ioremap_lock); return virt; } EXPORT_SYMBOL_GPL(acpi_os_get_iomem); /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */ static struct acpi_ioremap * acpi_map_lookup_virt(void __iomem *virt, acpi_size size) { struct acpi_ioremap *map; list_for_each_entry_rcu(map, &acpi_ioremaps, list) if (map->virt <= virt && virt + size <= map->virt + map->size) return map; return NULL; } #if defined(CONFIG_IA64) || defined(CONFIG_ARM64) /* ioremap will take care of cache attributes */ #define should_use_kmap(pfn) 0 #else #define should_use_kmap(pfn) page_is_ram(pfn) #endif static void __iomem *acpi_map(acpi_physical_address pg_off, unsigned long pg_sz) { unsigned long pfn; pfn = pg_off >> PAGE_SHIFT; if (should_use_kmap(pfn)) { if (pg_sz > PAGE_SIZE) return NULL; return (void __iomem __force *)kmap(pfn_to_page(pfn)); } else return acpi_os_ioremap(pg_off, pg_sz); } static void acpi_unmap(acpi_physical_address pg_off, void __iomem *vaddr) { unsigned long pfn; pfn = pg_off >> PAGE_SHIFT; if (should_use_kmap(pfn)) kunmap(pfn_to_page(pfn)); else iounmap(vaddr); } /** * acpi_os_map_iomem - Get a virtual address for a given physical address range. * @phys: Start of the physical address range to map. * @size: Size of the physical address range to map. * * Look up the given physical address range in the list of existing ACPI memory * mappings. If found, get a reference to it and return a pointer to it (its * virtual address). If not found, map it, add it to that list and return a * pointer to it. * * During early init (when acpi_permanent_mmap has not been set yet) this * routine simply calls __acpi_map_table() to get the job done. */ void __iomem *__ref acpi_os_map_iomem(acpi_physical_address phys, acpi_size size) { struct acpi_ioremap *map; void __iomem *virt; acpi_physical_address pg_off; acpi_size pg_sz; if (phys > ULONG_MAX) { printk(KERN_ERR PREFIX "Cannot map memory that high\n"); return NULL; } if (!acpi_permanent_mmap) return __acpi_map_table((unsigned long)phys, size); mutex_lock(&acpi_ioremap_lock); /* Check if there's a suitable mapping already. */ map = acpi_map_lookup(phys, size); if (map) { map->refcount++; goto out; } map = kzalloc(sizeof(*map), GFP_KERNEL); if (!map) { mutex_unlock(&acpi_ioremap_lock); return NULL; } pg_off = round_down(phys, PAGE_SIZE); pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off; virt = acpi_map(pg_off, pg_sz); if (!virt) { mutex_unlock(&acpi_ioremap_lock); kfree(map); return NULL; } INIT_LIST_HEAD(&map->list); map->virt = virt; map->phys = pg_off; map->size = pg_sz; map->refcount = 1; list_add_tail_rcu(&map->list, &acpi_ioremaps); out: mutex_unlock(&acpi_ioremap_lock); return map->virt + (phys - map->phys); } EXPORT_SYMBOL_GPL(acpi_os_map_iomem); void *__ref acpi_os_map_memory(acpi_physical_address phys, acpi_size size) { return (void *)acpi_os_map_iomem(phys, size); } EXPORT_SYMBOL_GPL(acpi_os_map_memory); static void acpi_os_drop_map_ref(struct acpi_ioremap *map) { if (!--map->refcount) list_del_rcu(&map->list); } static void acpi_os_map_cleanup(struct acpi_ioremap *map) { if (!map->refcount) { synchronize_rcu_expedited(); acpi_unmap(map->phys, map->virt); kfree(map); } } /** * acpi_os_unmap_iomem - Drop a memory mapping reference. * @virt: Start of the address range to drop a reference to. * @size: Size of the address range to drop a reference to. * * Look up the given virtual address range in the list of existing ACPI memory * mappings, drop a reference to it and unmap it if there are no more active * references to it. * * During early init (when acpi_permanent_mmap has not been set yet) this * routine simply calls __acpi_unmap_table() to get the job done. Since * __acpi_unmap_table() is an __init function, the __ref annotation is needed * here. */ void __ref acpi_os_unmap_iomem(void __iomem *virt, acpi_size size) { struct acpi_ioremap *map; if (!acpi_permanent_mmap) { __acpi_unmap_table(virt, size); return; } mutex_lock(&acpi_ioremap_lock); map = acpi_map_lookup_virt(virt, size); if (!map) { mutex_unlock(&acpi_ioremap_lock); WARN(true, PREFIX "%s: bad address %p\n", __func__, virt); return; } acpi_os_drop_map_ref(map); mutex_unlock(&acpi_ioremap_lock); acpi_os_map_cleanup(map); } EXPORT_SYMBOL_GPL(acpi_os_unmap_iomem); void __ref acpi_os_unmap_memory(void *virt, acpi_size size) { return acpi_os_unmap_iomem((void __iomem *)virt, size); } EXPORT_SYMBOL_GPL(acpi_os_unmap_memory); int acpi_os_map_generic_address(struct acpi_generic_address *gas) { u64 addr; void __iomem *virt; if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY) return 0; /* Handle possible alignment issues */ memcpy(&addr, &gas->address, sizeof(addr)); if (!addr || !gas->bit_width) return -EINVAL; virt = acpi_os_map_iomem(addr, gas->bit_width / 8); if (!virt) return -EIO; return 0; } EXPORT_SYMBOL(acpi_os_map_generic_address); void acpi_os_unmap_generic_address(struct acpi_generic_address *gas) { u64 addr; struct acpi_ioremap *map; if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY) return; /* Handle possible alignment issues */ memcpy(&addr, &gas->address, sizeof(addr)); if (!addr || !gas->bit_width) return; mutex_lock(&acpi_ioremap_lock); map = acpi_map_lookup(addr, gas->bit_width / 8); if (!map) { mutex_unlock(&acpi_ioremap_lock); return; } acpi_os_drop_map_ref(map); mutex_unlock(&acpi_ioremap_lock); acpi_os_map_cleanup(map); } EXPORT_SYMBOL(acpi_os_unmap_generic_address); #ifdef ACPI_FUTURE_USAGE acpi_status acpi_os_get_physical_address(void *virt, acpi_physical_address * phys) { if (!phys || !virt) return AE_BAD_PARAMETER; *phys = virt_to_phys(virt); return AE_OK; } #endif #ifdef CONFIG_ACPI_REV_OVERRIDE_POSSIBLE static bool acpi_rev_override; int __init acpi_rev_override_setup(char *str) { acpi_rev_override = true; return 1; } __setup("acpi_rev_override", acpi_rev_override_setup); #else #define acpi_rev_override false #endif #define ACPI_MAX_OVERRIDE_LEN 100 static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN]; acpi_status acpi_os_predefined_override(const struct acpi_predefined_names *init_val, acpi_string *new_val) { if (!init_val || !new_val) return AE_BAD_PARAMETER; *new_val = NULL; if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) { printk(KERN_INFO PREFIX "Overriding _OS definition to '%s'\n", acpi_os_name); *new_val = acpi_os_name; } if (!memcmp(init_val->name, "_REV", 4) && acpi_rev_override) { printk(KERN_INFO PREFIX "Overriding _REV return value to 5\n"); *new_val = (char *)5; } return AE_OK; } static irqreturn_t acpi_irq(int irq, void *dev_id) { u32 handled; handled = (*acpi_irq_handler) (acpi_irq_context); if (handled) { acpi_irq_handled++; return IRQ_HANDLED; } else { acpi_irq_not_handled++; return IRQ_NONE; } } acpi_status acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler, void *context) { unsigned int irq; acpi_irq_stats_init(); /* * ACPI interrupts different from the SCI in our copy of the FADT are * not supported. */ if (gsi != acpi_gbl_FADT.sci_interrupt) return AE_BAD_PARAMETER; if (acpi_irq_handler) return AE_ALREADY_ACQUIRED; if (acpi_gsi_to_irq(gsi, &irq) < 0) { printk(KERN_ERR PREFIX "SCI (ACPI GSI %d) not registered\n", gsi); return AE_OK; } acpi_irq_handler = handler; acpi_irq_context = context; if (request_irq(irq, acpi_irq, IRQF_SHARED, "acpi", acpi_irq)) { printk(KERN_ERR PREFIX "SCI (IRQ%d) allocation failed\n", irq); acpi_irq_handler = NULL; return AE_NOT_ACQUIRED; } acpi_sci_irq = irq; return AE_OK; } acpi_status acpi_os_remove_interrupt_handler(u32 gsi, acpi_osd_handler handler) { if (gsi != acpi_gbl_FADT.sci_interrupt || !acpi_sci_irq_valid()) return AE_BAD_PARAMETER; free_irq(acpi_sci_irq, acpi_irq); acpi_irq_handler = NULL; acpi_sci_irq = INVALID_ACPI_IRQ; return AE_OK; } /* * Running in interpreter thread context, safe to sleep */ void acpi_os_sleep(u64 ms) { msleep(ms); } void acpi_os_stall(u32 us) { while (us) { u32 delay = 1000; if (delay > us) delay = us; udelay(delay); touch_nmi_watchdog(); us -= delay; } } /* * Support ACPI 3.0 AML Timer operand. Returns a 64-bit free-running, * monotonically increasing timer with 100ns granularity. Do not use * ktime_get() to implement this function because this function may get * called after timekeeping has been suspended. Note: calling this function * after timekeeping has been suspended may lead to unexpected results * because when timekeeping is suspended the jiffies counter is not * incremented. See also timekeeping_suspend(). */ u64 acpi_os_get_timer(void) { return (get_jiffies_64() - INITIAL_JIFFIES) * (ACPI_100NSEC_PER_SEC / HZ); } acpi_status acpi_os_read_port(acpi_io_address port, u32 * value, u32 width) { u32 dummy; if (!value) value = &dummy; *value = 0; if (width <= 8) { *(u8 *) value = inb(port); } else if (width <= 16) { *(u16 *) value = inw(port); } else if (width <= 32) { *(u32 *) value = inl(port); } else { BUG(); } return AE_OK; } EXPORT_SYMBOL(acpi_os_read_port); acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width) { if (width <= 8) { outb(value, port); } else if (width <= 16) { outw(value, port); } else if (width <= 32) { outl(value, port); } else { BUG(); } return AE_OK; } EXPORT_SYMBOL(acpi_os_write_port); int acpi_os_read_iomem(void __iomem *virt_addr, u64 *value, u32 width) { switch (width) { case 8: *(u8 *) value = readb(virt_addr); break; case 16: *(u16 *) value = readw(virt_addr); break; case 32: *(u32 *) value = readl(virt_addr); break; case 64: *(u64 *) value = readq(virt_addr); break; default: return -EINVAL; } return 0; } acpi_status acpi_os_read_memory(acpi_physical_address phys_addr, u64 *value, u32 width) { void __iomem *virt_addr; unsigned int size = width / 8; bool unmap = false; u64 dummy; int error; rcu_read_lock(); virt_addr = acpi_map_vaddr_lookup(phys_addr, size); if (!virt_addr) { rcu_read_unlock(); virt_addr = acpi_os_ioremap(phys_addr, size); if (!virt_addr) return AE_BAD_ADDRESS; unmap = true; } if (!value) value = &dummy; error = acpi_os_read_iomem(virt_addr, value, width); BUG_ON(error); if (unmap) iounmap(virt_addr); else rcu_read_unlock(); return AE_OK; } acpi_status acpi_os_write_memory(acpi_physical_address phys_addr, u64 value, u32 width) { void __iomem *virt_addr; unsigned int size = width / 8; bool unmap = false; rcu_read_lock(); virt_addr = acpi_map_vaddr_lookup(phys_addr, size); if (!virt_addr) { rcu_read_unlock(); virt_addr = acpi_os_ioremap(phys_addr, size); if (!virt_addr) return AE_BAD_ADDRESS; unmap = true; } switch (width) { case 8: writeb(value, virt_addr); break; case 16: writew(value, virt_addr); break; case 32: writel(value, virt_addr); break; case 64: writeq(value, virt_addr); break; default: BUG(); } if (unmap) iounmap(virt_addr); else rcu_read_unlock(); return AE_OK; } #ifdef CONFIG_PCI acpi_status acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg, u64 *value, u32 width) { int result, size; u32 value32; if (!value) return AE_BAD_PARAMETER; switch (width) { case 8: size = 1; break; case 16: size = 2; break; case 32: size = 4; break; default: return AE_ERROR; } result = raw_pci_read(pci_id->segment, pci_id->bus, PCI_DEVFN(pci_id->device, pci_id->function), reg, size, &value32); *value = value32; return (result ? AE_ERROR : AE_OK); } acpi_status acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg, u64 value, u32 width) { int result, size; switch (width) { case 8: size = 1; break; case 16: size = 2; break; case 32: size = 4; break; default: return AE_ERROR; } result = raw_pci_write(pci_id->segment, pci_id->bus, PCI_DEVFN(pci_id->device, pci_id->function), reg, size, value); return (result ? AE_ERROR : AE_OK); } #endif static void acpi_os_execute_deferred(struct work_struct *work) { struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work); dpc->function(dpc->context); kfree(dpc); } #ifdef CONFIG_ACPI_DEBUGGER static struct acpi_debugger acpi_debugger; static bool acpi_debugger_initialized; int acpi_register_debugger(struct module *owner, const struct acpi_debugger_ops *ops) { int ret = 0; mutex_lock(&acpi_debugger.lock); if (acpi_debugger.ops) { ret = -EBUSY; goto err_lock; } acpi_debugger.owner = owner; acpi_debugger.ops = ops; err_lock: mutex_unlock(&acpi_debugger.lock); return ret; } EXPORT_SYMBOL(acpi_register_debugger); void acpi_unregister_debugger(const struct acpi_debugger_ops *ops) { mutex_lock(&acpi_debugger.lock); if (ops == acpi_debugger.ops) { acpi_debugger.ops = NULL; acpi_debugger.owner = NULL; } mutex_unlock(&acpi_debugger.lock); } EXPORT_SYMBOL(acpi_unregister_debugger); int acpi_debugger_create_thread(acpi_osd_exec_callback function, void *context) { int ret; int (*func)(acpi_osd_exec_callback, void *); struct module *owner; if (!acpi_debugger_initialized) return -ENODEV; mutex_lock(&acpi_debugger.lock); if (!acpi_debugger.ops) { ret = -ENODEV; goto err_lock; } if (!try_module_get(acpi_debugger.owner)) { ret = -ENODEV; goto err_lock; } func = acpi_debugger.ops->create_thread; owner = acpi_debugger.owner; mutex_unlock(&acpi_debugger.lock); ret = func(function, context); mutex_lock(&acpi_debugger.lock); module_put(owner); err_lock: mutex_unlock(&acpi_debugger.lock); return ret; } ssize_t acpi_debugger_write_log(const char *msg) { ssize_t ret; ssize_t (*func)(const char *); struct module *owner; if (!acpi_debugger_initialized) return -ENODEV; mutex_lock(&acpi_debugger.lock); if (!acpi_debugger.ops) { ret = -ENODEV; goto err_lock; } if (!try_module_get(acpi_debugger.owner)) { ret = -ENODEV; goto err_lock; } func = acpi_debugger.ops->write_log; owner = acpi_debugger.owner; mutex_unlock(&acpi_debugger.lock); ret = func(msg); mutex_lock(&acpi_debugger.lock); module_put(owner); err_lock: mutex_unlock(&acpi_debugger.lock); return ret; } ssize_t acpi_debugger_read_cmd(char *buffer, size_t buffer_length) { ssize_t ret; ssize_t (*func)(char *, size_t); struct module *owner; if (!acpi_debugger_initialized) return -ENODEV; mutex_lock(&acpi_debugger.lock); if (!acpi_debugger.ops) { ret = -ENODEV; goto err_lock; } if (!try_module_get(acpi_debugger.owner)) { ret = -ENODEV; goto err_lock; } func = acpi_debugger.ops->read_cmd; owner = acpi_debugger.owner; mutex_unlock(&acpi_debugger.lock); ret = func(buffer, buffer_length); mutex_lock(&acpi_debugger.lock); module_put(owner); err_lock: mutex_unlock(&acpi_debugger.lock); return ret; } int acpi_debugger_wait_command_ready(void) { int ret; int (*func)(bool, char *, size_t); struct module *owner; if (!acpi_debugger_initialized) return -ENODEV; mutex_lock(&acpi_debugger.lock); if (!acpi_debugger.ops) { ret = -ENODEV; goto err_lock; } if (!try_module_get(acpi_debugger.owner)) { ret = -ENODEV; goto err_lock; } func = acpi_debugger.ops->wait_command_ready; owner = acpi_debugger.owner; mutex_unlock(&acpi_debugger.lock); ret = func(acpi_gbl_method_executing, acpi_gbl_db_line_buf, ACPI_DB_LINE_BUFFER_SIZE); mutex_lock(&acpi_debugger.lock); module_put(owner); err_lock: mutex_unlock(&acpi_debugger.lock); return ret; } int acpi_debugger_notify_command_complete(void) { int ret; int (*func)(void); struct module *owner; if (!acpi_debugger_initialized) return -ENODEV; mutex_lock(&acpi_debugger.lock); if (!acpi_debugger.ops) { ret = -ENODEV; goto err_lock; } if (!try_module_get(acpi_debugger.owner)) { ret = -ENODEV; goto err_lock; } func = acpi_debugger.ops->notify_command_complete; owner = acpi_debugger.owner; mutex_unlock(&acpi_debugger.lock); ret = func(); mutex_lock(&acpi_debugger.lock); module_put(owner); err_lock: mutex_unlock(&acpi_debugger.lock); return ret; } int __init acpi_debugger_init(void) { mutex_init(&acpi_debugger.lock); acpi_debugger_initialized = true; return 0; } #endif /******************************************************************************* * * FUNCTION: acpi_os_execute * * PARAMETERS: Type - Type of the callback * Function - Function to be executed * Context - Function parameters * * RETURN: Status * * DESCRIPTION: Depending on type, either queues function for deferred execution or * immediately executes function on a separate thread. * ******************************************************************************/ acpi_status acpi_os_execute(acpi_execute_type type, acpi_osd_exec_callback function, void *context) { acpi_status status = AE_OK; struct acpi_os_dpc *dpc; struct workqueue_struct *queue; int ret; ACPI_DEBUG_PRINT((ACPI_DB_EXEC, "Scheduling function [%p(%p)] for deferred execution.\n", function, context)); if (type == OSL_DEBUGGER_MAIN_THREAD) { ret = acpi_debugger_create_thread(function, context); if (ret) { pr_err("Call to kthread_create() failed.\n"); status = AE_ERROR; } goto out_thread; } /* * Allocate/initialize DPC structure. Note that this memory will be * freed by the callee. The kernel handles the work_struct list in a * way that allows us to also free its memory inside the callee. * Because we may want to schedule several tasks with different * parameters we can't use the approach some kernel code uses of * having a static work_struct. */ dpc = kzalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC); if (!dpc) return AE_NO_MEMORY; dpc->function = function; dpc->context = context; /* * To prevent lockdep from complaining unnecessarily, make sure that * there is a different static lockdep key for each workqueue by using * INIT_WORK() for each of them separately. */ if (type == OSL_NOTIFY_HANDLER) { queue = kacpi_notify_wq; INIT_WORK(&dpc->work, acpi_os_execute_deferred); } else if (type == OSL_GPE_HANDLER) { queue = kacpid_wq; INIT_WORK(&dpc->work, acpi_os_execute_deferred); } else { pr_err("Unsupported os_execute type %d.\n", type); status = AE_ERROR; } if (ACPI_FAILURE(status)) goto err_workqueue; /* * On some machines, a software-initiated SMI causes corruption unless * the SMI runs on CPU 0. An SMI can be initiated by any AML, but * typically it's done in GPE-related methods that are run via * workqueues, so we can avoid the known corruption cases by always * queueing on CPU 0. */ ret = queue_work_on(0, queue, &dpc->work); if (!ret) { printk(KERN_ERR PREFIX "Call to queue_work() failed.\n"); status = AE_ERROR; } err_workqueue: if (ACPI_FAILURE(status)) kfree(dpc); out_thread: return status; } EXPORT_SYMBOL(acpi_os_execute); void acpi_os_wait_events_complete(void) { /* * Make sure the GPE handler or the fixed event handler is not used * on another CPU after removal. */ if (acpi_sci_irq_valid()) synchronize_hardirq(acpi_sci_irq); flush_workqueue(kacpid_wq); flush_workqueue(kacpi_notify_wq); } EXPORT_SYMBOL(acpi_os_wait_events_complete); struct acpi_hp_work { struct work_struct work; struct acpi_device *adev; u32 src; }; static void acpi_hotplug_work_fn(struct work_struct *work) { struct acpi_hp_work *hpw = container_of(work, struct acpi_hp_work, work); acpi_os_wait_events_complete(); acpi_device_hotplug(hpw->adev, hpw->src); kfree(hpw); } acpi_status acpi_hotplug_schedule(struct acpi_device *adev, u32 src) { struct acpi_hp_work *hpw; ACPI_DEBUG_PRINT((ACPI_DB_EXEC, "Scheduling hotplug event (%p, %u) for deferred execution.\n", adev, src)); hpw = kmalloc(sizeof(*hpw), GFP_KERNEL); if (!hpw) return AE_NO_MEMORY; INIT_WORK(&hpw->work, acpi_hotplug_work_fn); hpw->adev = adev; hpw->src = src; /* * We can't run hotplug code in kacpid_wq/kacpid_notify_wq etc., because * the hotplug code may call driver .remove() functions, which may * invoke flush_scheduled_work()/acpi_os_wait_events_complete() to flush * these workqueues. */ if (!queue_work(kacpi_hotplug_wq, &hpw->work)) { kfree(hpw); return AE_ERROR; } return AE_OK; } bool acpi_queue_hotplug_work(struct work_struct *work) { return queue_work(kacpi_hotplug_wq, work); } acpi_status acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle) { struct semaphore *sem = NULL; sem = acpi_os_allocate_zeroed(sizeof(struct semaphore)); if (!sem) return AE_NO_MEMORY; sema_init(sem, initial_units); *handle = (acpi_handle *) sem; ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n", *handle, initial_units)); return AE_OK; } /* * TODO: A better way to delete semaphores? Linux doesn't have a * 'delete_semaphore()' function -- may result in an invalid * pointer dereference for non-synchronized consumers. Should * we at least check for blocked threads and signal/cancel them? */ acpi_status acpi_os_delete_semaphore(acpi_handle handle) { struct semaphore *sem = (struct semaphore *)handle; if (!sem) return AE_BAD_PARAMETER; ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle)); BUG_ON(!list_empty(&sem->wait_list)); kfree(sem); sem = NULL; return AE_OK; } /* * TODO: Support for units > 1? */ acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout) { acpi_status status = AE_OK; struct semaphore *sem = (struct semaphore *)handle; long jiffies; int ret = 0; if (!acpi_os_initialized) return AE_OK; if (!sem || (units < 1)) return AE_BAD_PARAMETER; if (units > 1) return AE_SUPPORT; ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n", handle, units, timeout)); if (timeout == ACPI_WAIT_FOREVER) jiffies = MAX_SCHEDULE_TIMEOUT; else jiffies = msecs_to_jiffies(timeout); ret = down_timeout(sem, jiffies); if (ret) status = AE_TIME; if (ACPI_FAILURE(status)) { ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Failed to acquire semaphore[%p|%d|%d], %s", handle, units, timeout, acpi_format_exception(status))); } else { ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Acquired semaphore[%p|%d|%d]", handle, units, timeout)); } return status; } /* * TODO: Support for units > 1? */ acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units) { struct semaphore *sem = (struct semaphore *)handle; if (!acpi_os_initialized) return AE_OK; if (!sem || (units < 1)) return AE_BAD_PARAMETER; if (units > 1) return AE_SUPPORT; ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle, units)); up(sem); return AE_OK; } acpi_status acpi_os_get_line(char *buffer, u32 buffer_length, u32 *bytes_read) { #ifdef ENABLE_DEBUGGER if (acpi_in_debugger) { u32 chars; kdb_read(buffer, buffer_length); /* remove the CR kdb includes */ chars = strlen(buffer) - 1; buffer[chars] = '\0'; } #else int ret; ret = acpi_debugger_read_cmd(buffer, buffer_length); if (ret < 0) return AE_ERROR; if (bytes_read) *bytes_read = ret; #endif return AE_OK; } EXPORT_SYMBOL(acpi_os_get_line); acpi_status acpi_os_wait_command_ready(void) { int ret; ret = acpi_debugger_wait_command_ready(); if (ret < 0) return AE_ERROR; return AE_OK; } acpi_status acpi_os_notify_command_complete(void) { int ret; ret = acpi_debugger_notify_command_complete(); if (ret < 0) return AE_ERROR; return AE_OK; } acpi_status acpi_os_signal(u32 function, void *info) { switch (function) { case ACPI_SIGNAL_FATAL: printk(KERN_ERR PREFIX "Fatal opcode executed\n"); break; case ACPI_SIGNAL_BREAKPOINT: /* * AML Breakpoint * ACPI spec. says to treat it as a NOP unless * you are debugging. So if/when we integrate * AML debugger into the kernel debugger its * hook will go here. But until then it is * not useful to print anything on breakpoints. */ break; default: break; } return AE_OK; } static int __init acpi_os_name_setup(char *str) { char *p = acpi_os_name; int count = ACPI_MAX_OVERRIDE_LEN - 1; if (!str || !*str) return 0; for (; count-- && *str; str++) { if (isalnum(*str) || *str == ' ' || *str == ':') *p++ = *str; else if (*str == '\'' || *str == '"') continue; else break; } *p = 0; return 1; } __setup("acpi_os_name=", acpi_os_name_setup); /* * Disable the auto-serialization of named objects creation methods. * * This feature is enabled by default. It marks the AML control methods * that contain the opcodes to create named objects as "Serialized". */ static int __init acpi_no_auto_serialize_setup(char *str) { acpi_gbl_auto_serialize_methods = FALSE; pr_info("ACPI: auto-serialization disabled\n"); return 1; } __setup("acpi_no_auto_serialize", acpi_no_auto_serialize_setup); /* Check of resource interference between native drivers and ACPI * OperationRegions (SystemIO and System Memory only). * IO ports and memory declared in ACPI might be used by the ACPI subsystem * in arbitrary AML code and can interfere with legacy drivers. * acpi_enforce_resources= can be set to: * * - strict (default) (2) * -> further driver trying to access the resources will not load * - lax (1) * -> further driver trying to access the resources will load, but you * get a system message that something might go wrong... * * - no (0) * -> ACPI Operation Region resources will not be registered * */ #define ENFORCE_RESOURCES_STRICT 2 #define ENFORCE_RESOURCES_LAX 1 #define ENFORCE_RESOURCES_NO 0 static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT; static int __init acpi_enforce_resources_setup(char *str) { if (str == NULL || *str == '\0') return 0; if (!strcmp("strict", str)) acpi_enforce_resources = ENFORCE_RESOURCES_STRICT; else if (!strcmp("lax", str)) acpi_enforce_resources = ENFORCE_RESOURCES_LAX; else if (!strcmp("no", str)) acpi_enforce_resources = ENFORCE_RESOURCES_NO; return 1; } __setup("acpi_enforce_resources=", acpi_enforce_resources_setup); /* Check for resource conflicts between ACPI OperationRegions and native * drivers */ int acpi_check_resource_conflict(const struct resource *res) { acpi_adr_space_type space_id; acpi_size length; u8 warn = 0; int clash = 0; if (acpi_enforce_resources == ENFORCE_RESOURCES_NO) return 0; if (!(res->flags & IORESOURCE_IO) && !(res->flags & IORESOURCE_MEM)) return 0; if (res->flags & IORESOURCE_IO) space_id = ACPI_ADR_SPACE_SYSTEM_IO; else space_id = ACPI_ADR_SPACE_SYSTEM_MEMORY; length = resource_size(res); if (acpi_enforce_resources != ENFORCE_RESOURCES_NO) warn = 1; clash = acpi_check_address_range(space_id, res->start, length, warn); if (clash) { if (acpi_enforce_resources != ENFORCE_RESOURCES_NO) { if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX) printk(KERN_NOTICE "ACPI: This conflict may" " cause random problems and system" " instability\n"); printk(KERN_INFO "ACPI: If an ACPI driver is available" " for this device, you should use it instead of" " the native driver\n"); } if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT) return -EBUSY; } return 0; } EXPORT_SYMBOL(acpi_check_resource_conflict); int acpi_check_region(resource_size_t start, resource_size_t n, const char *name) { struct resource res = { .start = start, .end = start + n - 1, .name = name, .flags = IORESOURCE_IO, }; return acpi_check_resource_conflict(&res); } EXPORT_SYMBOL(acpi_check_region); static acpi_status acpi_deactivate_mem_region(acpi_handle handle, u32 level, void *_res, void **return_value) { struct acpi_mem_space_context **mem_ctx; union acpi_operand_object *handler_obj; union acpi_operand_object *region_obj2; union acpi_operand_object *region_obj; struct resource *res = _res; acpi_status status; region_obj = acpi_ns_get_attached_object(handle); if (!region_obj) return AE_OK; handler_obj = region_obj->region.handler; if (!handler_obj) return AE_OK; if (region_obj->region.space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY) return AE_OK; if (!(region_obj->region.flags & AOPOBJ_SETUP_COMPLETE)) return AE_OK; region_obj2 = acpi_ns_get_secondary_object(region_obj); if (!region_obj2) return AE_OK; mem_ctx = (void *)®ion_obj2->extra.region_context; if (!(mem_ctx[0]->address >= res->start && mem_ctx[0]->address < res->end)) return AE_OK; status = handler_obj->address_space.setup(region_obj, ACPI_REGION_DEACTIVATE, NULL, (void **)mem_ctx); if (ACPI_SUCCESS(status)) region_obj->region.flags &= ~(AOPOBJ_SETUP_COMPLETE); return status; } /** * acpi_release_memory - Release any mappings done to a memory region * @handle: Handle to namespace node * @res: Memory resource * @level: A level that terminates the search * * Walks through @handle and unmaps all SystemMemory Operation Regions that * overlap with @res and that have already been activated (mapped). * * This is a helper that allows drivers to place special requirements on memory * region that may overlap with operation regions, primarily allowing them to * safely map the region as non-cached memory. * * The unmapped Operation Regions will be automatically remapped next time they * are called, so the drivers do not need to do anything else. */ acpi_status acpi_release_memory(acpi_handle handle, struct resource *res, u32 level) { if (!(res->flags & IORESOURCE_MEM)) return AE_TYPE; return acpi_walk_namespace(ACPI_TYPE_REGION, handle, level, acpi_deactivate_mem_region, NULL, res, NULL); } EXPORT_SYMBOL_GPL(acpi_release_memory); /* * Let drivers know whether the resource checks are effective */ int acpi_resources_are_enforced(void) { return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT; } EXPORT_SYMBOL(acpi_resources_are_enforced); /* * Deallocate the memory for a spinlock. */ void acpi_os_delete_lock(acpi_spinlock handle) { ACPI_FREE(handle); } /* * Acquire a spinlock. * * handle is a pointer to the spinlock_t. */ acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp) { acpi_cpu_flags flags; spin_lock_irqsave(lockp, flags); return flags; } /* * Release a spinlock. See above. */ void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags flags) { spin_unlock_irqrestore(lockp, flags); } #ifndef ACPI_USE_LOCAL_CACHE /******************************************************************************* * * FUNCTION: acpi_os_create_cache * * PARAMETERS: name - Ascii name for the cache * size - Size of each cached object * depth - Maximum depth of the cache (in objects) * cache - Where the new cache object is returned * * RETURN: status * * DESCRIPTION: Create a cache object * ******************************************************************************/ acpi_status acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache) { *cache = kmem_cache_create(name, size, 0, 0, NULL); if (*cache == NULL) return AE_ERROR; else return AE_OK; } /******************************************************************************* * * FUNCTION: acpi_os_purge_cache * * PARAMETERS: Cache - Handle to cache object * * RETURN: Status * * DESCRIPTION: Free all objects within the requested cache. * ******************************************************************************/ acpi_status acpi_os_purge_cache(acpi_cache_t * cache) { kmem_cache_shrink(cache); return (AE_OK); } /******************************************************************************* * * FUNCTION: acpi_os_delete_cache * * PARAMETERS: Cache - Handle to cache object * * RETURN: Status * * DESCRIPTION: Free all objects within the requested cache and delete the * cache object. * ******************************************************************************/ acpi_status acpi_os_delete_cache(acpi_cache_t * cache) { kmem_cache_destroy(cache); return (AE_OK); } /******************************************************************************* * * FUNCTION: acpi_os_release_object * * PARAMETERS: Cache - Handle to cache object * Object - The object to be released * * RETURN: None * * DESCRIPTION: Release an object to the specified cache. If cache is full, * the object is deleted. * ******************************************************************************/ acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object) { kmem_cache_free(cache, object); return (AE_OK); } #endif static int __init acpi_no_static_ssdt_setup(char *s) { acpi_gbl_disable_ssdt_table_install = TRUE; pr_info("ACPI: static SSDT installation disabled\n"); return 0; } early_param("acpi_no_static_ssdt", acpi_no_static_ssdt_setup); static int __init acpi_disable_return_repair(char *s) { printk(KERN_NOTICE PREFIX "ACPI: Predefined validation mechanism disabled\n"); acpi_gbl_disable_auto_repair = TRUE; return 1; } __setup("acpica_no_return_repair", acpi_disable_return_repair); acpi_status __init acpi_os_initialize(void) { acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block); acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block); acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block); acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block); if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) { /* * Use acpi_os_map_generic_address to pre-map the reset * register if it's in system memory. */ int rv; rv = acpi_os_map_generic_address(&acpi_gbl_FADT.reset_register); pr_debug(PREFIX "%s: map reset_reg status %d\n", __func__, rv); } acpi_os_initialized = true; return AE_OK; } acpi_status __init acpi_os_initialize1(void) { kacpid_wq = alloc_workqueue("kacpid", 0, 1); kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 1); kacpi_hotplug_wq = alloc_ordered_workqueue("kacpi_hotplug", 0); BUG_ON(!kacpid_wq); BUG_ON(!kacpi_notify_wq); BUG_ON(!kacpi_hotplug_wq); acpi_osi_init(); return AE_OK; } acpi_status acpi_os_terminate(void) { if (acpi_irq_handler) { acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt, acpi_irq_handler); } acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block); acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block); acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block); acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block); if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) acpi_os_unmap_generic_address(&acpi_gbl_FADT.reset_register); destroy_workqueue(kacpid_wq); destroy_workqueue(kacpi_notify_wq); destroy_workqueue(kacpi_hotplug_wq); return AE_OK; } acpi_status acpi_os_prepare_sleep(u8 sleep_state, u32 pm1a_control, u32 pm1b_control) { int rc = 0; if (__acpi_os_prepare_sleep) rc = __acpi_os_prepare_sleep(sleep_state, pm1a_control, pm1b_control); if (rc < 0) return AE_ERROR; else if (rc > 0) return AE_CTRL_TERMINATE; return AE_OK; } void acpi_os_set_prepare_sleep(int (*func)(u8 sleep_state, u32 pm1a_ctrl, u32 pm1b_ctrl)) { __acpi_os_prepare_sleep = func; } #if (ACPI_REDUCED_HARDWARE) acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a, u32 val_b) { int rc = 0; if (__acpi_os_prepare_extended_sleep) rc = __acpi_os_prepare_extended_sleep(sleep_state, val_a, val_b); if (rc < 0) return AE_ERROR; else if (rc > 0) return AE_CTRL_TERMINATE; return AE_OK; } #else acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a, u32 val_b) { return AE_OK; } #endif void acpi_os_set_prepare_extended_sleep(int (*func)(u8 sleep_state, u32 val_a, u32 val_b)) { __acpi_os_prepare_extended_sleep = func; } acpi_status acpi_os_enter_sleep(u8 sleep_state, u32 reg_a_value, u32 reg_b_value) { acpi_status status; if (acpi_gbl_reduced_hardware) status = acpi_os_prepare_extended_sleep(sleep_state, reg_a_value, reg_b_value); else status = acpi_os_prepare_sleep(sleep_state, reg_a_value, reg_b_value); return status; }