/* * SGI UltraViolet TLB flush routines. * * (c) 2008-2011 Cliff Wickman , SGI. * * This code is released under the GNU General Public License version 2 or * later. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* timeouts in nanoseconds (indexed by UVH_AGING_PRESCALE_SEL urgency7 30:28) */ static int timeout_base_ns[] = { 20, 160, 1280, 10240, 81920, 655360, 5242880, 167772160 }; static int timeout_us; static int nobau; static int baudisabled; static spinlock_t disable_lock; static cycles_t congested_cycles; /* tunables: */ static int max_concurr = MAX_BAU_CONCURRENT; static int max_concurr_const = MAX_BAU_CONCURRENT; static int plugged_delay = PLUGGED_DELAY; static int plugsb4reset = PLUGSB4RESET; static int timeoutsb4reset = TIMEOUTSB4RESET; static int ipi_reset_limit = IPI_RESET_LIMIT; static int complete_threshold = COMPLETE_THRESHOLD; static int congested_respns_us = CONGESTED_RESPONSE_US; static int congested_reps = CONGESTED_REPS; static int congested_period = CONGESTED_PERIOD; static struct tunables tunables[] = { {&max_concurr, MAX_BAU_CONCURRENT}, /* must be [0] */ {&plugged_delay, PLUGGED_DELAY}, {&plugsb4reset, PLUGSB4RESET}, {&timeoutsb4reset, TIMEOUTSB4RESET}, {&ipi_reset_limit, IPI_RESET_LIMIT}, {&complete_threshold, COMPLETE_THRESHOLD}, {&congested_respns_us, CONGESTED_RESPONSE_US}, {&congested_reps, CONGESTED_REPS}, {&congested_period, CONGESTED_PERIOD} }; static struct dentry *tunables_dir; static struct dentry *tunables_file; /* these correspond to the statistics printed by ptc_seq_show() */ static char *stat_description[] = { "sent: number of shootdown messages sent", "stime: time spent sending messages", "numuvhubs: number of hubs targeted with shootdown", "numuvhubs16: number times 16 or more hubs targeted", "numuvhubs8: number times 8 or more hubs targeted", "numuvhubs4: number times 4 or more hubs targeted", "numuvhubs2: number times 2 or more hubs targeted", "numuvhubs1: number times 1 hub targeted", "numcpus: number of cpus targeted with shootdown", "dto: number of destination timeouts", "retries: destination timeout retries sent", "rok: : destination timeouts successfully retried", "resetp: ipi-style resource resets for plugs", "resett: ipi-style resource resets for timeouts", "giveup: fall-backs to ipi-style shootdowns", "sto: number of source timeouts", "bz: number of stay-busy's", "throt: number times spun in throttle", "swack: image of UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE", "recv: shootdown messages received", "rtime: time spent processing messages", "all: shootdown all-tlb messages", "one: shootdown one-tlb messages", "mult: interrupts that found multiple messages", "none: interrupts that found no messages", "retry: number of retry messages processed", "canc: number messages canceled by retries", "nocan: number retries that found nothing to cancel", "reset: number of ipi-style reset requests processed", "rcan: number messages canceled by reset requests", "disable: number times use of the BAU was disabled", "enable: number times use of the BAU was re-enabled" }; static int __init setup_nobau(char *arg) { nobau = 1; return 0; } early_param("nobau", setup_nobau); /* base pnode in this partition */ static int uv_base_pnode __read_mostly; static DEFINE_PER_CPU(struct ptc_stats, ptcstats); static DEFINE_PER_CPU(struct bau_control, bau_control); static DEFINE_PER_CPU(cpumask_var_t, uv_flush_tlb_mask); /* * Determine the first node on a uvhub. 'Nodes' are used for kernel * memory allocation. */ static int __init uvhub_to_first_node(int uvhub) { int node, b; for_each_online_node(node) { b = uv_node_to_blade_id(node); if (uvhub == b) return node; } return -1; } /* * Determine the apicid of the first cpu on a uvhub. */ static int __init uvhub_to_first_apicid(int uvhub) { int cpu; for_each_present_cpu(cpu) if (uvhub == uv_cpu_to_blade_id(cpu)) return per_cpu(x86_cpu_to_apicid, cpu); return -1; } /* * Free a software acknowledge hardware resource by clearing its Pending * bit. This will return a reply to the sender. * If the message has timed out, a reply has already been sent by the * hardware but the resource has not been released. In that case our * clear of the Timeout bit (as well) will free the resource. No reply will * be sent (the hardware will only do one reply per message). */ static void reply_to_message(struct msg_desc *mdp, struct bau_control *bcp) { unsigned long dw; struct bau_pq_entry *msg; msg = mdp->msg; if (!msg->canceled) { dw = (msg->swack_vec << UV_SW_ACK_NPENDING) | msg->swack_vec; write_mmr_sw_ack(dw); } msg->replied_to = 1; msg->swack_vec = 0; } /* * Process the receipt of a RETRY message */ static void bau_process_retry_msg(struct msg_desc *mdp, struct bau_control *bcp) { int i; int cancel_count = 0; unsigned long msg_res; unsigned long mmr = 0; struct bau_pq_entry *msg = mdp->msg; struct bau_pq_entry *msg2; struct ptc_stats *stat = bcp->statp; stat->d_retries++; /* * cancel any message from msg+1 to the retry itself */ for (msg2 = msg+1, i = 0; i < DEST_Q_SIZE; msg2++, i++) { if (msg2 > mdp->queue_last) msg2 = mdp->queue_first; if (msg2 == msg) break; /* same conditions for cancellation as do_reset */ if ((msg2->replied_to == 0) && (msg2->canceled == 0) && (msg2->swack_vec) && ((msg2->swack_vec & msg->swack_vec) == 0) && (msg2->sending_cpu == msg->sending_cpu) && (msg2->msg_type != MSG_NOOP)) { mmr = read_mmr_sw_ack(); msg_res = msg2->swack_vec; /* * This is a message retry; clear the resources held * by the previous message only if they timed out. * If it has not timed out we have an unexpected * situation to report. */ if (mmr & (msg_res << UV_SW_ACK_NPENDING)) { unsigned long mr; /* * is the resource timed out? * make everyone ignore the cancelled message. */ msg2->canceled = 1; stat->d_canceled++; cancel_count++; mr = (msg_res << UV_SW_ACK_NPENDING) | msg_res; write_mmr_sw_ack(mr); } } } if (!cancel_count) stat->d_nocanceled++; } /* * Do all the things a cpu should do for a TLB shootdown message. * Other cpu's may come here at the same time for this message. */ static void bau_process_message(struct msg_desc *mdp, struct bau_control *bcp) { short socket_ack_count = 0; short *sp; struct atomic_short *asp; struct ptc_stats *stat = bcp->statp; struct bau_pq_entry *msg = mdp->msg; struct bau_control *smaster = bcp->socket_master; /* * This must be a normal message, or retry of a normal message */ if (msg->address == TLB_FLUSH_ALL) { local_flush_tlb(); stat->d_alltlb++; } else { __flush_tlb_one(msg->address); stat->d_onetlb++; } stat->d_requestee++; /* * One cpu on each uvhub has the additional job on a RETRY * of releasing the resource held by the message that is * being retried. That message is identified by sending * cpu number. */ if (msg->msg_type == MSG_RETRY && bcp == bcp->uvhub_master) bau_process_retry_msg(mdp, bcp); /* * This is a swack message, so we have to reply to it. * Count each responding cpu on the socket. This avoids * pinging the count's cache line back and forth between * the sockets. */ sp = &smaster->socket_acknowledge_count[mdp->msg_slot]; asp = (struct atomic_short *)sp; socket_ack_count = atom_asr(1, asp); if (socket_ack_count == bcp->cpus_in_socket) { int msg_ack_count; /* * Both sockets dump their completed count total into * the message's count. */ smaster->socket_acknowledge_count[mdp->msg_slot] = 0; asp = (struct atomic_short *)&msg->acknowledge_count; msg_ack_count = atom_asr(socket_ack_count, asp); if (msg_ack_count == bcp->cpus_in_uvhub) { /* * All cpus in uvhub saw it; reply */ reply_to_message(mdp, bcp); } } return; } /* * Determine the first cpu on a pnode. */ static int pnode_to_first_cpu(int pnode, struct bau_control *smaster) { int cpu; struct hub_and_pnode *hpp; for_each_present_cpu(cpu) { hpp = &smaster->thp[cpu]; if (pnode == hpp->pnode) return cpu; } return -1; } /* * Last resort when we get a large number of destination timeouts is * to clear resources held by a given cpu. * Do this with IPI so that all messages in the BAU message queue * can be identified by their nonzero swack_vec field. * * This is entered for a single cpu on the uvhub. * The sender want's this uvhub to free a specific message's * swack resources. */ static void do_reset(void *ptr) { int i; struct bau_control *bcp = &per_cpu(bau_control, smp_processor_id()); struct reset_args *rap = (struct reset_args *)ptr; struct bau_pq_entry *msg; struct ptc_stats *stat = bcp->statp; stat->d_resets++; /* * We're looking for the given sender, and * will free its swack resource. * If all cpu's finally responded after the timeout, its * message 'replied_to' was set. */ for (msg = bcp->queue_first, i = 0; i < DEST_Q_SIZE; msg++, i++) { unsigned long msg_res; /* do_reset: same conditions for cancellation as bau_process_retry_msg() */ if ((msg->replied_to == 0) && (msg->canceled == 0) && (msg->sending_cpu == rap->sender) && (msg->swack_vec) && (msg->msg_type != MSG_NOOP)) { unsigned long mmr; unsigned long mr; /* * make everyone else ignore this message */ msg->canceled = 1; /* * only reset the resource if it is still pending */ mmr = read_mmr_sw_ack(); msg_res = msg->swack_vec; mr = (msg_res << UV_SW_ACK_NPENDING) | msg_res; if (mmr & msg_res) { stat->d_rcanceled++; write_mmr_sw_ack(mr); } } } return; } /* * Use IPI to get all target uvhubs to release resources held by * a given sending cpu number. */ static void reset_with_ipi(struct pnmask *distribution, struct bau_control *bcp) { int pnode; int apnode; int maskbits; int sender = bcp->cpu; cpumask_t *mask = bcp->uvhub_master->cpumask; struct bau_control *smaster = bcp->socket_master; struct reset_args reset_args; reset_args.sender = sender; cpus_clear(*mask); /* find a single cpu for each uvhub in this distribution mask */ maskbits = sizeof(struct pnmask) * BITSPERBYTE; /* each bit is a pnode relative to the partition base pnode */ for (pnode = 0; pnode < maskbits; pnode++) { int cpu; if (!bau_uvhub_isset(pnode, distribution)) continue; apnode = pnode + bcp->partition_base_pnode; cpu = pnode_to_first_cpu(apnode, smaster); cpu_set(cpu, *mask); } /* IPI all cpus; preemption is already disabled */ smp_call_function_many(mask, do_reset, (void *)&reset_args, 1); return; } static inline unsigned long cycles_2_us(unsigned long long cyc) { unsigned long long ns; unsigned long us; int cpu = smp_processor_id(); ns = (cyc * per_cpu(cyc2ns, cpu)) >> CYC2NS_SCALE_FACTOR; us = ns / 1000; return us; } /* * wait for all cpus on this hub to finish their sends and go quiet * leaves uvhub_quiesce set so that no new broadcasts are started by * bau_flush_send_and_wait() */ static inline void quiesce_local_uvhub(struct bau_control *hmaster) { atom_asr(1, (struct atomic_short *)&hmaster->uvhub_quiesce); } /* * mark this quiet-requestor as done */ static inline void end_uvhub_quiesce(struct bau_control *hmaster) { atom_asr(-1, (struct atomic_short *)&hmaster->uvhub_quiesce); } static unsigned long uv1_read_status(unsigned long mmr_offset, int right_shift) { unsigned long descriptor_status; descriptor_status = uv_read_local_mmr(mmr_offset); descriptor_status >>= right_shift; descriptor_status &= UV_ACT_STATUS_MASK; return descriptor_status; } /* * Wait for completion of a broadcast software ack message * return COMPLETE, RETRY(PLUGGED or TIMEOUT) or GIVEUP */ static int uv1_wait_completion(struct bau_desc *bau_desc, unsigned long mmr_offset, int right_shift, struct bau_control *bcp, long try) { unsigned long descriptor_status; cycles_t ttm; struct ptc_stats *stat = bcp->statp; descriptor_status = uv1_read_status(mmr_offset, right_shift); /* spin on the status MMR, waiting for it to go idle */ while ((descriptor_status != DS_IDLE)) { /* * Our software ack messages may be blocked because * there are no swack resources available. As long * as none of them has timed out hardware will NACK * our message and its state will stay IDLE. */ if (descriptor_status == DS_SOURCE_TIMEOUT) { stat->s_stimeout++; return FLUSH_GIVEUP; } else if (descriptor_status == DS_DESTINATION_TIMEOUT) { stat->s_dtimeout++; ttm = get_cycles(); /* * Our retries may be blocked by all destination * swack resources being consumed, and a timeout * pending. In that case hardware returns the * ERROR that looks like a destination timeout. */ if (cycles_2_us(ttm - bcp->send_message) < timeout_us) { bcp->conseccompletes = 0; return FLUSH_RETRY_PLUGGED; } bcp->conseccompletes = 0; return FLUSH_RETRY_TIMEOUT; } else { /* * descriptor_status is still BUSY */ cpu_relax(); } descriptor_status = uv1_read_status(mmr_offset, right_shift); } bcp->conseccompletes++; return FLUSH_COMPLETE; } /* * UV2 has an extra bit of status in the ACTIVATION_STATUS_2 register. */ static unsigned long uv2_read_status(unsigned long offset, int rshft, int cpu) { unsigned long descriptor_status; unsigned long descriptor_status2; descriptor_status = ((read_lmmr(offset) >> rshft) & UV_ACT_STATUS_MASK); descriptor_status2 = (read_mmr_uv2_status() >> cpu) & 0x1UL; descriptor_status = (descriptor_status << 1) | descriptor_status2; return descriptor_status; } static int uv2_wait_completion(struct bau_desc *bau_desc, unsigned long mmr_offset, int right_shift, struct bau_control *bcp, long try) { unsigned long descriptor_stat; cycles_t ttm; int cpu = bcp->uvhub_cpu; struct ptc_stats *stat = bcp->statp; descriptor_stat = uv2_read_status(mmr_offset, right_shift, cpu); /* spin on the status MMR, waiting for it to go idle */ while (descriptor_stat != UV2H_DESC_IDLE) { /* * Our software ack messages may be blocked because * there are no swack resources available. As long * as none of them has timed out hardware will NACK * our message and its state will stay IDLE. */ if ((descriptor_stat == UV2H_DESC_SOURCE_TIMEOUT) || (descriptor_stat == UV2H_DESC_DEST_STRONG_NACK) || (descriptor_stat == UV2H_DESC_DEST_PUT_ERR)) { stat->s_stimeout++; return FLUSH_GIVEUP; } else if (descriptor_stat == UV2H_DESC_DEST_TIMEOUT) { stat->s_dtimeout++; ttm = get_cycles(); /* * Our retries may be blocked by all destination * swack resources being consumed, and a timeout * pending. In that case hardware returns the * ERROR that looks like a destination timeout. */ if (cycles_2_us(ttm - bcp->send_message) < timeout_us) { bcp->conseccompletes = 0; return FLUSH_RETRY_PLUGGED; } bcp->conseccompletes = 0; return FLUSH_RETRY_TIMEOUT; } else { /* * descriptor_stat is still BUSY */ cpu_relax(); } descriptor_stat = uv2_read_status(mmr_offset, right_shift, cpu); } bcp->conseccompletes++; return FLUSH_COMPLETE; } /* * There are 2 status registers; each and array[32] of 2 bits. Set up for * which register to read and position in that register based on cpu in * current hub. */ static int wait_completion(struct bau_desc *bau_desc, struct bau_control *bcp, long try) { int right_shift; unsigned long mmr_offset; int cpu = bcp->uvhub_cpu; if (cpu < UV_CPUS_PER_AS) { mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_0; right_shift = cpu * UV_ACT_STATUS_SIZE; } else { mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_1; right_shift = ((cpu - UV_CPUS_PER_AS) * UV_ACT_STATUS_SIZE); } if (bcp->uvhub_version == 1) return uv1_wait_completion(bau_desc, mmr_offset, right_shift, bcp, try); else return uv2_wait_completion(bau_desc, mmr_offset, right_shift, bcp, try); } static inline cycles_t sec_2_cycles(unsigned long sec) { unsigned long ns; cycles_t cyc; ns = sec * 1000000000; cyc = (ns << CYC2NS_SCALE_FACTOR)/(per_cpu(cyc2ns, smp_processor_id())); return cyc; } /* * Our retries are blocked by all destination sw ack resources being * in use, and a timeout is pending. In that case hardware immediately * returns the ERROR that looks like a destination timeout. */ static void destination_plugged(struct bau_desc *bau_desc, struct bau_control *bcp, struct bau_control *hmaster, struct ptc_stats *stat) { udelay(bcp->plugged_delay); bcp->plugged_tries++; if (bcp->plugged_tries >= bcp->plugsb4reset) { bcp->plugged_tries = 0; quiesce_local_uvhub(hmaster); spin_lock(&hmaster->queue_lock); reset_with_ipi(&bau_desc->distribution, bcp); spin_unlock(&hmaster->queue_lock); end_uvhub_quiesce(hmaster); bcp->ipi_attempts++; stat->s_resets_plug++; } } static void destination_timeout(struct bau_desc *bau_desc, struct bau_control *bcp, struct bau_control *hmaster, struct ptc_stats *stat) { hmaster->max_concurr = 1; bcp->timeout_tries++; if (bcp->timeout_tries >= bcp->timeoutsb4reset) { bcp->timeout_tries = 0; quiesce_local_uvhub(hmaster); spin_lock(&hmaster->queue_lock); reset_with_ipi(&bau_desc->distribution, bcp); spin_unlock(&hmaster->queue_lock); end_uvhub_quiesce(hmaster); bcp->ipi_attempts++; stat->s_resets_timeout++; } } /* * Completions are taking a very long time due to a congested numalink * network. */ static void disable_for_congestion(struct bau_control *bcp, struct ptc_stats *stat) { /* let only one cpu do this disabling */ spin_lock(&disable_lock); if (!baudisabled && bcp->period_requests && ((bcp->period_time / bcp->period_requests) > congested_cycles)) { int tcpu; struct bau_control *tbcp; /* it becomes this cpu's job to turn on the use of the BAU again */ baudisabled = 1; bcp->set_bau_off = 1; bcp->set_bau_on_time = get_cycles(); bcp->set_bau_on_time += sec_2_cycles(bcp->cong_period); stat->s_bau_disabled++; for_each_present_cpu(tcpu) { tbcp = &per_cpu(bau_control, tcpu); tbcp->baudisabled = 1; } } spin_unlock(&disable_lock); } static void count_max_concurr(int stat, struct bau_control *bcp, struct bau_control *hmaster) { bcp->plugged_tries = 0; bcp->timeout_tries = 0; if (stat != FLUSH_COMPLETE) return; if (bcp->conseccompletes <= bcp->complete_threshold) return; if (hmaster->max_concurr >= hmaster->max_concurr_const) return; hmaster->max_concurr++; } static void record_send_stats(cycles_t time1, cycles_t time2, struct bau_control *bcp, struct ptc_stats *stat, int completion_status, int try) { cycles_t elapsed; if (time2 > time1) { elapsed = time2 - time1; stat->s_time += elapsed; if ((completion_status == FLUSH_COMPLETE) && (try == 1)) { bcp->period_requests++; bcp->period_time += elapsed; if ((elapsed > congested_cycles) && (bcp->period_requests > bcp->cong_reps)) disable_for_congestion(bcp, stat); } } else stat->s_requestor--; if (completion_status == FLUSH_COMPLETE && try > 1) stat->s_retriesok++; else if (completion_status == FLUSH_GIVEUP) stat->s_giveup++; } /* * Because of a uv1 hardware bug only a limited number of concurrent * requests can be made. */ static void uv1_throttle(struct bau_control *hmaster, struct ptc_stats *stat) { spinlock_t *lock = &hmaster->uvhub_lock; atomic_t *v; v = &hmaster->active_descriptor_count; if (!atomic_inc_unless_ge(lock, v, hmaster->max_concurr)) { stat->s_throttles++; do { cpu_relax(); } while (!atomic_inc_unless_ge(lock, v, hmaster->max_concurr)); } } /* * Handle the completion status of a message send. */ static void handle_cmplt(int completion_status, struct bau_desc *bau_desc, struct bau_control *bcp, struct bau_control *hmaster, struct ptc_stats *stat) { if (completion_status == FLUSH_RETRY_PLUGGED) destination_plugged(bau_desc, bcp, hmaster, stat); else if (completion_status == FLUSH_RETRY_TIMEOUT) destination_timeout(bau_desc, bcp, hmaster, stat); } /* * Send a broadcast and wait for it to complete. * * The flush_mask contains the cpus the broadcast is to be sent to including * cpus that are on the local uvhub. * * Returns 0 if all flushing represented in the mask was done. * Returns 1 if it gives up entirely and the original cpu mask is to be * returned to the kernel. */ int uv_flush_send_and_wait(struct bau_desc *bau_desc, struct cpumask *flush_mask, struct bau_control *bcp) { int seq_number = 0; int completion_stat = 0; int uv1 = 0; long try = 0; unsigned long index; cycles_t time1; cycles_t time2; struct ptc_stats *stat = bcp->statp; struct bau_control *hmaster = bcp->uvhub_master; struct uv1_bau_msg_header *uv1_hdr = NULL; struct uv2_bau_msg_header *uv2_hdr = NULL; if (bcp->uvhub_version == 1) { uv1 = 1; uv1_throttle(hmaster, stat); uv1_hdr = &bau_desc->header.uv1_hdr; } else uv2_hdr = &bau_desc->header.uv2_hdr; while (hmaster->uvhub_quiesce) cpu_relax(); time1 = get_cycles(); do { if (try == 0) { if (uv1) uv1_hdr->msg_type = MSG_REGULAR; else uv2_hdr->msg_type = MSG_REGULAR; seq_number = bcp->message_number++; } else { if (uv1) uv1_hdr->msg_type = MSG_RETRY; else uv2_hdr->msg_type = MSG_RETRY; stat->s_retry_messages++; } if (uv1) uv1_hdr->sequence = seq_number; else uv2_hdr->sequence = seq_number; index = (1UL << AS_PUSH_SHIFT) | bcp->uvhub_cpu; bcp->send_message = get_cycles(); write_mmr_activation(index); try++; completion_stat = wait_completion(bau_desc, bcp, try); handle_cmplt(completion_stat, bau_desc, bcp, hmaster, stat); if (bcp->ipi_attempts >= bcp->ipi_reset_limit) { bcp->ipi_attempts = 0; completion_stat = FLUSH_GIVEUP; break; } cpu_relax(); } while ((completion_stat == FLUSH_RETRY_PLUGGED) || (completion_stat == FLUSH_RETRY_TIMEOUT)); time2 = get_cycles(); count_max_concurr(completion_stat, bcp, hmaster); while (hmaster->uvhub_quiesce) cpu_relax(); atomic_dec(&hmaster->active_descriptor_count); record_send_stats(time1, time2, bcp, stat, completion_stat, try); if (completion_stat == FLUSH_GIVEUP) return 1; return 0; } /* * The BAU is disabled. When the disabled time period has expired, the cpu * that disabled it must re-enable it. * Return 0 if it is re-enabled for all cpus. */ static int check_enable(struct bau_control *bcp, struct ptc_stats *stat) { int tcpu; struct bau_control *tbcp; if (bcp->set_bau_off) { if (get_cycles() >= bcp->set_bau_on_time) { stat->s_bau_reenabled++; baudisabled = 0; for_each_present_cpu(tcpu) { tbcp = &per_cpu(bau_control, tcpu); tbcp->baudisabled = 0; tbcp->period_requests = 0; tbcp->period_time = 0; } return 0; } } return -1; } static void record_send_statistics(struct ptc_stats *stat, int locals, int hubs, int remotes, struct bau_desc *bau_desc) { stat->s_requestor++; stat->s_ntargcpu += remotes + locals; stat->s_ntargremotes += remotes; stat->s_ntarglocals += locals; /* uvhub statistics */ hubs = bau_uvhub_weight(&bau_desc->distribution); if (locals) { stat->s_ntarglocaluvhub++; stat->s_ntargremoteuvhub += (hubs - 1); } else stat->s_ntargremoteuvhub += hubs; stat->s_ntarguvhub += hubs; if (hubs >= 16) stat->s_ntarguvhub16++; else if (hubs >= 8) stat->s_ntarguvhub8++; else if (hubs >= 4) stat->s_ntarguvhub4++; else if (hubs >= 2) stat->s_ntarguvhub2++; else stat->s_ntarguvhub1++; } /* * Translate a cpu mask to the uvhub distribution mask in the BAU * activation descriptor. */ static int set_distrib_bits(struct cpumask *flush_mask, struct bau_control *bcp, struct bau_desc *bau_desc, int *localsp, int *remotesp) { int cpu; int pnode; int cnt = 0; struct hub_and_pnode *hpp; for_each_cpu(cpu, flush_mask) { /* * The distribution vector is a bit map of pnodes, relative * to the partition base pnode (and the partition base nasid * in the header). * Translate cpu to pnode and hub using a local memory array. */ hpp = &bcp->socket_master->thp[cpu]; pnode = hpp->pnode - bcp->partition_base_pnode; bau_uvhub_set(pnode, &bau_desc->distribution); cnt++; if (hpp->uvhub == bcp->uvhub) (*localsp)++; else (*remotesp)++; } if (!cnt) return 1; return 0; } /* * globally purge translation cache of a virtual address or all TLB's * @cpumask: mask of all cpu's in which the address is to be removed * @mm: mm_struct containing virtual address range * @va: virtual address to be removed (or TLB_FLUSH_ALL for all TLB's on cpu) * @cpu: the current cpu * * This is the entry point for initiating any UV global TLB shootdown. * * Purges the translation caches of all specified processors of the given * virtual address, or purges all TLB's on specified processors. * * The caller has derived the cpumask from the mm_struct. This function * is called only if there are bits set in the mask. (e.g. flush_tlb_page()) * * The cpumask is converted into a uvhubmask of the uvhubs containing * those cpus. * * Note that this function should be called with preemption disabled. * * Returns NULL if all remote flushing was done. * Returns pointer to cpumask if some remote flushing remains to be * done. The returned pointer is valid till preemption is re-enabled. */ const struct cpumask *uv_flush_tlb_others(const struct cpumask *cpumask, struct mm_struct *mm, unsigned long va, unsigned int cpu) { int locals = 0; int remotes = 0; int hubs = 0; struct bau_desc *bau_desc; struct cpumask *flush_mask; struct ptc_stats *stat; struct bau_control *bcp; /* kernel was booted 'nobau' */ if (nobau) return cpumask; bcp = &per_cpu(bau_control, cpu); stat = bcp->statp; /* bau was disabled due to slow response */ if (bcp->baudisabled) { if (check_enable(bcp, stat)) return cpumask; } /* * Each sending cpu has a per-cpu mask which it fills from the caller's * cpu mask. All cpus are converted to uvhubs and copied to the * activation descriptor. */ flush_mask = (struct cpumask *)per_cpu(uv_flush_tlb_mask, cpu); /* don't actually do a shootdown of the local cpu */ cpumask_andnot(flush_mask, cpumask, cpumask_of(cpu)); if (cpu_isset(cpu, *cpumask)) stat->s_ntargself++; bau_desc = bcp->descriptor_base; bau_desc += (ITEMS_PER_DESC * bcp->uvhub_cpu); bau_uvhubs_clear(&bau_desc->distribution, UV_DISTRIBUTION_SIZE); if (set_distrib_bits(flush_mask, bcp, bau_desc, &locals, &remotes)) return NULL; record_send_statistics(stat, locals, hubs, remotes, bau_desc); bau_desc->payload.address = va; bau_desc->payload.sending_cpu = cpu; /* * uv_flush_send_and_wait returns 0 if all cpu's were messaged, * or 1 if it gave up and the original cpumask should be returned. */ if (!uv_flush_send_and_wait(bau_desc, flush_mask, bcp)) return NULL; else return cpumask; } /* * The BAU message interrupt comes here. (registered by set_intr_gate) * See entry_64.S * * We received a broadcast assist message. * * Interrupts are disabled; this interrupt could represent * the receipt of several messages. * * All cores/threads on this hub get this interrupt. * The last one to see it does the software ack. * (the resource will not be freed until noninterruptable cpus see this * interrupt; hardware may timeout the s/w ack and reply ERROR) */ void uv_bau_message_interrupt(struct pt_regs *regs) { int count = 0; cycles_t time_start; struct bau_pq_entry *msg; struct bau_control *bcp; struct ptc_stats *stat; struct msg_desc msgdesc; time_start = get_cycles(); bcp = &per_cpu(bau_control, smp_processor_id()); stat = bcp->statp; msgdesc.queue_first = bcp->queue_first; msgdesc.queue_last = bcp->queue_last; msg = bcp->bau_msg_head; while (msg->swack_vec) { count++; msgdesc.msg_slot = msg - msgdesc.queue_first; msgdesc.swack_slot = ffs(msg->swack_vec) - 1; msgdesc.msg = msg; bau_process_message(&msgdesc, bcp); msg++; if (msg > msgdesc.queue_last) msg = msgdesc.queue_first; bcp->bau_msg_head = msg; } stat->d_time += (get_cycles() - time_start); if (!count) stat->d_nomsg++; else if (count > 1) stat->d_multmsg++; ack_APIC_irq(); } /* * Each target uvhub (i.e. a uvhub that has cpu's) needs to have * shootdown message timeouts enabled. The timeout does not cause * an interrupt, but causes an error message to be returned to * the sender. */ static void __init enable_timeouts(void) { int uvhub; int nuvhubs; int pnode; unsigned long mmr_image; nuvhubs = uv_num_possible_blades(); for (uvhub = 0; uvhub < nuvhubs; uvhub++) { if (!uv_blade_nr_possible_cpus(uvhub)) continue; pnode = uv_blade_to_pnode(uvhub); mmr_image = read_mmr_misc_control(pnode); /* * Set the timeout period and then lock it in, in three * steps; captures and locks in the period. * * To program the period, the SOFT_ACK_MODE must be off. */ mmr_image &= ~(1L << SOFTACK_MSHIFT); write_mmr_misc_control(pnode, mmr_image); /* * Set the 4-bit period. */ mmr_image &= ~((unsigned long)0xf << SOFTACK_PSHIFT); mmr_image |= (SOFTACK_TIMEOUT_PERIOD << SOFTACK_PSHIFT); write_mmr_misc_control(pnode, mmr_image); /* * UV1: * Subsequent reversals of the timebase bit (3) cause an * immediate timeout of one or all INTD resources as * indicated in bits 2:0 (7 causes all of them to timeout). */ mmr_image |= (1L << SOFTACK_MSHIFT); if (is_uv2_hub()) { mmr_image &= ~(1L << UV2_LEG_SHFT); mmr_image |= (1L << UV2_EXT_SHFT); } write_mmr_misc_control(pnode, mmr_image); } } static void *ptc_seq_start(struct seq_file *file, loff_t *offset) { if (*offset < num_possible_cpus()) return offset; return NULL; } static void *ptc_seq_next(struct seq_file *file, void *data, loff_t *offset) { (*offset)++; if (*offset < num_possible_cpus()) return offset; return NULL; } static void ptc_seq_stop(struct seq_file *file, void *data) { } static inline unsigned long long usec_2_cycles(unsigned long microsec) { unsigned long ns; unsigned long long cyc; ns = microsec * 1000; cyc = (ns << CYC2NS_SCALE_FACTOR)/(per_cpu(cyc2ns, smp_processor_id())); return cyc; } /* * Display the statistics thru /proc/sgi_uv/ptc_statistics * 'data' points to the cpu number * Note: see the descriptions in stat_description[]. */ static int ptc_seq_show(struct seq_file *file, void *data) { struct ptc_stats *stat; int cpu; cpu = *(loff_t *)data; if (!cpu) { seq_printf(file, "# cpu sent stime self locals remotes ncpus localhub "); seq_printf(file, "remotehub numuvhubs numuvhubs16 numuvhubs8 "); seq_printf(file, "numuvhubs4 numuvhubs2 numuvhubs1 dto retries rok "); seq_printf(file, "resetp resett giveup sto bz throt swack recv rtime "); seq_printf(file, "all one mult none retry canc nocan reset rcan "); seq_printf(file, "disable enable\n"); } if (cpu < num_possible_cpus() && cpu_online(cpu)) { stat = &per_cpu(ptcstats, cpu); /* source side statistics */ seq_printf(file, "cpu %d %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld ", cpu, stat->s_requestor, cycles_2_us(stat->s_time), stat->s_ntargself, stat->s_ntarglocals, stat->s_ntargremotes, stat->s_ntargcpu, stat->s_ntarglocaluvhub, stat->s_ntargremoteuvhub, stat->s_ntarguvhub, stat->s_ntarguvhub16); seq_printf(file, "%ld %ld %ld %ld %ld ", stat->s_ntarguvhub8, stat->s_ntarguvhub4, stat->s_ntarguvhub2, stat->s_ntarguvhub1, stat->s_dtimeout); seq_printf(file, "%ld %ld %ld %ld %ld %ld %ld %ld ", stat->s_retry_messages, stat->s_retriesok, stat->s_resets_plug, stat->s_resets_timeout, stat->s_giveup, stat->s_stimeout, stat->s_busy, stat->s_throttles); /* destination side statistics */ seq_printf(file, "%lx %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld ", read_gmmr_sw_ack(uv_cpu_to_pnode(cpu)), stat->d_requestee, cycles_2_us(stat->d_time), stat->d_alltlb, stat->d_onetlb, stat->d_multmsg, stat->d_nomsg, stat->d_retries, stat->d_canceled, stat->d_nocanceled, stat->d_resets, stat->d_rcanceled); seq_printf(file, "%ld %ld\n", stat->s_bau_disabled, stat->s_bau_reenabled); } return 0; } /* * Display the tunables thru debugfs */ static ssize_t tunables_read(struct file *file, char __user *userbuf, size_t count, loff_t *ppos) { char *buf; int ret; buf = kasprintf(GFP_KERNEL, "%s %s %s\n%d %d %d %d %d %d %d %d %d\n", "max_concur plugged_delay plugsb4reset", "timeoutsb4reset ipi_reset_limit complete_threshold", "congested_response_us congested_reps congested_period", max_concurr, plugged_delay, plugsb4reset, timeoutsb4reset, ipi_reset_limit, complete_threshold, congested_respns_us, congested_reps, congested_period); if (!buf) return -ENOMEM; ret = simple_read_from_buffer(userbuf, count, ppos, buf, strlen(buf)); kfree(buf); return ret; } /* * handle a write to /proc/sgi_uv/ptc_statistics * -1: reset the statistics * 0: display meaning of the statistics */ static ssize_t ptc_proc_write(struct file *file, const char __user *user, size_t count, loff_t *data) { int cpu; int i; int elements; long input_arg; char optstr[64]; struct ptc_stats *stat; if (count == 0 || count > sizeof(optstr)) return -EINVAL; if (copy_from_user(optstr, user, count)) return -EFAULT; optstr[count - 1] = '\0'; if (strict_strtol(optstr, 10, &input_arg) < 0) { printk(KERN_DEBUG "%s is invalid\n", optstr); return -EINVAL; } if (input_arg == 0) { elements = sizeof(stat_description)/sizeof(*stat_description); printk(KERN_DEBUG "# cpu: cpu number\n"); printk(KERN_DEBUG "Sender statistics:\n"); for (i = 0; i < elements; i++) printk(KERN_DEBUG "%s\n", stat_description[i]); } else if (input_arg == -1) { for_each_present_cpu(cpu) { stat = &per_cpu(ptcstats, cpu); memset(stat, 0, sizeof(struct ptc_stats)); } } return count; } static int local_atoi(const char *name) { int val = 0; for (;; name++) { switch (*name) { case '0' ... '9': val = 10*val+(*name-'0'); break; default: return val; } } } /* * Parse the values written to /sys/kernel/debug/sgi_uv/bau_tunables. * Zero values reset them to defaults. */ static int parse_tunables_write(struct bau_control *bcp, char *instr, int count) { char *p; char *q; int cnt = 0; int val; int e = sizeof(tunables) / sizeof(*tunables); p = instr + strspn(instr, WHITESPACE); q = p; for (; *p; p = q + strspn(q, WHITESPACE)) { q = p + strcspn(p, WHITESPACE); cnt++; if (q == p) break; } if (cnt != e) { printk(KERN_INFO "bau tunable error: should be %d values\n", e); return -EINVAL; } p = instr + strspn(instr, WHITESPACE); q = p; for (cnt = 0; *p; p = q + strspn(q, WHITESPACE), cnt++) { q = p + strcspn(p, WHITESPACE); val = local_atoi(p); switch (cnt) { case 0: if (val == 0) { max_concurr = MAX_BAU_CONCURRENT; max_concurr_const = MAX_BAU_CONCURRENT; continue; } if (val < 1 || val > bcp->cpus_in_uvhub) { printk(KERN_DEBUG "Error: BAU max concurrent %d is invalid\n", val); return -EINVAL; } max_concurr = val; max_concurr_const = val; continue; default: if (val == 0) *tunables[cnt].tunp = tunables[cnt].deflt; else *tunables[cnt].tunp = val; continue; } if (q == p) break; } return 0; } /* * Handle a write to debugfs. (/sys/kernel/debug/sgi_uv/bau_tunables) */ static ssize_t tunables_write(struct file *file, const char __user *user, size_t count, loff_t *data) { int cpu; int ret; char instr[100]; struct bau_control *bcp; if (count == 0 || count > sizeof(instr)-1) return -EINVAL; if (copy_from_user(instr, user, count)) return -EFAULT; instr[count] = '\0'; cpu = get_cpu(); bcp = &per_cpu(bau_control, cpu); ret = parse_tunables_write(bcp, instr, count); put_cpu(); if (ret) return ret; for_each_present_cpu(cpu) { bcp = &per_cpu(bau_control, cpu); bcp->max_concurr = max_concurr; bcp->max_concurr_const = max_concurr; bcp->plugged_delay = plugged_delay; bcp->plugsb4reset = plugsb4reset; bcp->timeoutsb4reset = timeoutsb4reset; bcp->ipi_reset_limit = ipi_reset_limit; bcp->complete_threshold = complete_threshold; bcp->cong_response_us = congested_respns_us; bcp->cong_reps = congested_reps; bcp->cong_period = congested_period; } return count; } static const struct seq_operations uv_ptc_seq_ops = { .start = ptc_seq_start, .next = ptc_seq_next, .stop = ptc_seq_stop, .show = ptc_seq_show }; static int ptc_proc_open(struct inode *inode, struct file *file) { return seq_open(file, &uv_ptc_seq_ops); } static int tunables_open(struct inode *inode, struct file *file) { return 0; } static const struct file_operations proc_uv_ptc_operations = { .open = ptc_proc_open, .read = seq_read, .write = ptc_proc_write, .llseek = seq_lseek, .release = seq_release, }; static const struct file_operations tunables_fops = { .open = tunables_open, .read = tunables_read, .write = tunables_write, .llseek = default_llseek, }; static int __init uv_ptc_init(void) { struct proc_dir_entry *proc_uv_ptc; if (!is_uv_system()) return 0; proc_uv_ptc = proc_create(UV_PTC_BASENAME, 0444, NULL, &proc_uv_ptc_operations); if (!proc_uv_ptc) { printk(KERN_ERR "unable to create %s proc entry\n", UV_PTC_BASENAME); return -EINVAL; } tunables_dir = debugfs_create_dir(UV_BAU_TUNABLES_DIR, NULL); if (!tunables_dir) { printk(KERN_ERR "unable to create debugfs directory %s\n", UV_BAU_TUNABLES_DIR); return -EINVAL; } tunables_file = debugfs_create_file(UV_BAU_TUNABLES_FILE, 0600, tunables_dir, NULL, &tunables_fops); if (!tunables_file) { printk(KERN_ERR "unable to create debugfs file %s\n", UV_BAU_TUNABLES_FILE); return -EINVAL; } return 0; } /* * Initialize the sending side's sending buffers. */ static void activation_descriptor_init(int node, int pnode, int base_pnode) { int i; int cpu; int uv1 = 0; unsigned long gpa; unsigned long m; unsigned long n; size_t dsize; struct bau_desc *bau_desc; struct bau_desc *bd2; struct uv1_bau_msg_header *uv1_hdr; struct uv2_bau_msg_header *uv2_hdr; struct bau_control *bcp; /* * each bau_desc is 64 bytes; there are 8 (ITEMS_PER_DESC) * per cpu; and one per cpu on the uvhub (ADP_SZ) */ dsize = sizeof(struct bau_desc) * ADP_SZ * ITEMS_PER_DESC; bau_desc = kmalloc_node(dsize, GFP_KERNEL, node); BUG_ON(!bau_desc); gpa = uv_gpa(bau_desc); n = uv_gpa_to_gnode(gpa); m = uv_gpa_to_offset(gpa); if (is_uv1_hub()) uv1 = 1; /* the 14-bit pnode */ write_mmr_descriptor_base(pnode, (n << UV_DESC_PSHIFT | m)); /* * Initializing all 8 (ITEMS_PER_DESC) descriptors for each * cpu even though we only use the first one; one descriptor can * describe a broadcast to 256 uv hubs. */ for (i = 0, bd2 = bau_desc; i < (ADP_SZ * ITEMS_PER_DESC); i++, bd2++) { memset(bd2, 0, sizeof(struct bau_desc)); if (uv1) { uv1_hdr = &bd2->header.uv1_hdr; uv1_hdr->swack_flag = 1; /* * The base_dest_nasid set in the message header * is the nasid of the first uvhub in the partition. * The bit map will indicate destination pnode numbers * relative to that base. They may not be consecutive * if nasid striding is being used. */ uv1_hdr->base_dest_nasid = UV_PNODE_TO_NASID(base_pnode); uv1_hdr->dest_subnodeid = UV_LB_SUBNODEID; uv1_hdr->command = UV_NET_ENDPOINT_INTD; uv1_hdr->int_both = 1; /* * all others need to be set to zero: * fairness chaining multilevel count replied_to */ } else { uv2_hdr = &bd2->header.uv2_hdr; uv2_hdr->swack_flag = 1; uv2_hdr->base_dest_nasid = UV_PNODE_TO_NASID(base_pnode); uv2_hdr->dest_subnodeid = UV_LB_SUBNODEID; uv2_hdr->command = UV_NET_ENDPOINT_INTD; } } for_each_present_cpu(cpu) { if (pnode != uv_blade_to_pnode(uv_cpu_to_blade_id(cpu))) continue; bcp = &per_cpu(bau_control, cpu); bcp->descriptor_base = bau_desc; } } /* * initialize the destination side's receiving buffers * entered for each uvhub in the partition * - node is first node (kernel memory notion) on the uvhub * - pnode is the uvhub's physical identifier */ static void pq_init(int node, int pnode) { int cpu; size_t plsize; char *cp; void *vp; unsigned long pn; unsigned long first; unsigned long pn_first; unsigned long last; struct bau_pq_entry *pqp; struct bau_control *bcp; plsize = (DEST_Q_SIZE + 1) * sizeof(struct bau_pq_entry); vp = kmalloc_node(plsize, GFP_KERNEL, node); pqp = (struct bau_pq_entry *)vp; BUG_ON(!pqp); cp = (char *)pqp + 31; pqp = (struct bau_pq_entry *)(((unsigned long)cp >> 5) << 5); for_each_present_cpu(cpu) { if (pnode != uv_cpu_to_pnode(cpu)) continue; /* for every cpu on this pnode: */ bcp = &per_cpu(bau_control, cpu); bcp->queue_first = pqp; bcp->bau_msg_head = pqp; bcp->queue_last = pqp + (DEST_Q_SIZE - 1); } /* * need the gnode of where the memory was really allocated */ pn = uv_gpa_to_gnode(uv_gpa(pqp)); first = uv_physnodeaddr(pqp); pn_first = ((unsigned long)pn << UV_PAYLOADQ_PNODE_SHIFT) | first; last = uv_physnodeaddr(pqp + (DEST_Q_SIZE - 1)); write_mmr_payload_first(pnode, pn_first); write_mmr_payload_tail(pnode, first); write_mmr_payload_last(pnode, last); /* in effect, all msg_type's are set to MSG_NOOP */ memset(pqp, 0, sizeof(struct bau_pq_entry) * DEST_Q_SIZE); } /* * Initialization of each UV hub's structures */ static void __init init_uvhub(int uvhub, int vector, int base_pnode) { int node; int pnode; unsigned long apicid; node = uvhub_to_first_node(uvhub); pnode = uv_blade_to_pnode(uvhub); activation_descriptor_init(node, pnode, base_pnode); pq_init(node, pnode); /* * The below initialization can't be in firmware because the * messaging IRQ will be determined by the OS. */ apicid = uvhub_to_first_apicid(uvhub) | uv_apicid_hibits; write_mmr_data_config(pnode, ((apicid << 32) | vector)); } /* * We will set BAU_MISC_CONTROL with a timeout period. * But the BIOS has set UVH_AGING_PRESCALE_SEL and UVH_TRANSACTION_TIMEOUT. * So the destination timeout period has to be calculated from them. */ static int calculate_destination_timeout(void) { unsigned long mmr_image; int mult1; int mult2; int index; int base; int ret; unsigned long ts_ns; if (is_uv1_hub()) { mult1 = SOFTACK_TIMEOUT_PERIOD & BAU_MISC_CONTROL_MULT_MASK; mmr_image = uv_read_local_mmr(UVH_AGING_PRESCALE_SEL); index = (mmr_image >> BAU_URGENCY_7_SHIFT) & BAU_URGENCY_7_MASK; mmr_image = uv_read_local_mmr(UVH_TRANSACTION_TIMEOUT); mult2 = (mmr_image >> BAU_TRANS_SHIFT) & BAU_TRANS_MASK; base = timeout_base_ns[index]; ts_ns = base * mult1 * mult2; ret = ts_ns / 1000; } else { /* 4 bits 0/1 for 10/80us base, 3 bits of multiplier */ mmr_image = uv_read_local_mmr(UVH_LB_BAU_MISC_CONTROL); mmr_image = (mmr_image & UV_SA_MASK) >> UV_SA_SHFT; if (mmr_image & (1L << UV2_ACK_UNITS_SHFT)) base = 80; else base = 10; mult1 = mmr_image & UV2_ACK_MASK; ret = mult1 * base; } return ret; } static void __init init_per_cpu_tunables(void) { int cpu; struct bau_control *bcp; for_each_present_cpu(cpu) { bcp = &per_cpu(bau_control, cpu); bcp->baudisabled = 0; bcp->statp = &per_cpu(ptcstats, cpu); /* time interval to catch a hardware stay-busy bug */ bcp->timeout_interval = usec_2_cycles(2*timeout_us); bcp->max_concurr = max_concurr; bcp->max_concurr_const = max_concurr; bcp->plugged_delay = plugged_delay; bcp->plugsb4reset = plugsb4reset; bcp->timeoutsb4reset = timeoutsb4reset; bcp->ipi_reset_limit = ipi_reset_limit; bcp->complete_threshold = complete_threshold; bcp->cong_response_us = congested_respns_us; bcp->cong_reps = congested_reps; bcp->cong_period = congested_period; } } /* * Scan all cpus to collect blade and socket summaries. */ static int __init get_cpu_topology(int base_pnode, struct uvhub_desc *uvhub_descs, unsigned char *uvhub_mask) { int cpu; int pnode; int uvhub; int socket; struct bau_control *bcp; struct uvhub_desc *bdp; struct socket_desc *sdp; for_each_present_cpu(cpu) { bcp = &per_cpu(bau_control, cpu); memset(bcp, 0, sizeof(struct bau_control)); pnode = uv_cpu_hub_info(cpu)->pnode; if ((pnode - base_pnode) >= UV_DISTRIBUTION_SIZE) { printk(KERN_EMERG "cpu %d pnode %d-%d beyond %d; BAU disabled\n", cpu, pnode, base_pnode, UV_DISTRIBUTION_SIZE); return 1; } bcp->osnode = cpu_to_node(cpu); bcp->partition_base_pnode = base_pnode; uvhub = uv_cpu_hub_info(cpu)->numa_blade_id; *(uvhub_mask + (uvhub/8)) |= (1 << (uvhub%8)); bdp = &uvhub_descs[uvhub]; bdp->num_cpus++; bdp->uvhub = uvhub; bdp->pnode = pnode; /* kludge: 'assuming' one node per socket, and assuming that disabling a socket just leaves a gap in node numbers */ socket = bcp->osnode & 1; bdp->socket_mask |= (1 << socket); sdp = &bdp->socket[socket]; sdp->cpu_number[sdp->num_cpus] = cpu; sdp->num_cpus++; if (sdp->num_cpus > MAX_CPUS_PER_SOCKET) { printk(KERN_EMERG "%d cpus per socket invalid\n", sdp->num_cpus); return 1; } } return 0; } /* * Each socket is to get a local array of pnodes/hubs. */ static void make_per_cpu_thp(struct bau_control *smaster) { int cpu; size_t hpsz = sizeof(struct hub_and_pnode) * num_possible_cpus(); smaster->thp = kmalloc_node(hpsz, GFP_KERNEL, smaster->osnode); memset(smaster->thp, 0, hpsz); for_each_present_cpu(cpu) { smaster->thp[cpu].pnode = uv_cpu_hub_info(cpu)->pnode; smaster->thp[cpu].uvhub = uv_cpu_hub_info(cpu)->numa_blade_id; } } /* * Each uvhub is to get a local cpumask. */ static void make_per_hub_cpumask(struct bau_control *hmaster) { int sz = sizeof(cpumask_t); hmaster->cpumask = kzalloc_node(sz, GFP_KERNEL, hmaster->osnode); } /* * Initialize all the per_cpu information for the cpu's on a given socket, * given what has been gathered into the socket_desc struct. * And reports the chosen hub and socket masters back to the caller. */ static int scan_sock(struct socket_desc *sdp, struct uvhub_desc *bdp, struct bau_control **smasterp, struct bau_control **hmasterp) { int i; int cpu; struct bau_control *bcp; for (i = 0; i < sdp->num_cpus; i++) { cpu = sdp->cpu_number[i]; bcp = &per_cpu(bau_control, cpu); bcp->cpu = cpu; if (i == 0) { *smasterp = bcp; if (!(*hmasterp)) *hmasterp = bcp; } bcp->cpus_in_uvhub = bdp->num_cpus; bcp->cpus_in_socket = sdp->num_cpus; bcp->socket_master = *smasterp; bcp->uvhub = bdp->uvhub; if (is_uv1_hub()) bcp->uvhub_version = 1; else if (is_uv2_hub()) bcp->uvhub_version = 2; else { printk(KERN_EMERG "uvhub version not 1 or 2\n"); return 1; } bcp->uvhub_master = *hmasterp; bcp->uvhub_cpu = uv_cpu_hub_info(cpu)->blade_processor_id; if (bcp->uvhub_cpu >= MAX_CPUS_PER_UVHUB) { printk(KERN_EMERG "%d cpus per uvhub invalid\n", bcp->uvhub_cpu); return 1; } } return 0; } /* * Summarize the blade and socket topology into the per_cpu structures. */ static int __init summarize_uvhub_sockets(int nuvhubs, struct uvhub_desc *uvhub_descs, unsigned char *uvhub_mask) { int socket; int uvhub; unsigned short socket_mask; for (uvhub = 0; uvhub < nuvhubs; uvhub++) { struct uvhub_desc *bdp; struct bau_control *smaster = NULL; struct bau_control *hmaster = NULL; if (!(*(uvhub_mask + (uvhub/8)) & (1 << (uvhub%8)))) continue; bdp = &uvhub_descs[uvhub]; socket_mask = bdp->socket_mask; socket = 0; while (socket_mask) { struct socket_desc *sdp; if ((socket_mask & 1)) { sdp = &bdp->socket[socket]; if (scan_sock(sdp, bdp, &smaster, &hmaster)) return 1; make_per_cpu_thp(smaster); } socket++; socket_mask = (socket_mask >> 1); } make_per_hub_cpumask(hmaster); } return 0; } /* * initialize the bau_control structure for each cpu */ static int __init init_per_cpu(int nuvhubs, int base_part_pnode) { unsigned char *uvhub_mask; void *vp; struct uvhub_desc *uvhub_descs; timeout_us = calculate_destination_timeout(); vp = kmalloc(nuvhubs * sizeof(struct uvhub_desc), GFP_KERNEL); uvhub_descs = (struct uvhub_desc *)vp; memset(uvhub_descs, 0, nuvhubs * sizeof(struct uvhub_desc)); uvhub_mask = kzalloc((nuvhubs+7)/8, GFP_KERNEL); if (get_cpu_topology(base_part_pnode, uvhub_descs, uvhub_mask)) goto fail; if (summarize_uvhub_sockets(nuvhubs, uvhub_descs, uvhub_mask)) goto fail; kfree(uvhub_descs); kfree(uvhub_mask); init_per_cpu_tunables(); return 0; fail: kfree(uvhub_descs); kfree(uvhub_mask); return 1; } /* * Initialization of BAU-related structures */ static int __init uv_bau_init(void) { int uvhub; int pnode; int nuvhubs; int cur_cpu; int cpus; int vector; cpumask_var_t *mask; if (!is_uv_system()) return 0; if (nobau) return 0; for_each_possible_cpu(cur_cpu) { mask = &per_cpu(uv_flush_tlb_mask, cur_cpu); zalloc_cpumask_var_node(mask, GFP_KERNEL, cpu_to_node(cur_cpu)); } nuvhubs = uv_num_possible_blades(); spin_lock_init(&disable_lock); congested_cycles = usec_2_cycles(congested_respns_us); uv_base_pnode = 0x7fffffff; for (uvhub = 0; uvhub < nuvhubs; uvhub++) { cpus = uv_blade_nr_possible_cpus(uvhub); if (cpus && (uv_blade_to_pnode(uvhub) < uv_base_pnode)) uv_base_pnode = uv_blade_to_pnode(uvhub); } enable_timeouts(); if (init_per_cpu(nuvhubs, uv_base_pnode)) { nobau = 1; return 0; } vector = UV_BAU_MESSAGE; for_each_possible_blade(uvhub) if (uv_blade_nr_possible_cpus(uvhub)) init_uvhub(uvhub, vector, uv_base_pnode); alloc_intr_gate(vector, uv_bau_message_intr1); for_each_possible_blade(uvhub) { if (uv_blade_nr_possible_cpus(uvhub)) { unsigned long val; unsigned long mmr; pnode = uv_blade_to_pnode(uvhub); /* INIT the bau */ val = 1L << 63; write_gmmr_activation(pnode, val); mmr = 1; /* should be 1 to broadcast to both sockets */ if (!is_uv1_hub()) write_mmr_data_broadcast(pnode, mmr); } } return 0; } core_initcall(uv_bau_init); fs_initcall(uv_ptc_init);