/* * olpcpci.c - Low-level PCI config space access for OLPC systems * without the VSA PCI virtualization software. * * The AMD Geode chipset (GX2 processor, cs5536 I/O companion device) * has some I/O functions (display, southbridge, sound, USB HCIs, etc) * that more or less behave like PCI devices, but the hardware doesn't * directly implement the PCI configuration space headers. AMD provides * "VSA" (Virtual System Architecture) software that emulates PCI config * space for these devices, by trapping I/O accesses to PCI config register * (CF8/CFC) and running some code in System Management Mode interrupt state. * On the OLPC platform, we don't want to use that VSA code because * (a) it slows down suspend/resume, and (b) recompiling it requires special * compilers that are hard to get. So instead of letting the complex VSA * code simulate the PCI config registers for the on-chip devices, we * just simulate them the easy way, by inserting the code into the * pci_write_config and pci_read_config path. Most of the config registers * are read-only anyway, so the bulk of the simulation is just table lookup. */ #include #include #include #include #include "pci.h" static int is_lx; /* * In the tables below, the first two line (8 longwords) are the * size masks that are used when the higher level PCI code determines * the size of the region by writing ~0 to a base address register * and reading back the result. * * The following lines are the values that are read during normal * PCI config access cycles, i.e. not after just having written * ~0 to a base address register. */ static const u32 lxnb_hdr[] = { /* dev 1 function 0 - devfn = 8 */ 0x0 , 0x0 , 0x0 , 0x0 , 0x0 , 0x0 , 0x0 , 0x0 , 0x281022 , 0x2200005 , 0x6000021 , 0x80f808 , /* AMD Vendor ID */ 0x0 , 0x0 , 0x0 , 0x0 , /* No virtual registers, hence no BAR for them */ 0x0 , 0x0 , 0x0 , 0x28100b , 0x0 , 0x0 , 0x0 , 0x0 , 0x0 , 0x0 , 0x0 , 0x0 , 0x0 , 0x0 , 0x0 , 0x0 , 0x0 , 0x0 , 0x0 , 0x0 , }; static const u32 gxnb_hdr[] = { /* dev 1 function 0 - devfn = 8 */ 0xfffffffd , 0x0 , 0x0 , 0x0 , 0x0 , 0x0 , 0x0 , 0x0 , 0x28100b , 0x2200005 , 0x6000021 , 0x80f808 , /* NSC Vendor ID */ 0xac1d , 0x0 , 0x0 , 0x0 , /* I/O BAR - base of virtual registers */ 0x0 , 0x0 , 0x0 , 0x28100b , 0x0 , 0x0 , 0x0 , 0x0 , 0x0 , 0x0 , 0x0 , 0x0 , 0x0 , 0x0 , 0x0 , 0x0 , 0x0 , 0x0 , 0x0 , 0x0 , }; static const u32 lxfb_hdr[] = { /* dev 1 function 1 - devfn = 9 */ 0xff000008 , 0xffffc000 , 0xffffc000 , 0xffffc000 , 0xffffc000 , 0x0 , 0x0 , 0x0 , 0x20811022 , 0x2200003 , 0x3000000 , 0x0 , /* AMD Vendor ID */ 0xfd000000 , 0xfe000000 , 0xfe004000 , 0xfe008000 , /* FB, GP, VG, DF */ 0xfe00c000 , 0x0 , 0x0 , 0x30100b , /* VIP */ 0x0 , 0x0 , 0x0 , 0x10e , /* INTA, IRQ14 for graphics accel */ 0x0 , 0x0 , 0x0 , 0x0 , 0x3d0 , 0x3c0 , 0xa0000 , 0x0 , /* VG IO, VG IO, EGA FB, MONO FB */ 0x0 , 0x0 , 0x0 , 0x0 , }; static const u32 gxfb_hdr[] = { /* dev 1 function 1 - devfn = 9 */ 0xff800008 , 0xffffc000 , 0xffffc000 , 0xffffc000 , 0x0 , 0x0 , 0x0 , 0x0 , 0x30100b , 0x2200003 , 0x3000000 , 0x0 , /* NSC Vendor ID */ 0xfd000000 , 0xfe000000 , 0xfe004000 , 0xfe008000 , /* FB, GP, VG, DF */ 0x0 , 0x0 , 0x0 , 0x30100b , 0x0 , 0x0 , 0x0 , 0x0 , 0x0 , 0x0 , 0x0 , 0x0 , 0x3d0 , 0x3c0 , 0xa0000 , 0x0 , /* VG IO, VG IO, EGA FB, MONO FB */ 0x0 , 0x0 , 0x0 , 0x0 , }; static const u32 aes_hdr[] = { /* dev 1 function 2 - devfn = 0xa */ 0xffffc000 , 0x0 , 0x0 , 0x0 , 0x0 , 0x0 , 0x0 , 0x0 , 0x20821022 , 0x2a00006 , 0x10100000 , 0x8 , /* NSC Vendor ID */ 0xfe010000 , 0x0 , 0x0 , 0x0 , /* AES registers */ 0x0 , 0x0 , 0x0 , 0x20821022 , 0x0 , 0x0 , 0x0 , 0x0 , 0x0 , 0x0 , 0x0 , 0x0 , 0x0 , 0x0 , 0x0 , 0x0 , 0x0 , 0x0 , 0x0 , 0x0 , }; static const u32 isa_hdr[] = { /* dev f function 0 - devfn = 78 */ 0xfffffff9 , 0xffffff01 , 0xffffffc1 , 0xffffffe1 , 0xffffff81 , 0xffffffc1 , 0x0 , 0x0 , 0x20901022 , 0x2a00049 , 0x6010003 , 0x802000 , 0x18b1 , 0x1001 , 0x1801 , 0x1881 , /* SMB-8 GPIO-256 MFGPT-64 IRQ-32 */ 0x1401 , 0x1841 , 0x0 , 0x20901022 , /* PMS-128 ACPI-64 */ 0x0 , 0x0 , 0x0 , 0x0 , 0x0 , 0x0 , 0x0 , 0x0 , 0x0 , 0x0 , 0x0 , 0xaa5b , /* interrupt steering */ 0x0 , 0x0 , 0x0 , 0x0 , }; static const u32 ac97_hdr[] = { /* dev f function 3 - devfn = 7b */ 0xffffff81 , 0x0 , 0x0 , 0x0 , 0x0 , 0x0 , 0x0 , 0x0 , 0x20931022 , 0x2a00041 , 0x4010001 , 0x0 , 0x1481 , 0x0 , 0x0 , 0x0 , /* I/O BAR-128 */ 0x0 , 0x0 , 0x0 , 0x20931022 , 0x0 , 0x0 , 0x0 , 0x205 , /* IntB , IRQ5 */ 0x0 , 0x0 , 0x0 , 0x0 , 0x0 , 0x0 , 0x0 , 0x0 , 0x0 , 0x0 , 0x0 , 0x0 , }; static const u32 ohci_hdr[] = { /* dev f function 4 - devfn = 7c */ 0xfffff000 , 0x0 , 0x0 , 0x0 , 0x0 , 0x0 , 0x0 , 0x0 , 0x20941022 , 0x2300006 , 0xc031002 , 0x0 , 0xfe01a000 , 0x0 , 0x0 , 0x0 , /* MEMBAR-1000 */ 0x0 , 0x0 , 0x0 , 0x20941022 , 0x0 , 0x40 , 0x0 , 0x40a , /* CapPtr INT-D, IRQ A */ 0xc8020001 , 0x0 , 0x0 , 0x0 , /* Capabilities - 40 is R/O, 44 is mask 8103 (power control) */ 0x0 , 0x0 , 0x0 , 0x0 , 0x0 , 0x0 , 0x0 , 0x0 , }; static const u32 ehci_hdr[] = { /* dev f function 4 - devfn = 7d */ 0xfffff000 , 0x0 , 0x0 , 0x0 , 0x0 , 0x0 , 0x0 , 0x0 , 0x20951022 , 0x2300006 , 0xc032002 , 0x0 , 0xfe01b000 , 0x0 , 0x0 , 0x0 , /* MEMBAR-1000 */ 0x0 , 0x0 , 0x0 , 0x20951022 , 0x0 , 0x40 , 0x0 , 0x40a , /* CapPtr INT-D, IRQ A */ 0xc8020001 , 0x0 , 0x0 , 0x0 , /* Capabilities - 40 is R/O, 44 is mask 8103 (power control) */ #if 0 0x1 , 0x40080000 , 0x0 , 0x0 , /* EECP - see section 2.1.7 of EHCI spec */ #endif 0x01000001 , 0x00000000 , 0x0 , 0x0 , /* EECP - see section 2.1.7 of EHCI spec */ 0x2020 , 0x0 , 0x0 , 0x0 , /* (EHCI page 8) 60 SBRN (R/O), 61 FLADJ (R/W), PORTWAKECAP */ }; static u32 ff_loc = ~0; static u32 zero_loc = 0; static int bar_probing = 0; /* Set after a write of ~0 to a BAR */ #define NB_SLOT 0x1 /* Northbridge - GX chip - Device 1 */ #define SB_SLOT 0xf /* Southbridge - CS5536 chip - Device F */ #define SIMULATED(bus, devfn) (((bus) == 0) && ((PCI_SLOT(devfn) == NB_SLOT) || (PCI_SLOT(devfn) == SB_SLOT))) static u32 *hdr_addr(const u32 *hdr, int reg) { u32 addr; /* * This is a little bit tricky. The header maps consist of * 0x20 bytes of size masks, followed by 0x70 bytes of header data. * In the normal case, when not probing a BAR's size, we want * to access the header data, so we add 0x20 to the reg offset, * thus skipping the size mask area. * In the BAR probing case, we want to access the size mask for * the BAR, so we subtract 0x10 (the config header offset for * BAR0), and don't skip the size mask area. */ addr = (u32)hdr + reg + (bar_probing ? -0x10 : 0x20); bar_probing = 0; return (u32 *)addr; } static int pci_olpc_read(unsigned int seg, unsigned int bus, unsigned int devfn, int reg, int len, u32 *value) { u32 *addr; /* Use the hardware mechanism for non-simulated devices */ if (!SIMULATED(bus, devfn)) return pci_direct_conf1.read(seg, bus, devfn, reg, len, value); /* * No device has config registers past 0x70, so we save table space * by not storing entries for the nonexistent registers */ if (reg >= 0x70) addr = &zero_loc; else { switch (devfn) { case 0x8: addr = hdr_addr(is_lx ? lxnb_hdr : gxnb_hdr, reg); break; case 0x9: addr = hdr_addr(is_lx ? lxfb_hdr : gxfb_hdr, reg); break; case 0xa: addr = is_lx ? hdr_addr(aes_hdr, reg) : &ff_loc; break; case 0x78: addr = hdr_addr(isa_hdr, reg); break; case 0x7b: addr = hdr_addr(ac97_hdr, reg); break; case 0x7c: addr = hdr_addr(ohci_hdr, reg); break; case 0x7d: addr = hdr_addr(ehci_hdr, reg); break; default: addr = &ff_loc; break; } } switch (len) { case 1: *value = *(u8 *) addr; break; case 2: *value = *(u16 *) addr; break; case 4: *value = *addr; break; default: BUG(); } return 0; } static int pci_olpc_write(unsigned int seg, unsigned int bus, unsigned int devfn, int reg, int len, u32 value) { /* Use the hardware mechanism for non-simulated devices */ if (!SIMULATED(bus, devfn)) return pci_direct_conf1.write(seg, bus, devfn, reg, len, value); /* XXX we may want to extend this to simulate EHCI power management */ /* * Mostly we just discard writes, but if the write is a size probe * (i.e. writing ~0 to a BAR), we remember it and arrange to return * the appropriate size mask on the next read. This is cheating * to some extent, because it depends on the fact that the next * access after such a write will always be a read to the same BAR. */ if ((reg >= 0x10) && (reg < 0x2c)) { /* Write is to a BAR */ if (value == ~0) bar_probing = 1; } else { /* * No warning on writes to ROM BAR, CMD, LATENCY_TIMER, * CACHE_LINE_SIZE, or PM registers. */ if ((reg != 0x30) && (reg != 0x04) && (reg != 0x0d) && (reg != 0x0c) && (reg != 0x44)) printk(KERN_WARNING "OLPC PCI: Config write to devfn %x reg %x value %x\n", devfn, reg, value); } return 0; } static struct pci_raw_ops pci_olpc_conf = { .read = pci_olpc_read, .write = pci_olpc_write, }; void __init pci_olpc_init(void) { if (!machine_is_olpc() || olpc_has_vsa()) return; printk(KERN_INFO "PCI: Using configuration type OLPC\n"); raw_pci_ops = &pci_olpc_conf; is_lx = is_geode_lx(); }