/* * SS1000/SC2000 interrupt handling. * * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz) * Heavily based on arch/sparc/kernel/irq.c. */ #include #include #include #include #include #include #include #include #include #include "kernel.h" #include "irq.h" /* Sun4d interrupts fall roughly into two categories. SBUS and * cpu local. CPU local interrupts cover the timer interrupts * and whatnot, and we encode those as normal PILs between * 0 and 15. * SBUS interrupts are encodes as a combination of board, level and slot. */ struct sun4d_handler_data { unsigned int cpuid; /* target cpu */ unsigned int real_irq; /* interrupt level */ }; static unsigned int sun4d_encode_irq(int board, int lvl, int slot) { return (board + 1) << 5 | (lvl << 2) | slot; } struct sun4d_timer_regs { u32 l10_timer_limit; u32 l10_cur_countx; u32 l10_limit_noclear; u32 ctrl; u32 l10_cur_count; }; static struct sun4d_timer_regs __iomem *sun4d_timers; #define SUN4D_TIMER_IRQ 10 /* Specify which cpu handle interrupts from which board. * Index is board - value is cpu. */ static unsigned char board_to_cpu[32]; static int pil_to_sbus[] = { 0, 0, 1, 2, 0, 3, 0, 4, 0, 5, 0, 6, 0, 7, 0, 0, }; /* Exported for sun4d_smp.c */ DEFINE_SPINLOCK(sun4d_imsk_lock); /* SBUS interrupts are encoded integers including the board number * (plus one), the SBUS level, and the SBUS slot number. Sun4D * IRQ dispatch is done by: * * 1) Reading the BW local interrupt table in order to get the bus * interrupt mask. * * This table is indexed by SBUS interrupt level which can be * derived from the PIL we got interrupted on. * * 2) For each bus showing interrupt pending from #1, read the * SBI interrupt state register. This will indicate which slots * have interrupts pending for that SBUS interrupt level. * * 3) Call the genreric IRQ support. */ static void sun4d_sbus_handler_irq(int sbusl) { unsigned int bus_mask; unsigned int sbino, slot; unsigned int sbil; bus_mask = bw_get_intr_mask(sbusl) & 0x3ffff; bw_clear_intr_mask(sbusl, bus_mask); sbil = (sbusl << 2); /* Loop for each pending SBI */ for (sbino = 0; bus_mask; sbino++, bus_mask >>= 1) { unsigned int idx, mask; if (!(bus_mask & 1)) continue; /* XXX This seems to ACK the irq twice. acquire_sbi() * XXX uses swap, therefore this writes 0xf << sbil, * XXX then later release_sbi() will write the individual * XXX bits which were set again. */ mask = acquire_sbi(SBI2DEVID(sbino), 0xf << sbil); mask &= (0xf << sbil); /* Loop for each pending SBI slot */ slot = (1 << sbil); for (idx = 0; mask != 0; idx++, slot <<= 1) { unsigned int pil; struct irq_bucket *p; if (!(mask & slot)) continue; mask &= ~slot; pil = sun4d_encode_irq(sbino, sbusl, idx); p = irq_map[pil]; while (p) { struct irq_bucket *next; next = p->next; generic_handle_irq(p->irq); p = next; } release_sbi(SBI2DEVID(sbino), slot); } } } void sun4d_handler_irq(int pil, struct pt_regs *regs) { struct pt_regs *old_regs; /* SBUS IRQ level (1 - 7) */ int sbusl = pil_to_sbus[pil]; /* FIXME: Is this necessary?? */ cc_get_ipen(); cc_set_iclr(1 << pil); #ifdef CONFIG_SMP /* * Check IPI data structures after IRQ has been cleared. Hard and Soft * IRQ can happen at the same time, so both cases are always handled. */ if (pil == SUN4D_IPI_IRQ) sun4d_ipi_interrupt(); #endif old_regs = set_irq_regs(regs); irq_enter(); if (sbusl == 0) { /* cpu interrupt */ struct irq_bucket *p; p = irq_map[pil]; while (p) { struct irq_bucket *next; next = p->next; generic_handle_irq(p->irq); p = next; } } else { /* SBUS interrupt */ sun4d_sbus_handler_irq(sbusl); } irq_exit(); set_irq_regs(old_regs); } static void sun4d_mask_irq(struct irq_data *data) { struct sun4d_handler_data *handler_data = data->handler_data; unsigned int real_irq; #ifdef CONFIG_SMP int cpuid = handler_data->cpuid; unsigned long flags; #endif real_irq = handler_data->real_irq; #ifdef CONFIG_SMP spin_lock_irqsave(&sun4d_imsk_lock, flags); cc_set_imsk_other(cpuid, cc_get_imsk_other(cpuid) | (1 << real_irq)); spin_unlock_irqrestore(&sun4d_imsk_lock, flags); #else cc_set_imsk(cc_get_imsk() | (1 << real_irq)); #endif } static void sun4d_unmask_irq(struct irq_data *data) { struct sun4d_handler_data *handler_data = data->handler_data; unsigned int real_irq; #ifdef CONFIG_SMP int cpuid = handler_data->cpuid; unsigned long flags; #endif real_irq = handler_data->real_irq; #ifdef CONFIG_SMP spin_lock_irqsave(&sun4d_imsk_lock, flags); cc_set_imsk_other(cpuid, cc_get_imsk_other(cpuid) & ~(1 << real_irq)); spin_unlock_irqrestore(&sun4d_imsk_lock, flags); #else cc_set_imsk(cc_get_imsk() & ~(1 << real_irq)); #endif } static unsigned int sun4d_startup_irq(struct irq_data *data) { irq_link(data->irq); sun4d_unmask_irq(data); return 0; } static void sun4d_shutdown_irq(struct irq_data *data) { sun4d_mask_irq(data); irq_unlink(data->irq); } struct irq_chip sun4d_irq = { .name = "sun4d", .irq_startup = sun4d_startup_irq, .irq_shutdown = sun4d_shutdown_irq, .irq_unmask = sun4d_unmask_irq, .irq_mask = sun4d_mask_irq, }; #ifdef CONFIG_SMP static void sun4d_set_cpu_int(int cpu, int level) { sun4d_send_ipi(cpu, level); } static void sun4d_clear_ipi(int cpu, int level) { } static void sun4d_set_udt(int cpu) { } /* Setup IRQ distribution scheme. */ void __init sun4d_distribute_irqs(void) { struct device_node *dp; int cpuid = cpu_logical_map(1); if (cpuid == -1) cpuid = cpu_logical_map(0); for_each_node_by_name(dp, "sbi") { int devid = of_getintprop_default(dp, "device-id", 0); int board = of_getintprop_default(dp, "board#", 0); board_to_cpu[board] = cpuid; set_sbi_tid(devid, cpuid << 3); } printk(KERN_ERR "All sbus IRQs directed to CPU%d\n", cpuid); } #endif static void sun4d_clear_clock_irq(void) { sbus_readl(&sun4d_timers->l10_timer_limit); } static void sun4d_load_profile_irq(int cpu, unsigned int limit) { bw_set_prof_limit(cpu, limit); } static void __init sun4d_load_profile_irqs(void) { int cpu = 0, mid; while (!cpu_find_by_instance(cpu, NULL, &mid)) { sun4d_load_profile_irq(mid >> 3, 0); cpu++; } } unsigned int _sun4d_build_device_irq(unsigned int real_irq, unsigned int pil, unsigned int board) { struct sun4d_handler_data *handler_data; unsigned int irq; irq = irq_alloc(real_irq, pil); if (irq == 0) { prom_printf("IRQ: allocate for %d %d %d failed\n", real_irq, pil, board); goto err_out; } handler_data = irq_get_handler_data(irq); if (unlikely(handler_data)) goto err_out; handler_data = kzalloc(sizeof(struct sun4d_handler_data), GFP_ATOMIC); if (unlikely(!handler_data)) { prom_printf("IRQ: kzalloc(sun4d_handler_data) failed.\n"); prom_halt(); } handler_data->cpuid = board_to_cpu[board]; handler_data->real_irq = real_irq; irq_set_chip_and_handler_name(irq, &sun4d_irq, handle_level_irq, "level"); irq_set_handler_data(irq, handler_data); err_out: return irq; } unsigned int sun4d_build_device_irq(struct platform_device *op, unsigned int real_irq) { struct device_node *dp = op->dev.of_node; struct device_node *board_parent, *bus = dp->parent; char *bus_connection; const struct linux_prom_registers *regs; unsigned int pil; unsigned int irq; int board, slot; int sbusl; irq = real_irq; while (bus) { if (!strcmp(bus->name, "sbi")) { bus_connection = "io-unit"; break; } if (!strcmp(bus->name, "bootbus")) { bus_connection = "cpu-unit"; break; } bus = bus->parent; } if (!bus) goto err_out; regs = of_get_property(dp, "reg", NULL); if (!regs) goto err_out; slot = regs->which_io; /* * If Bus nodes parent is not io-unit/cpu-unit or the io-unit/cpu-unit * lacks a "board#" property, something is very wrong. */ if (!bus->parent || strcmp(bus->parent->name, bus_connection)) { printk(KERN_ERR "%s: Error, parent is not %s.\n", bus->full_name, bus_connection); goto err_out; } board_parent = bus->parent; board = of_getintprop_default(board_parent, "board#", -1); if (board == -1) { printk(KERN_ERR "%s: Error, lacks board# property.\n", board_parent->full_name); goto err_out; } sbusl = pil_to_sbus[real_irq]; if (sbusl) pil = sun4d_encode_irq(board, sbusl, slot); else pil = real_irq; irq = _sun4d_build_device_irq(real_irq, pil, board); err_out: return irq; } unsigned int sun4d_build_timer_irq(unsigned int board, unsigned int real_irq) { return _sun4d_build_device_irq(real_irq, real_irq, board); } static void __init sun4d_fixup_trap_table(void) { #ifdef CONFIG_SMP unsigned long flags; struct tt_entry *trap_table = &sparc_ttable[SP_TRAP_IRQ1 + (14 - 1)]; /* Adjust so that we jump directly to smp4d_ticker */ lvl14_save[2] += smp4d_ticker - real_irq_entry; /* For SMP we use the level 14 ticker, however the bootup code * has copied the firmware's level 14 vector into the boot cpu's * trap table, we must fix this now or we get squashed. */ local_irq_save(flags); patchme_maybe_smp_msg[0] = 0x01000000; /* NOP out the branch */ trap_table->inst_one = lvl14_save[0]; trap_table->inst_two = lvl14_save[1]; trap_table->inst_three = lvl14_save[2]; trap_table->inst_four = lvl14_save[3]; local_flush_cache_all(); local_irq_restore(flags); #endif } static void __init sun4d_init_timers(irq_handler_t counter_fn) { struct device_node *dp; struct resource res; unsigned int irq; const u32 *reg; int err; int board; dp = of_find_node_by_name(NULL, "cpu-unit"); if (!dp) { prom_printf("sun4d_init_timers: Unable to find cpu-unit\n"); prom_halt(); } /* Which cpu-unit we use is arbitrary, we can view the bootbus timer * registers via any cpu's mapping. The first 'reg' property is the * bootbus. */ reg = of_get_property(dp, "reg", NULL); if (!reg) { prom_printf("sun4d_init_timers: No reg property\n"); prom_halt(); } board = of_getintprop_default(dp, "board#", -1); if (board == -1) { prom_printf("sun4d_init_timers: No board# property on cpu-unit\n"); prom_halt(); } of_node_put(dp); res.start = reg[1]; res.end = reg[2] - 1; res.flags = reg[0] & 0xff; sun4d_timers = of_ioremap(&res, BW_TIMER_LIMIT, sizeof(struct sun4d_timer_regs), "user timer"); if (!sun4d_timers) { prom_printf("sun4d_init_timers: Can't map timer regs\n"); prom_halt(); } sbus_writel((((1000000/HZ) + 1) << 10), &sun4d_timers->l10_timer_limit); master_l10_counter = &sun4d_timers->l10_cur_count; irq = sun4d_build_timer_irq(board, SUN4D_TIMER_IRQ); err = request_irq(irq, counter_fn, IRQF_TIMER, "timer", NULL); if (err) { prom_printf("sun4d_init_timers: request_irq() failed with %d\n", err); prom_halt(); } sun4d_load_profile_irqs(); sun4d_fixup_trap_table(); } void __init sun4d_init_sbi_irq(void) { struct device_node *dp; int target_cpu; target_cpu = boot_cpu_id; for_each_node_by_name(dp, "sbi") { int devid = of_getintprop_default(dp, "device-id", 0); int board = of_getintprop_default(dp, "board#", 0); unsigned int mask; set_sbi_tid(devid, target_cpu << 3); board_to_cpu[board] = target_cpu; /* Get rid of pending irqs from PROM */ mask = acquire_sbi(devid, 0xffffffff); if (mask) { printk(KERN_ERR "Clearing pending IRQs %08x on SBI %d\n", mask, board); release_sbi(devid, mask); } } } void __init sun4d_init_IRQ(void) { local_irq_disable(); BTFIXUPSET_CALL(clear_clock_irq, sun4d_clear_clock_irq, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(load_profile_irq, sun4d_load_profile_irq, BTFIXUPCALL_NORM); sparc_config.init_timers = sun4d_init_timers; sparc_config.build_device_irq = sun4d_build_device_irq; #ifdef CONFIG_SMP BTFIXUPSET_CALL(set_cpu_int, sun4d_set_cpu_int, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(clear_cpu_int, sun4d_clear_ipi, BTFIXUPCALL_NOP); BTFIXUPSET_CALL(set_irq_udt, sun4d_set_udt, BTFIXUPCALL_NOP); #endif /* Cannot enable interrupts until OBP ticker is disabled. */ }