/* * Copyright (C) 2012 - Virtual Open Systems and Columbia University * Author: Christoffer Dall * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License, version 2, as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include #include #include #include #include #define CREATE_TRACE_POINTS #include "trace.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef REQUIRES_VIRT __asm__(".arch_extension virt"); #endif static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page); static struct vfp_hard_struct __percpu *kvm_host_vfp_state; static unsigned long hyp_default_vectors; /* Per-CPU variable containing the currently running vcpu. */ static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu); /* The VMID used in the VTTBR */ static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1); static u8 kvm_next_vmid; static DEFINE_SPINLOCK(kvm_vmid_lock); static bool vgic_present; static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu) { BUG_ON(preemptible()); __get_cpu_var(kvm_arm_running_vcpu) = vcpu; } /** * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU. * Must be called from non-preemptible context */ struct kvm_vcpu *kvm_arm_get_running_vcpu(void) { BUG_ON(preemptible()); return __get_cpu_var(kvm_arm_running_vcpu); } /** * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus. */ struct kvm_vcpu __percpu **kvm_get_running_vcpus(void) { return &kvm_arm_running_vcpu; } int kvm_arch_hardware_enable(void *garbage) { return 0; } int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) { return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; } void kvm_arch_hardware_disable(void *garbage) { } int kvm_arch_hardware_setup(void) { return 0; } void kvm_arch_hardware_unsetup(void) { } void kvm_arch_check_processor_compat(void *rtn) { *(int *)rtn = 0; } void kvm_arch_sync_events(struct kvm *kvm) { } /** * kvm_arch_init_vm - initializes a VM data structure * @kvm: pointer to the KVM struct */ int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) { int ret = 0; if (type) return -EINVAL; ret = kvm_alloc_stage2_pgd(kvm); if (ret) goto out_fail_alloc; ret = create_hyp_mappings(kvm, kvm + 1); if (ret) goto out_free_stage2_pgd; /* Mark the initial VMID generation invalid */ kvm->arch.vmid_gen = 0; return ret; out_free_stage2_pgd: kvm_free_stage2_pgd(kvm); out_fail_alloc: return ret; } int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) { return VM_FAULT_SIGBUS; } void kvm_arch_free_memslot(struct kvm_memory_slot *free, struct kvm_memory_slot *dont) { } int kvm_arch_create_memslot(struct kvm_memory_slot *slot, unsigned long npages) { return 0; } /** * kvm_arch_destroy_vm - destroy the VM data structure * @kvm: pointer to the KVM struct */ void kvm_arch_destroy_vm(struct kvm *kvm) { int i; kvm_free_stage2_pgd(kvm); for (i = 0; i < KVM_MAX_VCPUS; ++i) { if (kvm->vcpus[i]) { kvm_arch_vcpu_free(kvm->vcpus[i]); kvm->vcpus[i] = NULL; } } } int kvm_dev_ioctl_check_extension(long ext) { int r; switch (ext) { case KVM_CAP_IRQCHIP: r = vgic_present; break; case KVM_CAP_USER_MEMORY: case KVM_CAP_SYNC_MMU: case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: case KVM_CAP_ONE_REG: case KVM_CAP_ARM_PSCI: r = 1; break; case KVM_CAP_COALESCED_MMIO: r = KVM_COALESCED_MMIO_PAGE_OFFSET; break; case KVM_CAP_ARM_SET_DEVICE_ADDR: r = 1; case KVM_CAP_NR_VCPUS: r = num_online_cpus(); break; case KVM_CAP_MAX_VCPUS: r = KVM_MAX_VCPUS; break; default: r = 0; break; } return r; } long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) { return -EINVAL; } int kvm_arch_set_memory_region(struct kvm *kvm, struct kvm_userspace_memory_region *mem, struct kvm_memory_slot old, int user_alloc) { return 0; } int kvm_arch_prepare_memory_region(struct kvm *kvm, struct kvm_memory_slot *memslot, struct kvm_memory_slot old, struct kvm_userspace_memory_region *mem, bool user_alloc) { return 0; } void kvm_arch_commit_memory_region(struct kvm *kvm, struct kvm_userspace_memory_region *mem, struct kvm_memory_slot old, bool user_alloc) { } void kvm_arch_flush_shadow_all(struct kvm *kvm) { } void kvm_arch_flush_shadow_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) { } struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id) { int err; struct kvm_vcpu *vcpu; vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL); if (!vcpu) { err = -ENOMEM; goto out; } err = kvm_vcpu_init(vcpu, kvm, id); if (err) goto free_vcpu; err = create_hyp_mappings(vcpu, vcpu + 1); if (err) goto vcpu_uninit; return vcpu; vcpu_uninit: kvm_vcpu_uninit(vcpu); free_vcpu: kmem_cache_free(kvm_vcpu_cache, vcpu); out: return ERR_PTR(err); } int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) { return 0; } void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu) { kvm_mmu_free_memory_caches(vcpu); kvm_timer_vcpu_terminate(vcpu); kmem_cache_free(kvm_vcpu_cache, vcpu); } void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) { kvm_arch_vcpu_free(vcpu); } int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu) { return 0; } int __attribute_const__ kvm_target_cpu(void) { unsigned long implementor = read_cpuid_implementor(); unsigned long part_number = read_cpuid_part_number(); if (implementor != ARM_CPU_IMP_ARM) return -EINVAL; switch (part_number) { case ARM_CPU_PART_CORTEX_A15: return KVM_ARM_TARGET_CORTEX_A15; default: return -EINVAL; } } int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu) { int ret; /* Force users to call KVM_ARM_VCPU_INIT */ vcpu->arch.target = -1; /* Set up VGIC */ ret = kvm_vgic_vcpu_init(vcpu); if (ret) return ret; /* Set up the timer */ kvm_timer_vcpu_init(vcpu); return 0; } void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu) { } void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) { vcpu->cpu = cpu; vcpu->arch.vfp_host = this_cpu_ptr(kvm_host_vfp_state); /* * Check whether this vcpu requires the cache to be flushed on * this physical CPU. This is a consequence of doing dcache * operations by set/way on this vcpu. We do it here to be in * a non-preemptible section. */ if (cpumask_test_and_clear_cpu(cpu, &vcpu->arch.require_dcache_flush)) flush_cache_all(); /* We'd really want v7_flush_dcache_all() */ kvm_arm_set_running_vcpu(vcpu); } void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) { kvm_arm_set_running_vcpu(NULL); } int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg) { return -EINVAL; } int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, struct kvm_mp_state *mp_state) { return -EINVAL; } int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, struct kvm_mp_state *mp_state) { return -EINVAL; } /** * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled * @v: The VCPU pointer * * If the guest CPU is not waiting for interrupts or an interrupt line is * asserted, the CPU is by definition runnable. */ int kvm_arch_vcpu_runnable(struct kvm_vcpu *v) { return !!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v); } /* Just ensure a guest exit from a particular CPU */ static void exit_vm_noop(void *info) { } void force_vm_exit(const cpumask_t *mask) { smp_call_function_many(mask, exit_vm_noop, NULL, true); } /** * need_new_vmid_gen - check that the VMID is still valid * @kvm: The VM's VMID to checkt * * return true if there is a new generation of VMIDs being used * * The hardware supports only 256 values with the value zero reserved for the * host, so we check if an assigned value belongs to a previous generation, * which which requires us to assign a new value. If we're the first to use a * VMID for the new generation, we must flush necessary caches and TLBs on all * CPUs. */ static bool need_new_vmid_gen(struct kvm *kvm) { return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen)); } /** * update_vttbr - Update the VTTBR with a valid VMID before the guest runs * @kvm The guest that we are about to run * * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the * VM has a valid VMID, otherwise assigns a new one and flushes corresponding * caches and TLBs. */ static void update_vttbr(struct kvm *kvm) { phys_addr_t pgd_phys; u64 vmid; if (!need_new_vmid_gen(kvm)) return; spin_lock(&kvm_vmid_lock); /* * We need to re-check the vmid_gen here to ensure that if another vcpu * already allocated a valid vmid for this vm, then this vcpu should * use the same vmid. */ if (!need_new_vmid_gen(kvm)) { spin_unlock(&kvm_vmid_lock); return; } /* First user of a new VMID generation? */ if (unlikely(kvm_next_vmid == 0)) { atomic64_inc(&kvm_vmid_gen); kvm_next_vmid = 1; /* * On SMP we know no other CPUs can use this CPU's or each * other's VMID after force_vm_exit returns since the * kvm_vmid_lock blocks them from reentry to the guest. */ force_vm_exit(cpu_all_mask); /* * Now broadcast TLB + ICACHE invalidation over the inner * shareable domain to make sure all data structures are * clean. */ kvm_call_hyp(__kvm_flush_vm_context); } kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen); kvm->arch.vmid = kvm_next_vmid; kvm_next_vmid++; /* update vttbr to be used with the new vmid */ pgd_phys = virt_to_phys(kvm->arch.pgd); vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK; kvm->arch.vttbr = pgd_phys & VTTBR_BADDR_MASK; kvm->arch.vttbr |= vmid; spin_unlock(&kvm_vmid_lock); } static int handle_svc_hyp(struct kvm_vcpu *vcpu, struct kvm_run *run) { /* SVC called from Hyp mode should never get here */ kvm_debug("SVC called from Hyp mode shouldn't go here\n"); BUG(); return -EINVAL; /* Squash warning */ } static int handle_hvc(struct kvm_vcpu *vcpu, struct kvm_run *run) { trace_kvm_hvc(*vcpu_pc(vcpu), *vcpu_reg(vcpu, 0), vcpu->arch.hsr & HSR_HVC_IMM_MASK); if (kvm_psci_call(vcpu)) return 1; kvm_inject_undefined(vcpu); return 1; } static int handle_smc(struct kvm_vcpu *vcpu, struct kvm_run *run) { if (kvm_psci_call(vcpu)) return 1; kvm_inject_undefined(vcpu); return 1; } static int handle_pabt_hyp(struct kvm_vcpu *vcpu, struct kvm_run *run) { /* The hypervisor should never cause aborts */ kvm_err("Prefetch Abort taken from Hyp mode at %#08x (HSR: %#08x)\n", vcpu->arch.hxfar, vcpu->arch.hsr); return -EFAULT; } static int handle_dabt_hyp(struct kvm_vcpu *vcpu, struct kvm_run *run) { /* This is either an error in the ws. code or an external abort */ kvm_err("Data Abort taken from Hyp mode at %#08x (HSR: %#08x)\n", vcpu->arch.hxfar, vcpu->arch.hsr); return -EFAULT; } typedef int (*exit_handle_fn)(struct kvm_vcpu *, struct kvm_run *); static exit_handle_fn arm_exit_handlers[] = { [HSR_EC_WFI] = kvm_handle_wfi, [HSR_EC_CP15_32] = kvm_handle_cp15_32, [HSR_EC_CP15_64] = kvm_handle_cp15_64, [HSR_EC_CP14_MR] = kvm_handle_cp14_access, [HSR_EC_CP14_LS] = kvm_handle_cp14_load_store, [HSR_EC_CP14_64] = kvm_handle_cp14_access, [HSR_EC_CP_0_13] = kvm_handle_cp_0_13_access, [HSR_EC_CP10_ID] = kvm_handle_cp10_id, [HSR_EC_SVC_HYP] = handle_svc_hyp, [HSR_EC_HVC] = handle_hvc, [HSR_EC_SMC] = handle_smc, [HSR_EC_IABT] = kvm_handle_guest_abort, [HSR_EC_IABT_HYP] = handle_pabt_hyp, [HSR_EC_DABT] = kvm_handle_guest_abort, [HSR_EC_DABT_HYP] = handle_dabt_hyp, }; /* * A conditional instruction is allowed to trap, even though it * wouldn't be executed. So let's re-implement the hardware, in * software! */ static bool kvm_condition_valid(struct kvm_vcpu *vcpu) { unsigned long cpsr, cond, insn; /* * Exception Code 0 can only happen if we set HCR.TGE to 1, to * catch undefined instructions, and then we won't get past * the arm_exit_handlers test anyway. */ BUG_ON(((vcpu->arch.hsr & HSR_EC) >> HSR_EC_SHIFT) == 0); /* Top two bits non-zero? Unconditional. */ if (vcpu->arch.hsr >> 30) return true; cpsr = *vcpu_cpsr(vcpu); /* Is condition field valid? */ if ((vcpu->arch.hsr & HSR_CV) >> HSR_CV_SHIFT) cond = (vcpu->arch.hsr & HSR_COND) >> HSR_COND_SHIFT; else { /* This can happen in Thumb mode: examine IT state. */ unsigned long it; it = ((cpsr >> 8) & 0xFC) | ((cpsr >> 25) & 0x3); /* it == 0 => unconditional. */ if (it == 0) return true; /* The cond for this insn works out as the top 4 bits. */ cond = (it >> 4); } /* Shift makes it look like an ARM-mode instruction */ insn = cond << 28; return arm_check_condition(insn, cpsr) != ARM_OPCODE_CONDTEST_FAIL; } /* * Return > 0 to return to guest, < 0 on error, 0 (and set exit_reason) on * proper exit to QEMU. */ static int handle_exit(struct kvm_vcpu *vcpu, struct kvm_run *run, int exception_index) { unsigned long hsr_ec; switch (exception_index) { case ARM_EXCEPTION_IRQ: return 1; case ARM_EXCEPTION_UNDEFINED: kvm_err("Undefined exception in Hyp mode at: %#08x\n", vcpu->arch.hyp_pc); BUG(); panic("KVM: Hypervisor undefined exception!\n"); case ARM_EXCEPTION_DATA_ABORT: case ARM_EXCEPTION_PREF_ABORT: case ARM_EXCEPTION_HVC: hsr_ec = (vcpu->arch.hsr & HSR_EC) >> HSR_EC_SHIFT; if (hsr_ec >= ARRAY_SIZE(arm_exit_handlers) || !arm_exit_handlers[hsr_ec]) { kvm_err("Unknown exception class: %#08lx, " "hsr: %#08x\n", hsr_ec, (unsigned int)vcpu->arch.hsr); BUG(); } /* * See ARM ARM B1.14.1: "Hyp traps on instructions * that fail their condition code check" */ if (!kvm_condition_valid(vcpu)) { bool is_wide = vcpu->arch.hsr & HSR_IL; kvm_skip_instr(vcpu, is_wide); return 1; } return arm_exit_handlers[hsr_ec](vcpu, run); default: kvm_pr_unimpl("Unsupported exception type: %d", exception_index); run->exit_reason = KVM_EXIT_INTERNAL_ERROR; return 0; } } static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu) { if (likely(vcpu->arch.has_run_once)) return 0; vcpu->arch.has_run_once = true; /* * Initialize the VGIC before running a vcpu the first time on * this VM. */ if (irqchip_in_kernel(vcpu->kvm) && unlikely(!vgic_initialized(vcpu->kvm))) { int ret = kvm_vgic_init(vcpu->kvm); if (ret) return ret; } /* * Handle the "start in power-off" case by calling into the * PSCI code. */ if (test_and_clear_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features)) { *vcpu_reg(vcpu, 0) = KVM_PSCI_FN_CPU_OFF; kvm_psci_call(vcpu); } return 0; } static void vcpu_pause(struct kvm_vcpu *vcpu) { wait_queue_head_t *wq = kvm_arch_vcpu_wq(vcpu); wait_event_interruptible(*wq, !vcpu->arch.pause); } /** * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code * @vcpu: The VCPU pointer * @run: The kvm_run structure pointer used for userspace state exchange * * This function is called through the VCPU_RUN ioctl called from user space. It * will execute VM code in a loop until the time slice for the process is used * or some emulation is needed from user space in which case the function will * return with return value 0 and with the kvm_run structure filled in with the * required data for the requested emulation. */ int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run) { int ret; sigset_t sigsaved; /* Make sure they initialize the vcpu with KVM_ARM_VCPU_INIT */ if (unlikely(vcpu->arch.target < 0)) return -ENOEXEC; ret = kvm_vcpu_first_run_init(vcpu); if (ret) return ret; if (run->exit_reason == KVM_EXIT_MMIO) { ret = kvm_handle_mmio_return(vcpu, vcpu->run); if (ret) return ret; } if (vcpu->sigset_active) sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved); ret = 1; run->exit_reason = KVM_EXIT_UNKNOWN; while (ret > 0) { /* * Check conditions before entering the guest */ cond_resched(); update_vttbr(vcpu->kvm); if (vcpu->arch.pause) vcpu_pause(vcpu); kvm_vgic_flush_hwstate(vcpu); kvm_timer_flush_hwstate(vcpu); local_irq_disable(); /* * Re-check atomic conditions */ if (signal_pending(current)) { ret = -EINTR; run->exit_reason = KVM_EXIT_INTR; } if (ret <= 0 || need_new_vmid_gen(vcpu->kvm)) { local_irq_enable(); kvm_timer_sync_hwstate(vcpu); kvm_vgic_sync_hwstate(vcpu); continue; } /************************************************************** * Enter the guest */ trace_kvm_entry(*vcpu_pc(vcpu)); kvm_guest_enter(); vcpu->mode = IN_GUEST_MODE; ret = kvm_call_hyp(__kvm_vcpu_run, vcpu); vcpu->mode = OUTSIDE_GUEST_MODE; vcpu->arch.last_pcpu = smp_processor_id(); kvm_guest_exit(); trace_kvm_exit(*vcpu_pc(vcpu)); /* * We may have taken a host interrupt in HYP mode (ie * while executing the guest). This interrupt is still * pending, as we haven't serviced it yet! * * We're now back in SVC mode, with interrupts * disabled. Enabling the interrupts now will have * the effect of taking the interrupt again, in SVC * mode this time. */ local_irq_enable(); /* * Back from guest *************************************************************/ kvm_timer_sync_hwstate(vcpu); kvm_vgic_sync_hwstate(vcpu); ret = handle_exit(vcpu, run, ret); } if (vcpu->sigset_active) sigprocmask(SIG_SETMASK, &sigsaved, NULL); return ret; } static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level) { int bit_index; bool set; unsigned long *ptr; if (number == KVM_ARM_IRQ_CPU_IRQ) bit_index = __ffs(HCR_VI); else /* KVM_ARM_IRQ_CPU_FIQ */ bit_index = __ffs(HCR_VF); ptr = (unsigned long *)&vcpu->arch.irq_lines; if (level) set = test_and_set_bit(bit_index, ptr); else set = test_and_clear_bit(bit_index, ptr); /* * If we didn't change anything, no need to wake up or kick other CPUs */ if (set == level) return 0; /* * The vcpu irq_lines field was updated, wake up sleeping VCPUs and * trigger a world-switch round on the running physical CPU to set the * virtual IRQ/FIQ fields in the HCR appropriately. */ kvm_vcpu_kick(vcpu); return 0; } int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level) { u32 irq = irq_level->irq; unsigned int irq_type, vcpu_idx, irq_num; int nrcpus = atomic_read(&kvm->online_vcpus); struct kvm_vcpu *vcpu = NULL; bool level = irq_level->level; irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK; vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK; irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK; trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level); switch (irq_type) { case KVM_ARM_IRQ_TYPE_CPU: if (irqchip_in_kernel(kvm)) return -ENXIO; if (vcpu_idx >= nrcpus) return -EINVAL; vcpu = kvm_get_vcpu(kvm, vcpu_idx); if (!vcpu) return -EINVAL; if (irq_num > KVM_ARM_IRQ_CPU_FIQ) return -EINVAL; return vcpu_interrupt_line(vcpu, irq_num, level); case KVM_ARM_IRQ_TYPE_PPI: if (!irqchip_in_kernel(kvm)) return -ENXIO; if (vcpu_idx >= nrcpus) return -EINVAL; vcpu = kvm_get_vcpu(kvm, vcpu_idx); if (!vcpu) return -EINVAL; if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS) return -EINVAL; return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level); case KVM_ARM_IRQ_TYPE_SPI: if (!irqchip_in_kernel(kvm)) return -ENXIO; if (irq_num < VGIC_NR_PRIVATE_IRQS || irq_num > KVM_ARM_IRQ_GIC_MAX) return -EINVAL; return kvm_vgic_inject_irq(kvm, 0, irq_num, level); } return -EINVAL; } long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) { struct kvm_vcpu *vcpu = filp->private_data; void __user *argp = (void __user *)arg; switch (ioctl) { case KVM_ARM_VCPU_INIT: { struct kvm_vcpu_init init; if (copy_from_user(&init, argp, sizeof(init))) return -EFAULT; return kvm_vcpu_set_target(vcpu, &init); } case KVM_SET_ONE_REG: case KVM_GET_ONE_REG: { struct kvm_one_reg reg; if (copy_from_user(®, argp, sizeof(reg))) return -EFAULT; if (ioctl == KVM_SET_ONE_REG) return kvm_arm_set_reg(vcpu, ®); else return kvm_arm_get_reg(vcpu, ®); } case KVM_GET_REG_LIST: { struct kvm_reg_list __user *user_list = argp; struct kvm_reg_list reg_list; unsigned n; if (copy_from_user(®_list, user_list, sizeof(reg_list))) return -EFAULT; n = reg_list.n; reg_list.n = kvm_arm_num_regs(vcpu); if (copy_to_user(user_list, ®_list, sizeof(reg_list))) return -EFAULT; if (n < reg_list.n) return -E2BIG; return kvm_arm_copy_reg_indices(vcpu, user_list->reg); } default: return -EINVAL; } } int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log) { return -EINVAL; } static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm, struct kvm_arm_device_addr *dev_addr) { unsigned long dev_id, type; dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >> KVM_ARM_DEVICE_ID_SHIFT; type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >> KVM_ARM_DEVICE_TYPE_SHIFT; switch (dev_id) { case KVM_ARM_DEVICE_VGIC_V2: if (!vgic_present) return -ENXIO; return kvm_vgic_set_addr(kvm, type, dev_addr->addr); default: return -ENODEV; } } long kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) { struct kvm *kvm = filp->private_data; void __user *argp = (void __user *)arg; switch (ioctl) { case KVM_CREATE_IRQCHIP: { if (vgic_present) return kvm_vgic_create(kvm); else return -ENXIO; } case KVM_ARM_SET_DEVICE_ADDR: { struct kvm_arm_device_addr dev_addr; if (copy_from_user(&dev_addr, argp, sizeof(dev_addr))) return -EFAULT; return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr); } default: return -EINVAL; } } static void cpu_init_hyp_mode(void *vector) { unsigned long long pgd_ptr; unsigned long pgd_low, pgd_high; unsigned long hyp_stack_ptr; unsigned long stack_page; unsigned long vector_ptr; /* Switch from the HYP stub to our own HYP init vector */ __hyp_set_vectors((unsigned long)vector); pgd_ptr = (unsigned long long)kvm_mmu_get_httbr(); pgd_low = (pgd_ptr & ((1ULL << 32) - 1)); pgd_high = (pgd_ptr >> 32ULL); stack_page = __get_cpu_var(kvm_arm_hyp_stack_page); hyp_stack_ptr = stack_page + PAGE_SIZE; vector_ptr = (unsigned long)__kvm_hyp_vector; /* * Call initialization code, and switch to the full blown * HYP code. The init code doesn't need to preserve these registers as * r1-r3 and r12 are already callee save according to the AAPCS. * Note that we slightly misuse the prototype by casing the pgd_low to * a void *. */ kvm_call_hyp((void *)pgd_low, pgd_high, hyp_stack_ptr, vector_ptr); } /** * Inits Hyp-mode on all online CPUs */ static int init_hyp_mode(void) { phys_addr_t init_phys_addr; int cpu; int err = 0; /* * Allocate Hyp PGD and setup Hyp identity mapping */ err = kvm_mmu_init(); if (err) goto out_err; /* * It is probably enough to obtain the default on one * CPU. It's unlikely to be different on the others. */ hyp_default_vectors = __hyp_get_vectors(); /* * Allocate stack pages for Hypervisor-mode */ for_each_possible_cpu(cpu) { unsigned long stack_page; stack_page = __get_free_page(GFP_KERNEL); if (!stack_page) { err = -ENOMEM; goto out_free_stack_pages; } per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page; } /* * Execute the init code on each CPU. * * Note: The stack is not mapped yet, so don't do anything else than * initializing the hypervisor mode on each CPU using a local stack * space for temporary storage. */ init_phys_addr = virt_to_phys(__kvm_hyp_init); for_each_online_cpu(cpu) { smp_call_function_single(cpu, cpu_init_hyp_mode, (void *)(long)init_phys_addr, 1); } /* * Unmap the identity mapping */ kvm_clear_hyp_idmap(); /* * Map the Hyp-code called directly from the host */ err = create_hyp_mappings(__kvm_hyp_code_start, __kvm_hyp_code_end); if (err) { kvm_err("Cannot map world-switch code\n"); goto out_free_mappings; } /* * Map the Hyp stack pages */ for_each_possible_cpu(cpu) { char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu); err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE); if (err) { kvm_err("Cannot map hyp stack\n"); goto out_free_mappings; } } /* * Map the host VFP structures */ kvm_host_vfp_state = alloc_percpu(struct vfp_hard_struct); if (!kvm_host_vfp_state) { err = -ENOMEM; kvm_err("Cannot allocate host VFP state\n"); goto out_free_mappings; } for_each_possible_cpu(cpu) { struct vfp_hard_struct *vfp; vfp = per_cpu_ptr(kvm_host_vfp_state, cpu); err = create_hyp_mappings(vfp, vfp + 1); if (err) { kvm_err("Cannot map host VFP state: %d\n", err); goto out_free_vfp; } } /* * Init HYP view of VGIC */ err = kvm_vgic_hyp_init(); if (err) goto out_free_vfp; #ifdef CONFIG_KVM_ARM_VGIC vgic_present = true; #endif /* * Init HYP architected timer support */ err = kvm_timer_hyp_init(); if (err) goto out_free_mappings; kvm_info("Hyp mode initialized successfully\n"); return 0; out_free_vfp: free_percpu(kvm_host_vfp_state); out_free_mappings: free_hyp_pmds(); out_free_stack_pages: for_each_possible_cpu(cpu) free_page(per_cpu(kvm_arm_hyp_stack_page, cpu)); out_err: kvm_err("error initializing Hyp mode: %d\n", err); return err; } /** * Initialize Hyp-mode and memory mappings on all CPUs. */ int kvm_arch_init(void *opaque) { int err; if (!is_hyp_mode_available()) { kvm_err("HYP mode not available\n"); return -ENODEV; } if (kvm_target_cpu() < 0) { kvm_err("Target CPU not supported!\n"); return -ENODEV; } err = init_hyp_mode(); if (err) goto out_err; kvm_coproc_table_init(); return 0; out_err: return err; } /* NOP: Compiling as a module not supported */ void kvm_arch_exit(void) { } static int arm_init(void) { int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE); return rc; } module_init(arm_init);